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Abstract

The transmission of multimedia content will represent up to 90% of all Internet
traffic in a few years, where it will be mainly accessed over wireless networks. How-
ever, this new wireless multimedia era requires instantaneous adaptation of multimedia
content and the network resources according to user’s preferences, experiences, or in-
terests. In this context, human-centric multimedia networking (HCMN) appears as a
promising model for next generation of wireless multimedia networks. In such scenarios,
users will produce, share, and consume video flows ubiquitously, ranging from enter-
taining to real-time video flows about natural disasters or surveillance. Although, op-
timizations in HCMN scenarios must consider issues related to the network, the video
characteristics, and, especially, human’s preferences or the human’s visual system. In
this way, HCMN systems place the human’s experience in the centre of mobile video ser-
vices, protocols, and applications, where the video transmission process must be done and
optimized in real-time according to the human’s perceptions, content’s characteristics,
and also context-awareness. In this work, we introduce the basic concepts for the video
transmission in HCMN systems. We also detail main existing mechanisms, which aim to
improve the performance of HCMN system in sharing video content, including Quality
of Experience (QoE)-based solutions for handover, routing, error correction, decision-
making, and controlling the dissemination of video flows in wireless multimedia-aware
environments.

3.1. Introduction
The evolution of wireless access technologies, mobile devices, and protocols together
with the constant demand for video applications has created new human-centric multi-
media networking (HCMN) environments [Lu et al. 2011, Cerqueira et al. 2014]. This
is due to the use of multimedia services over wireless networks is becoming part of our
personal and professional lives, which allows new video sharing experiences for millions
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of people in the worldwide. In this context, humans are changing their traditional com-
munication paradigms based on voice calls or text messages to real-time video calls or
sharing rich human digital memories in social networks. Many of our life moments can
be delivered digitally. For instance, we can feel that we are in two places at once, by using
face-to-face video calling services, such as provided by Apple FaceTime, Tango, Vonage,
and others. Moreover, the real-time multimedia transmissions to thousands of people over
wireless networks will take place in the coming big events, such as in the FIFA World Cup
and the Olympic Games in Brazil in 2014 and 2016, respectively.

In addition to entertainment, calling, and human digital memory services, life
videos are also important for disaster and surveillance services [Miao et al. 2012]. Live
streaming video flows provide users and authorities (e.g., firefighters and paramedics)
with more precise information than simple text messages, and also allow them to deter-
mine a suitable action based on rich visual information, while reducing human reaction
times. For instance, vehicles or Unmanned Aerial Vehicles (UAVs) can cooperate with
each other to disseminate short videos of dangerous situations, which are hundred or
thousand of meters ahead to visually inform drivers and rescue teams about them.

Motivated by the great success and importance of video-based applications and
services for the IT society, the multimedia market will continue to expand during the next
years with real-time video services for mobile devices. For instance, CISCO projected
that over 10 billion devices will be in used until 2016, and 71% of all mobile data traffic
is expected to be videos by that time as well. Moreover, the multimedia transmission
will represent up to 90% of the global IP data traffic in a few years [Cisco 2012]. Hence,
the multimedia industry believes that mobile video consumption is growing at such a fast
pace, that it is comparable to an unstoppable train, and thus get on board or get knocked
down!

The video coded/decoded (CODEC) [Hanzo et al. 2007] plays an important role
in HCMN environments, where a set of video CODEC have been used to transmit
videos in the Internet, including Google VP9 [Sharabayko et al. 2013], H.264/MPEG-
4 AVC [Puri et al. 2004], MPEG Dynamic Adaptive Streaming over HTTP (MPEG-
DASH) [Sodagar 2011], and others. In general, real-time multimedia traffic consists of
one or more media streams with different spatial or temporal (motion and complexity
level) video activities and features. From the aspect of video characteristics, a typical
hierarchical-based compressed video, such as H.264 or MPEG-4, is composed of three
types of frames, namely I- (Intra-coded), P- (Predictive-coded), and B- (Bidirectionally
predictive-coded) frames. These frames are arranged into sequences, called Groups of
Pictures (GoP), which contains all the information required to decode a given video se-
quence, within a period of time. It is important to highlight that not all video frames are
equal or have the same degree of importance based on the user’s point-of-view. For in-
stance, depending on the video motion and complexity levels (e.g., a small moving region
of interest on a static background or fast-moving sports clips) and the GoP length, the
impact of a packet lost in the Human Visual System (HVS) may or may not be annoying
[Greengrass et al. 2009a]. Since not all video flows are equal, each video sequence in
HCMN systems must be analysed and managed individually or in cluster with group of
videos according to the characteristics.
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The evolution of the Internet over the past decades aimed to provide
network-centric traffic differentiation, resource reservation, and Quality of Service
(QoS) support solutions for multimedia distribution applications [Kritikos et al. 2013,
Luo and Shyu 2011]. However, QoS proposals only indicate the impact of network per-
formance, such as bandwidth, packet loss rate, and packet delay rate, on the delivery of
multimedia content. In this way, QoS schemes alone are not enough to assess, control,
and improve the quality level of multimedia applications, because they fail to capture
subjective aspects of multimedia content related to human’s perceptions. Hence, the dis-
tribution of video flows over wireless networking environment in HCMN systems with
quality level support, especially in mobile systems, it is not a trivial task and cannot be
assure by traditional network or packet-based QoS approaches, i.e., without human and
video-awareness.

The perception of video sequences shared and watched by humans must be eval-
uated in terms of Quality of Experience (QoE) [Lindeberg et al. 2011], which directly
measure the video quality according to subjective aspect of the users on watching a given
video flow. Thus, many researchers, standardization bodies, and also industries have been
studying QoE assessment and management approaches, where the human’s experience
can be measured and integrated into networking components to improve the overall per-
formance of HCMN systems [Adzic et al. 2011]. This is due to during the transmission of
real-time video flows over wireless network, the video quality can be affected by several
factors, such as the network infrastructure (i.e., delays and packet loss), the requirements
of the human visual system (i.e., regions of interest and environment luminosity), the
video characteristics (i.e., video encoder and frame dependency), as well as the user’s ex-
perience, preference, and interest [Greengrass et al. 2009a]. Hence, QoE and networking
schemes must be extended with context-awareness, content adaptation, and human-based
models to provide a better application, service, and resource utilization for HCMN sys-
tems.

Understanding and modelling human’s experiences, including psycho-visual and
(re)presentation of user’s experience modelling, and video characteristics into wireless
systems, decision-making engines, or networking protocols are still open issues. More-
over, it improves the distribution of live multimedia applications with QoE support in
HCMN scenarios. Hence, human-centric approaches must be developed to both adapt
the videos to different network conditions and human’s experiences, as well as to extend
networking protocols and services to delivery video sequences with QoE assurance, while
optimizing the usage of network resources.

Recent research topics highlighted the importance of content and information for
new wired and wireless network services and applications, namely Content and Informa-
tion Centric Networks (CCN and ICN) [Kulinsk et al. 2013]. However, both CCN and
ICN do not enable real-time multimedia adaptation to cope with different network’s, de-
vice’s, and user’s requirements. For instance, in congestion periods in a wireless network,
the queue scheduling police must decide about which packets should be dropped accord-
ing to the human visual system, in order to do not affect (or minimize) the user’s percep-
tion on watching a given video flow. Another example is the use of transcoding services
in the network to deliver adapted CCN-based videos to different users. Hence, HCMN
has been seeing as a key paradigm to improve the usage of network resources, while also
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ensuring a better human’s experience in consuming or sharing video applications, even in
CCN/ICN environments [Lu et al. 2011, Cerqueira et al. 2014].

The vision of HCMN places the users in the centre of multimedia content ser-
vices, where the video delivery process must be accomplished and optimized according
to the human’s experience, video characteristics, environmental conditions, display capa-
bilities, and context-awareness as presented in Figure 3.1. In this way, HCMN improves
the dissemination of video flows over fixed and wireless CCN/ICN or even in the tra-
ditional host-to-host Internet communication. Hence, the dissemination of multimedia
content must be optimized by taking into accounting the human’s experience, the context-
awareness, the user’s preference or interest, the human’s visual system requirements, the
network conditions, as well as the multimedia content characteristics [Wang et al. 2013a].

Figure 3.1. General View of a Human-centric Multimedia Networking Environment

In HCMN scenarios, content creators and network providers should be able to
adapt, share, and deliver video flows according to different (cloud) network conditions,
devices capabilities, environmental characteristics, and human-centric models or QoE
metrics. In this way, several issues need to be studied and understood in order to pro-
pose new mechanisms, as well as to extend the exiting ones by taking into consideration
the characteristics and requirements of HCMN systems. Several services can be improved
with HCMN capabilities, namely handover, routing, packet redundancy, error correction,
pricing, and others. For instance, HCMN must improve the system performance and
user’s satisfaction by taking context, network, and human-awareness into account to cre-
ate/transmit/access video content. There are several HCMN parameters that can be ap-
plied together or separated in application and networking cross-layer schemes, including
user’s experience, preferences, interests, human visual system requirements, video mo-
tion and complexity levels, frame type and importance, network impairments, and mobile
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device characteristics, and not only network metrics, such as delay, packet loss or signal
strength [Cerqueira et al. 2014, Khan et al. 2010]. A trade-off between performance and
accuracy must be considered before extending and implementing all or a set of HCMN
features into multimedia systems.

The implementation of HCMN system is a hard task, and also requires high
processing, data exchange, and memory. However, advances in cloud computing
[Wang et al. 2013b] and the integration of HCMN into cloud ecosystems allows mobile
users to have new media experiences, as well as the HCMN-awareness that are not pos-
sible from their mobile smartphones or tablets, multimedia player in Vehicular Ad-Hoc
Networks (VANETs), or even in laptops at home. Moreover, Software Defined Networks
(SDN) will also play an important role in HCMN, where it will be possible to improve the
control of network resources and trigger video adaptation procedures on-the-fly, as well
as evaluate the proposed solution in productive networking environments.

In this work, we start by introducing the concepts behind HCMN systems. In
Section 3.2, we introduced the concepts and of key technologies related to video trans-
mission over wireless networks for HCMN scenarios, as well as the methods for video
quality assessment based on the user’s experience. In Section 3.3, we introduce the cross-
layer parameters that must be considered for creation, transmission, or assessment of
video over HCMN systems. Section 3.4 presents the state-of-the-art in video delivery
with QoE-awareness, which aims to provide video transmission over wireless networks
with HCMN capacity. More specifically, we outline the advantages and disadvantages,
research opportunities for extending them, as well as possible applications. The final con-
siderations are discussed in Section 3.5, where we indicate the main challenges, future
trends and scenarios for HCMN.

