
Supporting Superpages in Non-Contiguous Physical Memory∗

Yu Du, Miao Zhou, Bruce R. Childers, Daniel Mossé, and Rami Melhem
Department of Computer Science University of Pittsburgh

{fisherdu,miaozhou,childers,mosse,melhem}@cs.pitt.edu

Abstract

For memory-intensive workloads with large memory foot-
prints, superpages are effective to avoid address translation
overhead, which can be a critical performance bottleneck. A
superpage is a large virtual memory page that is mapped to
an equivalently-sized amount of contiguous physical memory
pages. Superpage mapping assumes physical memory does
not contain retired pages, which is an important technique to
improve memory resilience: the OS avoids allocating phys-
ical pages that have detected errors. Retired pages create
unusable “holes” in the physical memory. We show that even
a small percentage of retired pages makes it very difficult to
find enough contiguous memory to form superpages.

To address this problem, we propose GTSM, or gap-
tolerant sequential mapping, that allows superpages to be
formed even in the presence of retired physical pages. A new
page table format is also proposed to support GTSM. This
format has similar storage efficiency as traditional superpag-
ing to hold address translations in the last-level cache. To
further compress the page table and improve cache hit rates
for address translation in large memory footprint workloads,
we also propose an extended format that reduces the page ta-
ble size by 50%. In comparison to an ideal memory without
any retired physical pages, we show that our technique, with
retired pages, achieves nearly 96.8% of the performance of
traditional 2MB superpaging.

1. Introduction

With the rise of big data and cloud computing, workload
memory footprints keep increasing, putting more pressure on
the virtual memory subsystem, whose performance still needs
to be improved for large applications [4]. Performance over-
head includes a large number of Translation Lookaside Buffer
(TLB) misses, which cannot be mitigated by simply increas-
ing the number of TLB entries, given that increasing TLB size
causes longer access latency and increases energy consump-
tion. A solution for memory-intensive workloads with large
memory footprints and random access patterns is to use su-
perpages [4], which map a large contiguous virtual memory
range to an equal-sized physical memory range. Therefore,
the number of entries in the TLB and page tables is drasti-
cally reduced (by the ratio of superpage to page size, typi-
cally 2MB and 4KB, respectively). One study showed that up

∗This research is supported partially by National Science Foundation
grants CNS-1012070 to the PCM@Pitt research group.

to 49.6% performance improvement can be obtained by uti-
lizing 64KB superpages for SPEC CPU2006 workloads [16].
However, traditional superpages require the physical memory
to be contiguous, which is problematic when page retirement
is used to avoid uncorrectable errors in memory. Page retire-
ment is a lightweight mechanism that retires/marks pages as
unusable [1, 29] and prevents them from being allocated in
the future; the drawbacks include creating holes, rendering
physical memory not completely contiguous. We illustrate
these issues with three scenarios.
First, when memory errors are considered, allocation of

a large contiguous physical memory block (superpage) is
more difficult. Recent studies show that modern DRAM er-
ror rates are orders of magnitude higher than previously re-
ported [25, 14]. Error Correcting Codes (ECC) are commonly
used to protect memory from one or multiple bit errors. Re-
cent studies also showed that memory blocks that suffer from
correctable memory errors are much likely to subsequently
face uncorrectable errors [25]. A field study showed that re-
tiring 1% of pages can cover 92% of memory errors [14].
Second, when techniques to reduce power are used (as is

increasingly the case), more page retirement can be intro-
duced. For example, the DRAM refresh interval can be in-
creased [2, 17] to save static power. Given that the refresh
interval of a DRAM cell must be shorter than its data reten-
tion time, and that cell retention time is not uniform (due to
process variation), a small portion of cells have much shorter
retention than other cells. Traditionally, DRAM refresh in-
terval is determined by the cells with the shortest retention
time. However, a recent study shows that retiring no more
than 2% of memory pages can extend DRAM refresh interval
from 64ms to 256ms [2].
Third, non-volatile memories are being introduced in

(hybrid) main memory systems to reduce memory static
power [22, 33, 23]. These non-volatile memories, however,
have limited write endurance [21], and cells gradually be-
come non-programmable “bad” cells. Mechanisms have been
proposed for error correction [24], but their limited error cor-
rection resources can tolerate limited number of errors. When
uncorrectable memory errors occur, page retirement is used.
Although page retirement is a simple and effective way to

address different sources of memory errors, the retired pages
also create many unusable holes in the physical address space
and render the space non-contiguous. As we show in Sec-
tion 2.3, even a small number of memory errors can make
it very difficult to find enough contiguous physical memory

223978-1-4799-8930-0/15/$31.00 ©2015 IEEE

blocks to support traditional superpages. Page retirement is
not the only reason to have non-contiguous physical memory.
Memory fragmentation and non-migratable memory (e.g., IO
memory holes) can also make it difficult to find contiguous
physical memory blocks to construct superpages.
In this work, we propose a new approach to construct su-

perpages from non-contiguous physical memory. By utiliz-
ing a block selection bitmap, a superpage is mapped to mul-
tiple equal-sized small memory blocks (i.e., physical pages)
instead of a single large contiguous memory block. The ap-
proach is supported through a page table format that comple-
ments existing ones.
This paper makes the following contributions:

• In Section 2, we add to the knowledge that superpages are
critical for workloads with large memory footprints and
simply increasing the size of 4KB-page TLB is not enough.

• In Section 3, we describe a new gap-tolerant sequential
mapping that includes (a) a new page table format, and
(b) an access mechanism to support superpages for non-
contiguous physical memory. We also describe a new page
table compression scheme that uses (a) a variant of the new
page table format to further reduce the page table size by
half, and (b) a matching algorithm to construct the com-
pressed page table.

• In Section 5, we present a quantitative analysis show-
ing that our gap-tolerant sequential mapping can achieve
96.8% of the performance of