3.2. Technologies Related to HCMNs
The human visual quality perception for real-time videos is highly influenced by the
networking delivering process, such as packet losses. Moreover, the multimedia trans-
mission over wireless networks is subject to communication errors due to physical net-
work conditions, such as multipath fading, interference, shadowing, and background noise
[Adzic et al. 2011]. In contrast to wired networks, packet loss in wireless networks does
not mean network congestion, since often failures are related to physical reasons, which
causes communication problems and failures [Lindeberg et al. 2011]. Therefore, multi-
media services transmitted over wireless networks can be affected by many factors.

Another important key issue in HCMN is the CODEC, where information about
the video characteristics can be used to extend networking services and protocols with
video-awareness and also model the human’s perception. Hence, image compression
algorithms are needed to remove spatial and temporal video redundancies, especially in
wireless scenarios. In this way, it reduces the amount of data required to depict a video
flow, enabling a better use of network resources [Hanzo et al. 2007].

In this section, we introduce relevant concepts related to multimedia transmissions
over wireless networks, such as characteristics and problems of wireless networks and
video compression techniques for HCMN systems. We also present the main concepts
related to QoE, the differences between QoS and QoE, and metric commonly used to
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estimate the quality level of video sequences.

3.2.1. Video Distribution in Wireless Networks

In this section, we present some use-case wireless network scenarios for video distri-
bution, without addressing technical details about wireless communications. Multime-
dia applications and services over wireless mobile networks are becoming an integral
part of our personal and professional lives. For instance, users will produce, share,
and consume many types of content on smartphones in ubiquitous way, ranging from
provider-generated entertainment videos to user-generated disaster or surveillance real-
time video flows [Miao et al. 2012]. In this context, many mobile wireless devices will
use different wireless technologies to share live video flows in HCMN wireless systems,
such as by using Wireless Mesh Network (WMNs) [Benyamina et al. 2012], Mobile Ad-
hoc Network (MANET) [Kumar et al. 2010], VANETs [Jarupan and Ekici 2011], Fly-
ing Ad Hoc Networks (FANETs) [Bekmezci et al. 2013], Long Term Evolution (LTE)
[Araniti et al. 2013], or even heterogeneous networks composed of a set of wireless tech-
nologies.

WMNs [Benyamina et al. 2012] are now increasingly deployed, enabling users to
share, create, and access video streaming with different characteristics or content, such
as video surveillance and football matches scenarios. It is possible to see WMNs in cam-
pus, stadiums, squares and buildings, where videos are key applications. WMN does not
have a fixed network structure or a defined and immutable path to transmit data, because
paths are dynamic and discovered in real-time. Hence, we can assume that every router is
responsible for maintaining the information flow between other routers in the neighbour-
hood. However, video streaming produces a degraded performance in multi-hop WMNSs,
due to network/channel impairments, such as packet loss. Understanding and modelling
the relationship of network impairments, video characteristics, and human experiences
are main requirements for the delivery of visual content with HCMN-awareness.

Multimedia transmissions over MANETs [Kumar et al. 2010] have been attracted
considerable attention from both academic and industrial research communities over the
last years, due to the growth of new multimedia services under ad-hoc networks. For
instance, nowadays, more users use MANET to share video content than wired infras-
tructures. In addition, in case of a natural disaster, such as earthquake, hurricane, or
flooding (e.g., hurricane Sandy in New York in 2012 or the combination of floods, mud-
slides, and landslides in Rio de Janeiro in 2011), the recovery process demands an effi-
cient and rapid deployment of a communication system due to the fact that the standard
telecommunication infrastructure might be damaged. In this use-case scenario, MANETs
enable to build a temporary communication network to share video flows of monitored
area [Morgenthaler et al. 2012]. Peculiar characteristics of MANETs, such as mobility,
dynamic network topology, energy constraints, lack on centralized infrastructure, and
variable link capacity, make the delivery of multimedia content with quality from the hu-
man’s experience over these networks a challenging and non-trivial task. Therefore, new
HCMN protocols and services for MANETs must be created to transmit adaptive and
QoE-aware video flows according to different MANET conditions.

The distribution of real-time multimedia content over VANETs

3: Multimedia Human-Centric Networking: Concepts, Technologies and Trends.

108 c�2014 SBC — Soc. Bras. de Computação



[Jarupan and Ekici 2011] becomes a reality, which allows drivers and passengers to
have new experiences with on-road videos, ranging from surveillance to entertainment
services. For instance, Americans spent around 5.5 billion hours in traffic in 2011,
where they could have use these hours watching entertainment or educational videos to
make their travels more enjoyable. The content providers also recognize VANETs as a
promising market for video-based commercial advertisements. Moreover, multimedia
vehicles can be used for capturing and sharing environmental monitoring, surveillance,
traffic accidents, and disaster-based video flows. Live streaming video flows provide
users and authorities (e.g., firefighters and paramedics) more precise information than
simple text messages, and also allow them to determine a suitable action, while reducing
human reaction times.

Multi-flow video transmissions over FANETs [Bekmezci et al. 2013] enable a
large class of multimedia applications, such as safety & security, natural disaster recovery,
environmental monitoring, and others. This kind of network is becoming popular and it
is possible to buy low cost UAVs equipped with a video camera, an image encoder, and a
radio transceiver in many retail stores. FANETs with HCMN capabilities must be able to
adapt to topology changes, and also to recover the quality level of the delivered multiple
video flows under dynamic topology situations. The user’s experience on watching the
live video sequences must also be satisfactory even in scenarios with network congestion,
buffer overflow, and packet loss ratio.

The evolution of heterogeneous networking access technologies [Roy et al. 2011],
real-time multimedia applications, and protocols created a plethora of new wireless con-
nectivity scenarios featuring an ever-increasing number of devices and multimedia net-
working entities. This heterogeneous multimedia smart environment requires changes in
protocols and services to deal with multiple interfaces systems. Hence, the integration
of heterogeneous networks in such scenario, such as IEEE 802.11, IEEE 802.16, and
LTE in multi-access and multi-operator systems, is bringing about revolutionary changes
in wireless environments by providing new opportunities, introducing better communi-
cation channels and raising the possibility of providing HCMN approaches for users of
wireless services.

3.2.2. Video Characteristics

Video compression techniques aim to reduce the amount of data required to store digital
video images, and use both image compression and motion compensation techniques.
This is owing to a video recorded with no compression generates a large file, being hard
to manipulate and distribute through wireless network. To improve the video delivery
process, video compression generates smaller files, which increases its storage efficiency
and also enables it to be distributed through the network [Hanzo et al. 2007]. This is
especially needed in network scenarios with limited resources, i.e., bandwidth, energy,
and memory space.

The CODECs play an important role in HCMN system. H.264/MPEG-4 is still
one of the most popular CODECs, but Google VP9 and MPEG-DASH are gaining a lot
of space in multimedia environments. MPEG-DASH uses standard HTTP protocol. It
can be deployed using standard web servers and it works with existing Internet infras-
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tructures, including caches, firewalls, and NATs. MPEG DASH supports Scalable Video
Coding (SVC) and Multiview Video Coding (MVC). The MPEG-DASH specification de-
fines the Media Presentation Description (MPD) and the segment formats. A benefit of
MPEG DASH for HCMN systems is that it provides adequate information to the client
for selecting and switching between streams, for example, selecting video between dif-
ferent camera angles, and dynamically switching between different bitrates of the same
video camera. The delivery of the MPD and the media-encoding formats containing the
segments, as well as the client behavior for fetching, adaptation heuristics, and playing
content, are outside of MPEG-DASH’s scope. Thus, there are a lot of rooms for improv-
ing the delivery of MPEG-DASH in HCMN scenarios.

H.264/MPEG-4 is currently one of the most commonly used formats for the
recording, compression, and share video content and we will give more attention to it
in the remainder of this section. Figure 3.2 shows a generic example for video coding and
decoding in a wireless network. At the sender side, the codec encodes the video provided
by either a live source camera or stored video repository before transmitting it. Thus, the
encoding process removes redundant information and converts the video to an intermedi-
ate format (bitstream) so that it can be distributed through the network. The intermediate
format is a set of bits created by the encoder in accordance with well-defined standards,
such as Moving Picture Experts Group (MPEG) [Le Gall 1991]. Video coding standards,
such as, MPEG, specify the bitstream format and the decoding process for a given video
sequence, where each flow starts with a sequence header, followed by a GoP header, and
then by one or more coded frames. At the receiver side, the H.264/MPEG-4 CODEC de-
codes the received data, and converts it from an intermediate format to a video sequence
[Gualdi et al. 2008].

��������
�������

Coding Decoding

Figure 3.2. Example of video coding and encoding in a wireless network

Both video coding and transmission processes have an impact on the final video
quality at the receiver side. Hierarchical video coding schemes, such as MPEG or H.264,
convert and compress a video signal into a series of pictures or frames. Change might
occurs between one frame and the next, which means that an encoder compress the video
significantly by only transmitting the differences [Greengrass et al. 2009a].
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3.2.2.1. Spatial or Intra-frame Compression

Intra-frame compression removes redundant information within frames by taking advan-
tage of the fact that pixels within a single frame are related to their neighbours. This pro-
cess includes signal transform, quantisation, and entropy encoding which is very similar
to that of a JPEG still image encoder [Greengrass et al. 2009a]. The intra-frame compres-
sion process consists of three stages: computation of the transform coefficients; quantiza-
tion of the transform coefficients; and conversion of the transform coefficients into pairs
after the data has been rearranged in a zigzag scanning order (see Figure 3.3) [Gall 1992].

Image 
Samples

Transform 
Coefficients

Quantization,      
zig-zag scan,
Run-length coding

DCT

Figure 3.3. Transform coding, quantization and run-length coding

The intra-frame compression uses the Discrete Cosine Transform (DCT) derived
from still image compression. DCT extracts signals into a sum of cosine functions that
fluctuate at different frequencies. This is because a spatial compression performs fre-
quency analysis in a given frame to find the dominant frequencies, which is carried
out by converting frames to the frequency domain by means of transform techniques
[Watkinson 2004]. The DCT result is pre-multiplied by the quantisation scale code and
divided by the element-wise quantisation matrix. The processed result usually generates a
matrix with values primarily in the upper left-hand corner. The zigzag ordering groups all
non-zero values. The intra-frame compression greatly reduces the size of the data storage.

Figure 3.4 exemplifies the complexity level for different video sequences down-
loaded from a well-known video source library [Library 2014]. Figures 3.4(a) and 3.4(d)
show a given frame from the Flower and Hall video sequences, respectively. Further-
more, macroblocks can be observed in both frames, which are the basic unit for video
frame compression. It divides each frame into small blocks for further handling, and uses
the YUV system, i.e., a common used colour space that takes account of human’s percep-
tions when encoding an image or a video. It was initially used in the H.261 standard, and
nowadays it is the basis for all previous and current video-coding standards.

The size of the macroblock is variable, but the standard size comprises an array of
8x8 pixels. The DCT transform is applied to each macroblock, and produces a coefficient

Minicursos do XXXII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos — SBRC 2014

111 c�2014 SBC — Soc. Bras. de Computação



for each pixel macroblock. In this way, each macroblock has 64 pixels (8x8), i.e., the DCT
transform produces an 8x8 matrix containing 64 coefficients. To illustrate this process,
Figures 3.4(b) and 3.4(e) show macroblocks obtained after the DCT transform has been
applied in Figures 3.4(a) and 3.4(d), respectively. In seeking to give a better explanation
of the results of the DCT transform, we used coefficient values in black and white colour
scale, where black means lower coefficient values, while white means higher coefficient
values. It can be seen that the Hall frame has more macroblocks with a colour closer to
white, which explains the higher number of coefficient values in Figure 3.4(b) than in
Figure 3.4(e).

Figures 3.4(c) and 3.4(f) show the horizontal and vertical coefficients of two spe-
cific macroblocks from Figures 3.4(b) and 3.4(e), respectively. In the matrix containing
the coefficients of a given macroblock, the frequency increases from the left to the right
and from the top to the bottom. On the basis of these observations, the MPEG saves the
coefficients in a vector with an ascending order of frequency.

Hence, coefficients with higher frequencies and values closer to zero cannot be
transmitted without affecting the level of video quality. In this way, spatial compression
reduces the number of bits required to depict a given video frame. However, the spatial
compression rates provided by the DCT transform changes, since it depends on the fre-
quency of the image. For example, the Hall frame in Figure 3.4(b) has lower coefficient
value for higher frequencies than the coefficients of the Flower frame in Figure 3.4(e).
Hence, by calculating the number of DCT coefficients, it is possible to infer the spatial
compression rate for a given video.

(a) Hall Video Frame with Mac-
roblocks Division

(b) DCT Coefficients for Each
Macroblocks for the Hall Frame

(c) A Single Macroblocks of the
Hall Video Frame

(d) Flower Video Frame with
Macroblocks Division

(e) DCT Coefficients for Each
Macroblocks for the Flower Frame

(f) A Single Macroblocks of the
Flower Video Frame

Figure 3.4. Complexity Level for Different Video Frames
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3.2.2.2. Temporal or Inter-frame Compression

Temporal or inter-frame compression tries to remove redundancies existing in consecutive
frames, obtaining a high compression ratio. This creates a frame based on the previous
frame, by eliminating the common parts of the frames. Motion causes the differences
between different video frames. Thus, the video frame size reduces by removing the
unnecessary parts in the related video frames, and also by only encoding the motion parts.
In this way, it is possible to transmit only the differences between the frames.

For instance, it is possible to obtain the frame-difference, as shown in Figure
3.5(c), by extracting the motion difference from the News frames 1 and 2 [Library 2014],
i.e., denoted as frame #2 - frame #1. The black portion means the common parts in both
frames, and the other parts mean the variation between them. Thus, it is possible to re-
construct the frame #2 based on the frame #1 and the frame-difference.

(a) Frame #1 from News Video
Sequence

(b) Frame #2 from News Video
Sequence

(c) Motion Difference for Frame
#1 and #2 from News Video Se-
quence

(d) Frame #1 from Football
Video Sequence

(e) Frame #2 from Football
Video Sequence

(f) Motion Difference for Frame
#1 and #2 from Football Video
Sequence

Figure 3.5. Motion Level for Different Video Frames

Figure 3.5(f) shows the frame-difference obtained by extracting the motion dif-
ference from Figures 3.5(d) and 3.5(e). First of all, it is possible to observe that Figure
3.5(f) has fewer parts in black than Figure 3.5(c), suggesting that this video has a higher
level of motion. Second, the rate of time compression is lower for videos with a high
motion level. Third, with motion compensation, only the filtered video frame is stored
instead of the original frame, which reduces the video size, since the filtered video frame
contains less information. To decode a given video, the motion vector search algorithm
must match the motion part in the previous reference video frame to decode the current
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video frame. The algorithm for locating the motion part is the key part of video coding.

3.2.2.3. Group of Pictures (GoP)

A given video sequence contains a series of video frames, and each frame includes in-
formation about the whole picture. MPEG standard employs a hierarchical structure
composed of 3 types of frames, namely, I-, P-, and B-Frames [Aguiar et al. 2012]. The
macroblock from I-, P-, and B-frames uses spatial compression. On the other hand, tem-
poral compression is only applied to the macroblocks from the P- and B-frames. The
macroblocks of the P-frames use as reference the macroblocks from the previous I- or
P-frames, as shown in Figure 3.6. The macroblocks of the B-frames use as reference the
macroblocks of previous or future I- or P-frames [Serral-Gracià et al. 2010].

These frames are arranged into sequences called Group of Pictures (GoP). A GoP
contains all the information required to decode a given video sequence, within a period of
time, and can be used for HMCN assessment and optimization procedure. An important
factor of MPEG encoding is the GoP size, which indicates the frequency of I-frames in
a given video. Each GoP includes an I-frame and all the subsequent P- and B-frames
leading up to the next I-frame, as shown in Figure 3.6. For example, a GoP length of
10 frames means a GoP that starts with an I-frame, followed by a sequence of 9 P- or
B-frames. For each GoP, MGoP represents the distance between successive P-frames, and
NGoP defines the distance between adjacent I-frames. As a result, this structure is flexible,
and the frame types and their locations within the GoP can be adjusted to the encoding
type. Hence, the MPEG standard provides a hierarchically GoP structured, and some
frames are more important than others. In this way, a packet loss has different impact
depending on the user’s perspective.

M

N

GoP

Figure 3.6. Group of Pictures Structure

The frequency of the I-frames in the compressed video defines the size and quality
of a video stream. The video bit rate can be reduced by decreasing the frequency of the I-
frames when encoding a given video, also degrades the video quality. On the other hand,
more I-frames should be added during the encoding process, whenever a higher video
quality level is required, and this result in a video with higher video bit rates.

The I-frame contains complete information for a specific video picture, and it is
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coded without any reference to other frames. In addition, it is known as the key frame for
a GoP, since it provides the reference point for decoding a received video stream, i.e., it
serves as a reference for all the other frames. It might use spatial compression, and not
temporal compression. By removing spatial redundancy, the size of the encoded frame is
reduced, and predictions can be used at the decoder to reconstruct the frame. The size of
the I-frame is usually higher than the P- or B-frames, since it is the least compressible.

P-frames predict the frame that has to be coded from the previous I-frame or P-
frame by using temporal compression, i.e., unlike the preceding I- or P-Frame, P-frames
contain the changes of the actual frame. P-frames provide a higher rate of compression
than I-Frames, typically 20 – 70 % the size of an I-frame. Finally, the B-frame uses
both the previous and the next I-frame or P-frame as their reference points for motion
compensation. B-frames provide further compression, typically 5 – 40 % the size of an
associated I-frame [Mu et al. 2012].

As a result of the hierarchical structure of MPEG standard, packet losses might
affect the level of the video quality in different ways, depending on the lost information
[Immich et al. 2013]. More specifically, the loss of an I-frame affects the other B- or
P-frames within the same GoP. Thus, errors propagate in other frames until a new I-
frame reaches the receiver. In the case of the loss of a P-frame, the error propagates in
the remaining P- and B-frames in a GoP. In addition, P-frames that appear earlier in the
GoP cause impairments over a longer period, since the subsequent frames are directly or
indirectly impaired until the decoder receives the next I-frame. Finally, in the case of B-
frame losses, the error does not propagate, since the B-frames are not used as a reference-
point for the other frames [Greengrass et al. 2009b]. It is important to notice that not
all packets are equal or have the same degree of importance, which are key parameters
to determine the extension of the video impairment or to perform HCMN optimization
procedures, such as human/QoE-aware packet redundancy schemes.

3.2.3. Video Quality Assessment

Solutions involving multimedia transmissions and HCMN-based must evaluate the video
content from the user’s perspective and not only from the network’s perspective. In this
context, over the last decade the focus has shifted away from pure network point-of-
view assessment, i.e., QoS metrics, to a more human-centric approach, i.e., QoE metrics
and user-awareness, since QoE schemes overcome the limitations related to the human
visual system. This is due to QoS schemes alone are not enough to assess the quality
level of multimedia applications based on user’s experience, because they fail to cap-
ture subjective aspects of video content related to human’s experience and subjectivity
[Mu et al. 2012, Raake and Möller 2011]. In addition, networking services and protocols
can the extended and enhanced with QoE features to improve the video delivery process in
HCMN environments. It is important to highlight that QoE assessment and management
operations are widely dependent on subjective aspects related with human’s perception,
as well as, user’s location, video characteristics, type of CODEC, screen size, and context.
For instance, video sequences with different complexities, motions, and frame rates will
produce different QoE results even under the same networking scenarios.

QoE metrics have been classified based on a set of manners in the literature
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[Fajardo et al. 2011], such as based on metric output type or on the amount of the re-
quired reference information. However, in this work, QoE assessment approaches will
be defined as objective, subjective, and hybrid as proposed in standardization bodies,
working groups, and many works [Moorthy et al. 2010, Wang et al. 2004a]. Objective
approaches estimate or predict the video quality level by means of mathematical mod-
els or signal processing algorithms. The main objective metrics are the following: Peak
Signal to Noise Ratio (PSNR) [Ma et al. 2011], Mean Squared Error (MSE), Structural
Similarity Index Metric (SSIM) [Wang et al. 2004b], and Video Quality Metric (VQM)
[Pinson and Wolf 2004]. Objective QoE metrics exploit image signal processing tech-
niques to assess the video quality level, but they are difficult to implement in real-time
and, usually show a poor performance compared to the human’s experience. Moreover,
objective metrics fail to capture all the details that might affect the user’s experience. This
problem is addressed by carrying out subjective QoE evaluations, where Mean Opinion
Score (MOS) [ITU-R 2002] is one of the most widely used approaches for subjective
video quality evaluation.

SSIM metric improves the performance of the traditional PSNR and MSE metrics.
This is because both PSNR and MSE metrics do not correlate well with the subjective per-
ceptions of humans. Therefore, SSIM is a metric that involves frame-to-frame measuring
of three components, namely, luminance, contrast, and structural similarity. It also mea-
sures the structural distortion of the video, and seeks to obtain a better correlation with the
user’s subjective impression. Hence, it combines these components into a single value,
called index. The SSIM index is a decimal value between 0 and 1, where 0 means no cor-
relation with the original image (low video quality level), and 1 means exactly the same
image (high video quality level).

The VQM method defines a set of computational models, which also have been
shown to be superior performance than traditional PSNR and MSE metrics. VQM uses the
same features of the human’s eye to perceive the video quality, including colour and block
distortion, as well as blurring and global noise. More specifically, this model employs a
linear combination with seven parameters. Four extracted from spatial gradients, two
obtained from a chrominance vector, and the last derived from absolute temporal and
contrast details. VQM values closest to 0 correspond to the best possible video quality
level, i.e., exactly the same image compared to original video. The MSU Video Quality
Measurement Tool (VQMT) [Vatolin et al. 2014] is a well-known and suitable tool to
measure the SSIM and VQM values for each transmitted video flows.

Moreover, subjective evaluation captures all the details that might affect the hu-
man’s experience. In this context, MOS is one of the most frequently used metrics for sub-
jective evaluation, and is recommended by the International Telecommunication Union
- Telecommunication Standardization Sector (ITU-T). MOS requires human observers
rating the overall video quality level in accordance with a predefined scale. The MOS
evaluation can be done by following the Single Stimulus (SS) or Double Stimulus (DS)
methods defined by the ITU-R BT.500-11 recommendations [ITU-R 2002].

When the SS approach is used, the human observers only watch the video once,
and then give a score. The choice of a SS paradigm fits well to a large number of emerging
wireless multimedia applications [Seshadrinathan et al. 2010]. When the DS method is
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applied into the MOS evaluation system, viewers watch an unimpaired reference video,
and then they will watch same video impaired. Afterwards, he/she rates the second video
using an impairment scale. For both approaches, in general, the MOS scale goes from 1
to 5, where 5 is the best possible score, as shown in Table 3.1.

Table 3.1. MOS Scale According to ITU-R BT.500-11 Recommendations [ITU-R 2002]

MOS Quality Impairment
1 Bad Very annoying
2 Poor Annoying
3 Fair Slightly annoying
4 Good Perceptible, but not annoying
5 Excellent Imperceptible

Hybrid QoE video quality assessment approaches have been proposed to measure
the quality level of videos in real-time by taking into consideration the benefits of both
objective and subjective methods. Parametric hybrid schemes predict the perceived video
quality level based on information about the IP and video codec headers (bitstream), such
as frame type and packet loss rate (without decoding the video flow), where a machine
learning technique can be used to map network impairments and video characteristics into
a predicted human MOS. An example of parametric approaches have been developed by
ITU-T, namely P.NAMS, P.NBAMS, and G.OMVAS.

The P.NAMS is a non-intrusive parametric model for video streaming perfor-
mance assessment, where it performs procedures based on packet-header information,
e.g., from IP through MPEG2-TS. P.NBAMS uses also information about the bitstream
for non-intrusive video quality measurement, while P.NBAMS is allowed to use the pay-
load information, i.e., coded bitstream. Although, ITU recommendations include clear
descriptions of potential assessment models, few of them have been fully implemented
and evaluated with wireless multimedia networking scenarios. The Pseudo Subjective
Quality Assessment (PSQA) [Ghareeb and Viho 2010] and Hybrid Quality of Experience
Prediction (HyQoE) [Aguiar et al. 2012] are examples of hybrid QoE video prediction
approaches available in the literature.

For example, HyQoE uses information about the video’s characteristics, network’s
impairments, human’s experience, and Multiple Artificial Neural Networks (MANN) to
predict ongoing video flows into MOS. HyQoE collects the video characteristics and net-
work impairments by using a deep packet inspector module, where video coding stan-
dards, e.g., MPEG, specify the bitstream format and the decoding process in a video
sequence. More specifically, each flow starts with a sequence header, followed by a GoP
header, and then by one or more coded frames. Each IP packet contains one or more video
frames. The deep packet inspector examines the MPEG bitstreaming and verifies which
frame was lost in a GoP, without decoding the video payload. The packet inspector also
collects information about the frame type and intra-frame dependency. Hence, HyQoE
uses a correlation between DCT coefficients, motion vectors, and frame size to define
the level of spatial and temporal video’s characteristics. HyQoE can be used together
with HCMN optimization and management schemes to improve the usage of network re-
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sources, as well as system performance in key networking areas, such as pricing, routing,
network coding, or mobility.

The implementation of real-time QoE video quality assessment schemes in mul-
timedia network domains is not simple task, and also requires additional studies and ex-
periments. In addition, the interaction between different areas, such as informatics, engi-
neering, visual arts, medicine, and psychology, is crucial to understand the human visual
system, behaviour, feeling, and psychological factors. A common sense is that Inter-
net clouds together with mobile clouds will make the implementation of human-centric
mobile systems possible, which enrich them with more advanced, cooperative, and pow-
erful features. The development of QoE assessment models by means of crowdsourcing
[Gardlo et al. 2014] can also increase the system accuracy and reduce the time required
to train human-centric video quality assessment schemes.

3.3. Cross-Layer Parameters for HCMN Systems
The International Organisation for Standardisation (ISO) developed the Open System In-
terconnection (OSI) model composed of seven conceptual network layers to define the
specifications for data transmissions [Zimmermann 1980]. The OSI model provides a
universal standard rules for different manufacturers, and also ensures connection compat-
ibility among different software and devices. In this way, we can study the data transmis-
sion over networks at different layers, where each layer has specifications to make sure
that the data can be smoothly delivered from one device to another device. Each layer is
only able to communicate and provide information to the adjacent layers, i.e., based on
OSI or Internet (TCP/IP) model, non-adjacent layers are not allowed to exchange infor-
mation. However, it is an extremely challenging task to meet the end-to-end requirements
for multimedia disseminations without interaction between non-adjacent protocol layers
[Setton et al. 2005, Srivastava and Motani 2005]. In HCMN environments, it is also im-
portant a cross-layer scheme with the humans/end-users, where it is mandatory to collect
information about the human’s experience to be applied in HCMN assessment and man-
agement operations.

The cross-layer design was proposed to enrich services, applications, and proto-
cols with information from more than one layer. It can be defined as the violation of
the referenced communication layer architecture by allowing direct communication or
sharing of information with non-adjacent layers. In this way, cross-layer optimizations
allow flexibility to both have access and to set the information in non-adjacent layers
[Foukalas et al. 2008]. This is especially important to assess the video quality level based
on user’s perception, since those information enables to understand and model the hu-
man’s experience [Andreopoulos et al. 2006]. In addition, services and protocols can be
extended with information about the video application characteristics, such as GoP length,
as well as video motion and complexity level. In this section, we describe the key metrics
from multiple layers to take into consideration for the design of cross-layer mechanisms
for HCMN scenarios.
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3.3.1. HCMN Requirements

In HCMN environments, content creators and network providers should be able to adapt,
share, and deliver video content in scenarios with different network conditions, devices
capabilities, environmental characteristics, and human-centric models. For instance,
decision-making process must improve the HCMN system performance, as well as the
user’s satisfaction by taking into account cross-layer HCMN metrics to create, transmit
and access a video flow. The cross-layer context, network, and human-awareness met-
rics include user’s experience, preferences, interests, human visual system requirements,
video motion and complexity levels, frame type and importance, network impairments,
and mobile device characteristics.

Figure 3.7 depicts a HCMN environment composed of three modules, namely Per-
sonalized Devices, Personalized Interfaces, and Context-awareness Engine. Personalized
devices, e.g., smartphones, tablets, notebooks, and vehicles (including drones), do not
rest only on the computing resources, but on the sensors that they carry, including cam-
eras, light sensors, and location schemes. For instance, video cameras and sensors add
important functions to HCMN scenarios, where users (or machines) cooperate with each
other to improve surveillance and monitoring missions. Moreover, devices have different
display sizes and resolutions, as well as memory and processing capabilities. Thus, all of
this information should be taken into accounting for HCMN assessment and networking
optimization procedures.
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Figure 3.7. Human-centric Multimedia Networking Scenario

Human-centric approaches must also be enhanced with context-aware informa-
tion. In this context, advanced models describe the human experiences and preferences
in consuming real-time video flows, allowing the systems to dynamic adapt the content
or resources according to the human needs, properties of the human visual system, and
interests [Kiani et al. 2013, La and Kim 2010]. Hence, understanding, modelling, as well
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as considering user’s behaviours, experiences, feelings, and psychological aspects when
consuming and sharing real-time video flows are key issues for HCMNs.

Notice that the human-based information for HCMN environments can be col-
lected from social networks. For instance, the user’s preferences for a set of videos or
even its location can be extracted from his/her Facebook.

3.3.2. Cross-Layer Parameters

New mechanisms must be proposed or extended with the aid of cross-layer parameter in
order to improve system performance, user’s satisfaction, and also to provide multime-
dia dissemination with a minimum quality level based on user’s point-of-view. Among
the services that can be improved with HCMN parameters are video quality assessment,
handover, routing, redundancy, error correction, and pricing. In the following, we intro-
duce some cross-layer HCMN approaches that must be considered for decision-making
in HCMN system.

3.3.2.1. Network-awareness

Humans expect to watch videos smoothly and at a certain quality level, no matter what
changes occur in the networking environment. However, they often experience incon-
sistent playback, resulting from fluctuation of network quality, especially in case of mo-
bile devices, which have limited bandwidth and hardware resources. As the number of
network users increase, bandwidth insufficiency might occur, and thus the multimedia
services will be significantly affected. In contrast to general services that accept a cer-
tain packet loss rate, multimedia services require low packet loss rate, correctness, se-
quence order, and also real-time packet transmissions. Moreover, users often view live
video flows that freeze intermittent or even failure to operate. Therefore, how to exe-
cute smooth playback with limited bandwidth and the different hardware specifications of
mobile streaming is an interesting and hard challenge [Lai et al. 2013].

In this context, information about the current and future network conditions, in-
cluding packet loss and delay rates, quality of the wireless links, congestion levels, avail-
able buffers, and system density (sparse or dense) are essential to improve decision-
making in HCMN scenarios. The decision-making includes data link to application lay-
ers, including networking algorithms, protocols, and mechanisms.

3.3.2.2. QoE-awareness

The evolution of the Internet over the past decades provided network-centric traffic differ-
entiation, resource reservation, and also QoS support for multimedia distribution. How-
ever, QoS proposals only indicate the impact of video transmission based on network
performance, such as bandwidth, packet loss rate, packet delay rate, and others. Hence,
QoS schemes alone are not enough to assess and control the quality level of multime-
dia applications, because they fail to capture all the subjective aspects from multimedia
content that affect the human’s perceptions [Mu et al. 2012].
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With this goal in mind, several researchers, standardization bodies, as well as
industries have been studying QoE optimizations and assessments, where the user’s expe-
rience can be measured and integrated into networking components for decision-making
to improve the overall performance of HCMN systems, as well as to provide QoE-aware
video transmissions. In this context, QoE assessment focus on optimizations in the end-
to-end HCMN systems based the user’s experience.

3.3.2.3. Video-awareness

Video-related information, such as spatial (edges and colours) and temporal (movement
speed and direction) characteristics, frame types (I-, P-, and B-frames), intra- and inter-
frame dependence, CODECs, GoP lengths, bit rates, resolutions, and region of interests,
must be considered for optimizing HCMN approaches. This is due to multimedia con-
tent characteristics have great impact on the performance of HCMN systems, such as
presented in Section 3.2.2.

For instance, I-, P- and B-frames compose a compressed video, which have differ-
ent priorities based on user’s experience. The loss of high priority frames causes severe
video distortion, since some received packets cannot be decoded at the receiver side. It
also wastes scarce network resources, such as bandwidth and energy. The energy cost is
due to intermediate nodes spend energy to forward a packet, which is not useful to recon-
struct the video received at the destination node [Costa et al. 2013]. Moreover, depending
on the video motion and complexity levels, e.g., a small moving region of interest on a
static background or fast moving sports clips, the impact of a packet lost can be annoying
or not for the end user [Aguiar et al. 2012].

In this context, video-related information can be collected from deep packet in-
spection schemes, off-line signal processing analysis, or described in a Media Presenta-
tion Description (MPD), such as proposed in MPEG DASH standard. These information
are extremely important for video assessment, control, as well as for collaborative HCMN
scenarios.

3.3.2.4. Context-awareness

Multimedia applications and services must be aware of the environment/user’s contexts
to automatically adapt to environment/user changes, known as context-awareness. By
context, we refer to any information that can be used to characterize the situation of
an entity, where an entity can be a person, place, or physical or computational object
[Dey and Abowd 2000]. For example, contexts may include person (name, role, etc.), lo-
cation contexts (coordinate, temperature, etc.), user’s preferences and activity, computa-
tional entity contexts (device, network, application, etc.) and activity contexts (scheduled
activities, etc.) [Gu et al. 2005]. Hence, context-awareness relies on different user infor-
mation in order to provide content, resource, and service relevant to his current situation
in a transparent way.

Indeed, multimedia services and applications are very sensitive to diverse context
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information related to different context entities. More specifically, live video services,
more than other services, need to benefit from a context-aware framework, enabling to
dynamic service personalization, as well as content adaptation to achieve a better QoE
in a HCMN system [Chellouche and Négru 2012]. The main difference between conven-
tional and context-aware methods lies in the process performed by service providers after
the services gets invoked. For one hand, without context information, a searched service
is just bound to the consumer. On the other hand, the context information is accompa-
nied with the service invocation, and analysed to determine the current situation of the
consumer. Afterwards, the most appropriate service is selected at the stage of adapting
services, and the service is invoked. While a service is running, its associated context can
change, and thus the service needs to be dynamically adapted. In summary, the context
information provides a key clue to adapt service dynamically in terms of service person-
alization [La and Kim 2010] and according to HCMN features.

In this context, human-based data can be collected from social networks,
social interactions, and/or any context management systems, such as proposed by
[Kiani et al. 2013, La and Kim 2010, Rahman et al. 2012]. Moreover, users have devices
(smartphones, tablets, notebooks, and other) with different display sizes and resolutions,
as well as memory and processing capabilities. Hence, video flows could also be dis-
tributed based on the available resources in mobile devices to improve the usage of net-
work resources, as well as increase the user’s satisfaction.

3.4. State-of-the-art Analysis on HCMN
In this section, we introduce the well-known HCMN proposals, which improve the video
distribution over wireless environments with QoE assurance. Moreover, we present the
main tends about the usage of HCMN approaches in networking scenarios, focusing on
the user’s perspective.

3.4.1. State-of-the-art

In HCMN environments, after understanding and modelling human-centric schemes,
video characteristics, and context-awareness modules, decision-making engines, network-
ing services and protocols can be extended or created to improve the transmission of live
video content following a HCMN approach. Some existing works in the literature that in-
clude one or many HCMN features, including video quality prediction, video/QoE-aware
Forward Error Correction (FEC), packet redundancy schemes, routing, handover, and net-
working adaptive services.

3.4.1.1. Video Quality Level Assessment

Modelling the relationship of network impairments, video characteristics, and human’s
experiences by using wireless quality level assessment schemes are key requirements to
delivery visual content in multimedia mobile networks, such as football matches and other
live multimedia events. The operators that assess the QoE of real-time video services
have a significant advantage by being able to strike an ideal balance between network
provisioning, video codec configuration, and user’s experience.
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As discussed in Section 3.2.3, solutions for assessing the video quality level based
on the human’s perception can be organized as subjective, objective, and hybrid. Subjec-
tive schemes are hard to implement in real-time. Objective video quality assessment tech-
nologies are categorized into several parametric model types, where packet-layer schemes
have been gaining attention, due to their high accuracy and low processing. Packet-layer
models predict the perceived video quality level based on information about the IP and
video codec headers, such as frame type and packet loss rate, without decoding the video
flow. The impact on user’s perception of video flows is influenced by the number of the
edges (spatial information ñ complexity level) in the individual frames, and also by the
type and direction of movement (temporal information ñ motion level) in a GoP. However,
existing solutions have not been implemented and evaluated in multimedia wireless sys-
tems, or presented inaccurate results based on the user’s experience, because, mainly, they
do not consider the video motion and complexity levels in their assessment procedures.

Video quality assessment approaches should try to model the human’s experience
when they are watching videos with different motion and complexity levels under differ-
ent network conditions. Thus, it is possible to predict the video quality level with high
accuracy and in real-time. A non-intrusive QoE parametric scheme, called PSQA, has
been implemented to predict the quality level of video flows [Ghareeb and Viho 2010].
The authors included a Random Neural Network (RNN) model together with its learning
algorithms, in order to assess the quality level of video sequences in real-time based on a
set of parameters, including frame type, frame rate, and packet loss rate. PSQA was orig-
inally proposed to improve the understanding of QoS factors in multimedia engineering
without an in-depth understanding of the user’s experience.

In addition, a PSQA extension, called MDC-PSQA [Ghareeb and Viho 2011], in-
troduced a hybrid video quality assessment approach for Multiple Description Coding
(MDC) videos over multiple overlay paths. The MDC-PSQA models a QoE prediction
scheme that takes into account the human’s perception for a single video flow and net-
work conditions. It also uses the GoP length and the percentage losses of the I-, P-, and
B-frames in a GoP during the video quality prediction process. However, the MDC-PSQA
prediction model should be improved to deal with video flows with different motion and
complexity levels, such as expected in future HCMN systems. Furthermore, visual qual-
ity metrics must be tested in a wide variety of visual contents and distortion types, before
meaningful conclusions can be drawn from their performance.

A QoE video quality prediction solution proposed by [Khan et al. 2009] classified
different video flows into groups representing different content types. They used a com-
bination of temporal and spatial levels, as well as extraction features, by means of cluster
analysis. Based on the content type, the video quality (i.e., MOS) was predicted from
the network parameters (e.g., packet error rate) and application-level parameters (e.g.,
transmission bit rate and frame rate) by using Principal Component Analysis (PCA). The
proposed scheme measures the video quality level by applying the PSNR average to all
the decoded frames (off-line process), which performs poorly compared to MOS.

Few works analysed the impact of live video distributions with different motion
and complexity levels over wireless networks according to the human’s perception. Some
proposals focused on estimating the in-service QoE for peer-to-peer live video stream-
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ing systems using a user-centric and context-aware approach based on Bayesian net-
works [Mian et al. 2013]. Other approaches are focused on assess the quality level of
real-time video streaming, such as the Hybrid Quality of Experience Prediction (HyQoE)
[Aguiar et al. 2012] and its extension MultQoE [Aguiar et al. 2014] proposal, which fol-
lows the ITU-SG 12 recommendations. MultQoE defines its specific input video, packet,
or network parameters, and validates an accuracy parametric video quality estimator so-
lution for multimedia wireless networks.

MultiQoE uses MANN to map video’s characteristics, human’s perceptions, and
network’s impairments into a predicted MOS, as results it achieves QoE assessments
closer to human’s scores. MANN has been successfully used for QoS or QoE assessment
schemes, as well as yielded better results than RNN and other techniques. MultiQoE has a
realistic assumption that not all packets are equal or have the same degree of importance,
which are key parameters to determine the extension of the video impairment.

An instance of MultiQoE can be obtained by following the procedures defined
in five main components, as detailed in [Aguiar et al. 2014]. Each of them is designed to
complete single or multiple tasks for the modelling of the quality evaluation model. Figure
3.8 illustrate the components of MultiQoE, namely: (i) Source Video Database, (ii) Net-
work Transmission; (iii) Subjective Quality Assessment and Distorted Video Database;
(iv) Measurement Model of Factors Affecting Quality; and (v) Correlation of Video Char-
acteristics, Human’s Experience, and Network Impairments into MOS.

The Source Video Database (Component 1) classifies Internet videos according to
their spatial and temporal (motion and complexity) characteristics. Video content charac-
teristics together with the percentage of I-, P-, and B-frames losses in a certain GoP are
used by the Component 4 (Measurement Model of Factors Affecting Quality), in order to
identify the video motion and complexity levels as well as the impact of the transmissions
frames of each video sequence. It is important to note that to improve the system accu-
racy, each ANN is responsible for videos with a specific GoP length, such as 10, 20, or
30. At the same time, it keeps a distorted video database composed of videos delivered
(as expected to be watched by humans) in real/simulated networks.

The Component 2 (Network Transmission) is responsible for transmitting all
videos in wireless networks, which experienced different congestion, errors, and impair-
ments levels. It gets information on packet loss and delay of all video frames. The output
of this component is important to create a distorted video database, where the videos ex-
perienced different network impairments, as well as measure the percentage of losses of
the I-, P-, and B-frames in a GoP, such as specified in Component 4. In the Component
3 (Subjective Quality Assessment and Distorted Video Database), a set of humans eval-
uates all distorted videos (following the ITU recommendations) to define and score their
MOS. Finally, Component 5 uses a MANN to correlate video’s characteristics, human’s
experience, and network’s impairments into a predicted MOS value.

In this context, MultiQoE can be used together with optimization and management
networking schemes to improve the usage of network resources, as well as to increase the
system performance in key networking areas, such as, FEC, routing, or mobility.
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Figure 3.8. MultiQoE components [Aguiar et al. 2014]

3.4.1.2. Packet Redundancy

Node constraints, such as bandwidth, increase the effects of wireless channel errors.
Moreover, as soon as video packets are lost or arrive late, there is a significant decline
in the resulting video quality based on user experience. In this context, error correction
techniques can be applied to provide resilient and robust video transmission over unreli-
able wireless communication channels. Error control mechanisms that deal with wireless
transmission errors in multimedia streaming applications include Automatic Repeat Re-
quest (Automatic Repeat Request), Forward Error Correction (Forward Error Correction),
and Packet redundancy [Naderi et al. 2012].

Packet-level redundancy mechanism protects video streaming from channel er-
rors without an extra delay. This is because it acts in a complete different way than
link-layer mechanisms, and it has been employed due to its suitability for multimedia
communications, as well as the nature of the error coding at the application layer. More-
over, ARQ uses the bandwidth in an efficient way compared with the FEC techniques,
although ARQ incurs additional latency costs, which can not be tolerated for live video
sequences [van der Schaar et al. 2003]. Hence, among the existing error control schemes
to handle packet losses in real-time multimedia communication, application-level redun-
dancy mechanisms offer a suitable solution to provide video delivery with quality level
assurance, as well as without adding delay and considering end-to-end reverse channel.

Regarding to FEC or packet redundancy mechanisms for wireless networks in
HCMN scenarios. [Tsai et al. 2011b] introduced a forward-looking forward error correc-
tion (FL-FEC) mechanism to recover lost packets in order to improve video quality level.
The redundancy mechanism encodes n packets with (k - n) redundant packets to form a
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block with the k packets at the sender. Then, the mechanism can tolerate the loss of (k -
n) packets in networks and recover the k packets from the FEC block at the receiver. The
proposed redundancy mechanism recovers not only the lost packet from its block, but also
the previous block from the recovered packet. The recovery procedure is repeated until
recovering the first block.

Latter, [Tsai et al. 2011a] combined ARQ and FEC mechanisms into an adap-
tive HARQ mechanism, called the Adaptive Hybrid Error Correction Model (AHECM).
AHECM finds appropriate parameters, i.e., maximum retransmission threshold and
packet redundancy, to avoid network congestion and also reduce the number of redun-
dant packets by predicting the effective packet loss rate. More specifically, AHECM col-
lects meta-information about the average packet loss rate, the average Round-Trip Time
(RTT), and the available bandwidth at the receiver. As soon as the meta-information
changes due to channel or network conditions, the AHECM makes the receiver send the
meta-information to the sender in order to adjust parameters of the AHECM. Hence, the
AHECM at the sender choses the appropriate redundancy for different video frame types
when the sender transmits video streaming to the receiver over wireless networks. With
information about the average RTT and tolerable end-to-end delay provided by the re-
ceiver, the AHECM at the sender finds the maximum retransmission time and retransmits
the lost packet to the receiver in time at the premise of reducing the packet redundancy.
With information about the average packet loss rate and the available bandwidth provided
by the receiver, the AHECM at the sender calculates the appropriate parameter to avoid
network congestion and the unnecessary packet redundancy. Meanwhile, when the end-
to-end delay requirement can be met, the AHECM only retransmit the necessary number
of redundant packets to receiver in comparison with legacy HARQ mechanisms. The
AHECM uses a Markov model to accurately predict the effective packet loss rate at the
premise of considering the burst bit error condition in wireless networks.

The Adaptive Cross-Layer FEC (ACFEC) mechanism uses a packet-level error
correction to determine the amount of packet redundancy to generate in a wireless network
scenario [Han et al. 2010]. More specifically, at the MAC layer it verifies when a loss
occurs, in order to increase a failure counter. In this way, this information defines the
amount of FEC recovery packets. However, one weakness of this proposal based on
the HCMN point-of-view is that the video characteristics are not considered, which are
known to have a direct influence on the video resilience to packet loss, QoE, and also to
reduce the network overhead.

The mechanism, called Cross-Layer Mapping Unequal Error Protection (CLM-
UEP), aims to improve the delivery of video streaming over IEEE 802.11e wireless net-
works by using a video-aware FEC approach [Lin et al. 2012]. CLM-UEP assigns a dif-
ferent level of redundancy to frames with different importance based on the user’s point-
of-view. It implements an adaptive algorithm for mapping video flows and redundant
packets to a suitable Access Category (AC) queue. This procedure also takes into con-
sideration the frame type, packet loss rate, as well as the AC queue occupancy to avoid
congestion-induced packet losses. However, this proposal does not consider video flows
have different motion and complexity levels, which introduce different impact for a frame
loss based on user’s experience. For instance, depending of the video characteristics, the
first P frame in a GoP can be more important than the second one.
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Network coding techniques can be also integrated with QoE-awareness to im-
prove the delivery of multimedia packets over wireless networks in HCMN scenar-
ios. An example of the integration of QoE and network coding is presented in
[Pimentel-Nino et al. 2013]. The QoE driven adaptive video with overlapping network-
coding proposal aims to enhance the transmission of video flow over satellite links. The
authors considered a cross-layer approach to adapt the video quality level (and redun-
dancy) to different network conditions. However, human-based QoE models should be
integrated into FEC and redundancy approaches to improve the amount of decoded video
packets, while saving network resources.

[Zhao et al. 2012] introduced a QoE-aware FEC mechanism for intrusion detec-
tion in multi-tier Wireless Multimedia Sensor Networks to improve the distribution of
live video flows. This work creates redundant packets based on impact of the frame loss
based on the user’s experience. The proposed QoE-aware FEC mechanism targets the
reduction of redundant packet transmitted over wireless network, while keeping videos
with an acceptable quality level.

As discussed before, an error correction mechanism needed to provide the dis-
tribution of video flow with acceptable video quality level, whatever network adversity
occurs. Hence, an adjustable FEC-based mechanism must use Unequal Error Protec-
tion (UEP) schemes together with a video/human-awareness model, which reduces the
amount of redundant information transmitted over the wireless network. With this goal
in mind, [Immich et al. 2013] proposed an adaptive cross-layer VIdEo-aWare FEC-based
Mechanism with Unequal Error Protection scheme (ViewFEC). It aims to support video
transmissions to wireless users, while assuring QoE and optimizing the usage of wireless
resources. Based on information about the network conditions and video characteristics
(motion and complexity levels), ViewFEC can be optimally configured to send redundant
information only to sensitive video sequences from the user’s experience.

ViewFEC relies on a set components and stages, such as presented in Figure 3.9
and detailed in [Immich et al. 2013]. At Stage 1, ViewFEC relies on a video classifier
to fetch information from the Cluster Analysis Knowledge basE (CAKE), and also the
Cross-LAyer inforMation (CLAM) components to identify key video characteristics, in-
cluding motion and complexity levels, as well as GoP size. The above information identi-
fies the impact of different video flows based on the human’s visual system. Afterwards,
at Stage 2, further details about the video flow are gathered, namely type and relative posi-
tion of the frames within its GoP. Finally, at Stage 3, the FEC blocks are built and an UEP
redundancy is assigned to each one. The simulation results show that the ViewFEC out-
performs non-adaptive Video-aware FEC-based schemes in terms of recovery rate, video
quality level, and especially network overhead. There is no need to protect all packets
of a frame to obtain a video quality improvement from the user’s point-of-view because
codecs are resilient to a certain amount of loss, especially at the end of the GoP.

3.4.1.3. Routing

Routing schemes are also important networking services that must be integrated into
HCMN approaches. In this way, routes must be selected not only based on traditional
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Figure 3.9. ViewFEC stages [Immich et al. 2013]

QoS metrics, but the routing service must define routes for video delivery according to
the user’s point-of-view. A user QoE-based adaptive routing system for future Internet re-
lies on PSQA to predict the video quality level, and as result it selects the best QoE routes
for video packets [Tran et al. 2012b]. The authors proposed a protocol based on user QoE
measurement in routing paradigm to construct an adaptive and evolutionary system. An
extension of the proposed routing scheme is presented in [Tran et al. 2013]. However, in
both works, the results presented a significant performance against other traditional pure
QoS routing protocols.

[Tran et al. 2012a] introduced the Dynamic Optimized QoE Adaptive Routing
(DOQAR), which aims to improve the user’s perception and to optimize the usage of
network resources in a wired network across a wireless access network (end-to-end fash-
ion). Experimental results show that this routing protocol gives significant QoE evalua-
tion improvements over traditional routing approaches. Moreover, a hierarchical rout-
ing management enhances the transmission of multimedia content with QoE support
[Volkert and Mitschele-Thiel 2012]. In the proposed scheme, video streams are con-
trolled and routed by a hierarchical routing management system to select the best paths
for multimedia flows. This leads to an improved QoE of received multimedia streams.
However, in both solutions, improvements in the video quality assessment and routing
processes are still needed.

The routing framework for QoE-based routing in multi-service Wireless Mesh
Networks (WMNs) aims to increase the user’s experience when watching a video
[Matos et al. 2012]. The proposed solution takes into account the heterogeneous require-
ments of different services delivered over a WMN, such that the overall end-user QoE is
maximized under given resource constraints. A double reinforcement learning strategy is
used to dynamically compute the most efficient routes to deliver the flows of each service
type with QoE support.
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The HCMN services and applications rage from entertainment and human digital
memory video to user-generated disaster or surveillance real-time video flows. For in-
stance, in case of a natural disaster, such as Hurricane Sandy in New York/USA (2012),
flooding in Rio de Janeiro/Brazil (2013) or any other disaster environments, the standard
telecommunications infrastructure might be damaged or does not exist anymore. Hence,
a group of UAVs equipped with video camera could be used to set up a temporary multi-
media Flying Ad-Hoc Network (FANET) with the aims to explore, sense, and also send
multimedia data from the hazardous area, enabling humans in the control center to be
aware of what is happening in the environment, as well as take action based on rich vi-
sual information. For such multimedia FANET scenario, video flows collected by a given
UAV must be transmitted by taking into account HCMN features. In this way, it is pos-
sible to deliver video flows with QoE assurance to headquarters or computer systems for
further processing, analysis, and dissemination, such as provided by the semantic sys-
tem [Macias et al. 2012], sensor4cities [Lima et al. 2012], i-SCOPE [i SCOPE ], and any
other platforms.

In this context, [Rosário et al. 2013b] introduced a Cross-layer Link quality and
Geographical-aware beacon-less OR protocol (XLinGO) for real-time video delivery in
mobile networks. XLinGO can be applied for many FANET multimedia applications,
such as safety & security, environmental monitoring, natural disaster recovery, and others.
In terms of performance, XLinGO enables an efficient and reliable multiple video flows
transmission together with QoE assurance and low overhead over multimedia FANET
scenarios, by taking into account metrics from multiple layers.

XLinGO relies on across-layer approach to improve the routing and also packet
redundancy decisions according to application-layer (video characteristics and require-
ments), link layer (link quality), energy, geographical information, and human visual sys-
tem information. More specifically, the routing service includes forwarding and MAC
functionalities, where it assumes a CSMA/CA mechanism, and relies on beaconless Op-
portunistic Routing (OR) method. The beacon-less OR approach helps the nodes to trans-
mit live video sequence, where nodes forward packets to the destination node based on a
distributed hop-by-hop routing decision and without a stable end-to-end route. To create
and keep reliable and robust persistent multi-hop routes, XLinGO combines packet deliv-
ery ratio, QoE, queue length, link quality, geographical location, and residual energy, as
depicted in Figure 3.10.

Moreover, XLinGO introduces a recovery mechanism to deal with route failures,
providing a smoother operation in harsh environments and mobile networks. Third, it
applies a QoE-aware redundancy scheme to add redundant packets only for important
video frames, reducing the network overhead, while maximizing the human’s experience
and save scarce network resources.

3.4.1.4. Handover

The handover procedures in HCMN systems must be accomplished based on QoE assess-
ment, and this issue has been discussed in many papers available in the literature. Among
them, a mobility framework to enhance the QoE through QoS to support high-quality
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Figure 3.10. XLinGO forwarding decisions

services for on-going multimedia applications [Khorsandroo et al. 2012]. The QoE han-
dover performs its procedures based on a dynamic QoS provisioning system for network
mobility. It also uses a quantitative relationship between QoS and QoE to give support
for handover decisions. However, the proposed human’s perception model should be im-
proved by taking into accounting information about video with different characteristics,
and also user’s experience.

[Politis et al. 2012] proposed a seamless handoff scheme that incorporates IEEE
802.21 Media Independent Handover framework, and a QoE-driven rate adaptation
scheme, for both scalable and single layer coding. A good point in this work is the use of
QoE during the network selection process. The inclusion of human’s experience during
the handover process aims to improve the mobility of video flows between different access
points/networks. Moreover, a similar approach is also exploited in [Rosário et al. 2013a].

Existing QoE handover schemes rely on machine learning techniques to model
the human’s behaviour to enhance the handover process during video transmission. In
this context, [Ghahfarokhi and Movahhedinia 2013] proposed a personalized QoE-aware
handover decision based on distributed reinforcement learning. The paper presents a per-
sonalized human-centric handoff decision method to decide about the time and target
of handover based on User Perceived Quality (UPQ) feedbacks. Hence, users watching
video sequences can be always best connected to the most suitable access point. How-
ever, they used only PSNR evaluation to show the benefits of the proposed solution based
the user’s experience, where PSRN assessment performs poorly compared to other QoE
objective evaluations, as mentioned in Section 3.2.3.

[Varela and Laulajainen 2011] introduced another QoE handover solution, which
takes QoE into consideration for handover decisions. The proposed scheme uses the
PSQA assessment to predict the quality level of video sequences in different access
points/networks. The handover module uses the predicted QoE of on-going videos in
candidate networks as an indicator to select the best network for connection. It also bal-
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ances the trade-off between user’s profit and overall network condition by taking into
account overall user satisfaction when making decision.

[Taleb and Ksentini 2012] designed an admission control mechanisms that helps
mobile operator to cope with handover decision process between macro and femtocell
networks. It considers QoE evaluations for a femto multimedia communications, pro-
viding QoS/QoE-based admission control mechanisms. By using PSQA, the admission
control mechanism predicts the user’s experience in both networks and improves the han-
dover decision process for video flows. The proposed solution uses user’s feedbacks as
input for a QoS/QoE mapper scheme that learns the relation between user’s satisfaction
and current QoS conditions of a cell (data rate mainly).

[Shehada et al. 2013] proposed a QoE-based mechanism to provide smooth han-
dover for video flows over LTE wireless networks. The proposed solution reserves re-
sources (statically or dynamically) in order to maintain unperceivable quality fluctua-
tion during handover periods for video sequences in LTE mobile networks. Figure 3.11
presents the proposed QoE-based handover and resource reservation approach. All videos
are stored at high quality at the Application Server and each user device can access the
videos. The Traffic Management module in the core network acts as a downlink resource
allocator. The Traffic Engineering component is a rate shaper. Network resource alloca-
tion selection is done in a cross-layer fashion, taking into account the utility function of
the video watched by the end-user and the wireless channel condition. Thus, it is possible
to model the human’s experience for different network performance parameters.

Figure 3.11. QoE-aware multi-cell handover scenario [Shehada et al. 2013]

3.4.1.5. Management

QoE-based network management operations are essential to disseminate multimedia con-
tent for humans, while improving the usage of network resources. With this goal in mind,
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[Mu et al. 2009] introduced a QoE-aware real-time multimedia management, which pro-
vides an end-to-end quality control on real-time multimedia applications over heteroge-
neous. It integrates video QoE assessment together with QoS and QoE-based mapping
for adaptation procedures. The main goal of the proposed solution is to extend the net-
work management functions to recognize, plane, and distribute multimedia content with
QoE-awareness, while improving the efficiency of network resource utilization.

[Seppanen and Varela 2013] proposed a QoE-driven network management for
real-time over-the-top multimedia services. It supports network-level management mech-
anisms for packet traffic, while using QoE as a performance indicator. The access points
implement three main modules for QoE-aware procedures, namely QoE assessment, traf-
fic classification, and traffic management. The QoE assessments component predicts the
video quality level based on the PSQA mechanism. The traffic classification classifies
the flows into a pre-defined class of services, including premium and normal interactive,
streaming, and bulk traffic applications. The traffic management performs QoE-based
inter-class scheduling, intra-class scheduling, bandwidth management, and admission
control procedures.

[Seppanen et al. 2013] extend traffic control mechanisms with QoE-awareness in
order to provide an autonomous QoE-driven network management framework. The pro-
posed approach is able to identify media flows and predict the QoE of video flows based
on their application type, subscriber class, current QoE for it and other media flows, and
expected QoE after control mechanism operations. After that, the system is also able to
perform access control on new flows based on the current quality for existing flows, and
the incoming flow’s application and subscriber class.

[Taboada et al. 2013] introduced another interesting QoE networking approach,
which shows how to incorporate human perceived quality in the design of resource allo-
cation algorithms. A key contribution of this work is related to the modelling of the QoE
maximizing problem for scheduling multimedia flows in a shared channel. The proposed
QoE-aware scheduling policy can be useful for network providers in order to guarantee
adequate satisfaction levels to their customers when watching multimedia content.

Mobile video delivery has become a major challenge for mobile operators. With
the demand for multimedia content, wireless access congestion is becoming more fre-
quent, degrading the quality level of mobile video. Therefore, [Fu et al. 2013] introduced
a QoE- aware traffic management scheme for scalable video delivery. The proposed op-
timization function aims to maximize the overall QoE of multiple users by allocating
optimal transmission bitrates to users. The authors consider bandwidth conditions to es-
timate the maximum achievable bitrate of each user. To understand the effect of traffic
management on QoE, utility functions are used to understand and model the relation be-
tween transmission bitrates and perceptual quality in terms of MOS values.

QoE-based procedures can also be used to improve the delivery of video content
in cognitive radio systems. In this context, [Imran et al. 2013] mapped the human’s per-
ception in scenarios with different throughput, as well as packet delays and losses. The
QoE enhancement in MIMO cognition through the Multibeam Opportunistic Beamform-
ing technique is the main objective of the proposed solution, where statistical optimization
is being employed within such scenarios. Thus, it is possible to keep video flows with a

3: Multimedia Human-Centric Networking: Concepts, Technologies and Trends.

132 c�2014 SBC — Soc. Bras. de Computação



better quality level during congestion periods in cognitive radio networks.

The use of multimedia-aware caching approaches aims to improve the delivery of
multimedia content to users. For instance, [Zhang et al. 2013] studied the problem on how
to cache a set of media files with optimal streaming rates, under HTTP adaptive bit rate
streaming over wireless networks. The proposed system implemented an optimization
framework to maximize the QoE objective function for a given storage budget. The cache
management scheme aims to provide high QoE, while requiring low complexity, which
gives guidelines for practical design of HTTP adaptive bitrate streaming services.

Adaptive video streaming is key solution to increase user QoE and maximize
connection utilization. The integration of MPEG DASH (Dynamic Adaptive Stream-
ing over HTTP) and OpenFlow/Software Denifed Networks can improve the delivery
of video sequence to mobile users and the usage of network resource. Therefore,
[Georgopoulos et al. 2013] proposed an OpenFlow-assisted QoE Fairness Framework
(QFF), which aims to fairly maximize the QoE of multiple competing clients in a shared
network wireless system.

The QFF proposal uses OpenFlow allows vendor agnostic functionality to be im-
plemented for network management and active resource allocation. OpenFlow allows
QFF to monitor the status of all the DASH video flows in a network and dynamically
allocates network resources to each device, while achieving the maximum user-level fair-
ness. QFF is composed of a set of components, including utility and optimization func-
tions. The utility function aims to model the human’s experience based on the mapping
the bitrate of a video at a particular resolution and the QoE perceived by the user. The op-
timization function uses the human’s perception models to find the optimum set of bitrates
that ensures QoE fairness across all DASH clients in the network.

Orchestrating
OpenFlow Module (OM)
[OpenFlow Controller]

Utility
Functions

Optimization
Function

Network
Inspector

MPD
Parser

Flow Tables
Manager

DASH
plugin

Figure 3.12. OpenFlow-assisted QoE Fairness Framework [Georgopoulos et al. 2013]
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The QFF proposal uses OpenFlow allows vendor agnostic functionality to be im-
plemented for network management and active resource allocation. OpenFlow allows
QFF to monitor the status of all the DASH video flows in a network and dynamically
allocates network resources to each device, while achieving the maximum user-level fair-
ness. QFF is composed of a set of components, including utility and optimization func-
tions. The utility function aims to model the human’s experience based on the mapping
the bitrate of a video at a particular resolution and the QoE perceived by the user. The op-
timization function uses the human’s perception models to find the optimum set of bitrates
that ensures QoE fairness across all DASH clients in the network.

3.5. Final Considerations and Future Directions
In this work, we introduced the HCMN approach for live video distribution in next gen-
eration of wireless multimedia networks, which is becoming a reality for users, industry,
and academia. HCMN will improve multimedia assessment and transmission procedures
and will help multimedia systems to continue expanding their portfolio of applications
during the next years with adaptive real-time video schemes. In HCMN scenarios, thou-
sands of users will produce, share, and also consume multimedia services in a ubiquitous
manner on smartphones or tablets, even in vehicles, UAVs, and other mobile devices. The
multimedia services and applications rage from entertainment and human digital mem-
ory video to user-generated disaster or surveillance real-time video flows. For instance,
CISCO projected that over 10 billion devices will be in used until 2016, and 71% of all
mobile data traffic is expected to be videos by that time as well. Moreover, the multi-
media transmission will represent up to 90% of the global IP data traffic in a few years.
In addition, the real-time multimedia transmissions to thousands of people over wireless
network will take place in the coming big events hosted in Brazil, such as in the soccer
World cup and the Olympic Games in Brazil in 2014 and 2016, respectively.

The vision of HCMN places the human’s experience in the center of mobile mul-
timedia services and applications, where the video transmission process must be accom-
plished and optimized in real-time according to the human’s perception, content character-
istics, and also context-awareness. Moreover, HCMN environments require instant adap-
tation of content and resources according to the human’s preferences, experiences, or/and
interests, due to increasing situational dynamics, such as mobility, bandwidth scarcity,
and frequent disconnection.

Recent cross-layer protocols and services have been discussed, designed, and im-
plemented by taking into account QoE and video-awareness. Understanding and mod-
elling user’s behaviours, experiences, feelings, and psychological factors when consum-
ing and sharing multimedia content are key issues for HCMN scenarios. For instance,
handover decisions must be improved with human-centric polities, real-time video flows
can be routed along the path that provide QoE support, or even multimedia application
can be adapted to different wireless network conditions or human’s preferences. In this
way, all HCMN-based proposals achieved better results for multimedia distribution with
QoE support, user’s satisfaction, and resource optimization, than non-HCMN schemes.

The integration of HCMN into Internet cloud computing environments allows mo-
bile users to have new media experiences that are not possible from their mobile smart-
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phones or tablets. The cloud can be configured to perform a set of important tasks and
services for mobile multimedia users and networks, ranging from assessing the video
quality level and load balancing to multimedia transcoding and redundancy/error correc-
tion schemes. Hence, the user’s experience perceived when consuming human-aware
videos increase, while the cloud ìvirtuallyì extends the capacity of mobile devices, such
as battery, memory, and processing.

Even in Internet mobile cloud services, mobile users still suffer with network con-
gestions, frequent disconnections, and also low video quality experience. For instance,
many devices can upload or download the same/similar content (at the same time) from
the Internet by using overloaded (and possible high cost) 3G, LTE, or Wi-Fi networks.
However, they could cooperate with each other and only one (or few) mobile device could
interact with the Internet cloud and request video flows to be locally shared with all neigh-
bours by using Wi-Fi direct, Bluetooth, or even IEEE 802.11p/WAVE in case of vehicular
networks. Wireless devices constantly sensing the environment and sharing scarce re-
sources, they could cooperate with each other to maximize the usage of network resources
and the human’s experiences. These mobile terminals can form a mobile HCMN cloud
that offloads the Internet.

Mobile clouds can be dynamically composed of wireless devices located in same
area, sharing the same preferences, contexts, and/or videos. Thus, mobile clouds can
increase the accuracy of networking protocols or services (enriching with sensing infor-
mation), while reducing communication delay, spectrum costs, and extending the range
of mobile applications. The integration of mobile clouds with Internet clouds must be
seamless to bring many benefits for both users and network/content providers. The Inter-
net cloud can enhance mobile devices/clouds by performing high complex or too energy
consuming procedures, such as or human-centric video transcoding.

The rest of this section will group HCMN challenges and open issues into cross-
layer human, content, and network or device management schemes, covering cross-layer
approaches from link to application layers. Regarding human’s management approaches,
new online, non-intrusive, and QoE video prediction/assessment solutions must be cre-
ated to measure the quality level of real-time video flows, which have different character-
istics as close as possible to human viewers, such as complexity and motion levels, GoP
sizes, and CODECs. In this context, standardization bodies and research groups, such as
ITU-T SG 12, have been proposing well-structured QoE assessment models. However,
in practice, existing solutions have not been discussed and fully implemented in wireless
multimedia systems composed of videos with different characteristics, human preferences
or experiences, and heterogeneous cooperative mobile devices. Hence, new in-service 2D
and 3D video quality assessment solutions must be implemented by taking a set of hu-
man perceptual attributes into account, including the overall video quality, environmental
characteristics, device features, perceived depth (for 3D videos), and comfort, which, in
turn, are the result of technical, social, and psychological factors. Understanding the be-
haviour or experience of a single user or groups of users is a critical issue for video quality
assessment schemes.

Quality of feeling and emotional-based metrics and experiments are expected to
be defined in future HCMN proposals, which must be conducted to improve the accuracy
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of video quality monitoring approaches. Moreover, the use of crowdsourcing (and data
collected from social networks) for subjective human studies reduce the time needed, and
also increase the performance of new HCMN solutions. In a future multimedia era, users
can pay for video services based on a pay as you experience approach, and not a flat
rate (or QoS measurements) as currently happens. The human experience can be used to
define service-level agreements and other video distribution contracts. Information about
the video quality level will be used as input for content creation and network optimization
schemes.

Recently, intensive effort has been made by MPEG and other video-related re-
search groups to create new standards and content-aware schemes for multimedia stream-
ing over Internet, such as the MPEG-DASH and MPEG 21. In this way, a problem to
be solved is how to code, decode, and transcode video content, by taking the human ex-
perience into consideration and making it as adaptable as possible to different network
conditions and mobile devices, such as expected in HCMN scenarios. Signal, image,
and video processing schemes are time consuming and hard to implement in real-time.
Therefore, the description of the video characteristics (in the packet headers or by using
addition channels, such as context/name, inter- and inter-frame importance, in/out region-
of-interest frame, and motion and complexity levels) is a key issue for allowing real-time
videos to be assessed, negotiated, and adapted with high accuracy. The creation (or adap-
tation) of novel 2D and 3D video codecs adaptable for human experience environments is
still an open issue and must be addressed in future systems. Networking techniques can
also use the video description to optimize the delivery process.

Internet and mobile cloud computing enriches transcoding techniques with more
powerful features, and also human-awareness for HCMN scenarios. However, the video
bitrate adaptation alone is not enough to efficiently create new versions of the content
for users in wireless heterogeneous networks. Hence, human models, context-awareness,
networking statistics, and environmental sensing information must be used to optimize
transcoding schemes for HCMNs. The energy consumption of mobile cloud devices can
also be improved, by consuming videos transcoded according to their capabilities, such
as resolution and battery levels.

The previous approach can also be extended with caching schemes, which is pop-
ular in CCN/ICN. One of the benefits of CCN/ICN architectures is the exploitation of
in-network caching. However, a video source that streams multiple video formats to a
single geographic location (e.g., home, apartment complex building, and VANET) will
consume network resources for each different video quality and size. Caches can be
placed at edge/mobile clouds and optimized according to different contexts, human mod-
els, and network/device resources. A key requirement for improving caching schemes
in HCMN scenarios is to integrate human centric experiences, in a way that each user
(or QoE video assessment schemes) provides probing and feedback to the video cache
service. This information can be used to optimize and selectively cache/transcode videos
as needed and deliver the content to mobile devices as human-adapted streams. Such ap-
proaches allow the network to generalize multiple geographic regions containing multiple
different devices and coalesce to a small number of high quality video streams, which can
be cached in-network.
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Human and content management information must be used to improve network-
ing approaches with human, application and environment-awareness. HTTP streaming
becomes a dominant approach in commercial deployments and must be extended for re-
porting human experiences and improving the video delivery process. New transport
protocols will replace UDP with more advanced HCMN capabilities, especially in multi-
homing and cooperative environments. Resource reservation, admission control, routing,
mobility, queuing, and access control schemes must be extended with human, content
and context-aware information. For instance, in wireless networks with high error rates,
packet redundancy approaches, such as FEC, must add redundant video packets accord-
ing to the user perspective, device characteristics, and information about the source of the
network congestion process (not only in a black-box manner). Additionally, mobile de-
vices must handoff to new access points according to QoE/human-related factors and not
only based on RSSI or network layer metrics. Mobile cloud devices can cooperate with
each other to share resources, content, experience, while reducing the system overhead
and increasing the user satisfaction and the usage of scarce wireless resources.

The implementation and validation of HCMN solutions are not simple tasks and
require many studies and experiments. The interaction between different areas, such as in-
formatics, engineering, visual arts, medicine, and psychology, is crucial to understand the
human visual system, behaviour, feeling, and psychological factors. A common sense is
that Internet clouds together with mobile clouds will make the implementation of human-
centric multimedia mobile systems possible and will enrich them with more advanced,
cooperative, and powerful features. Moreover, SDN allows the implementation and vali-
dated of HCMN services in wired and wireless networks.
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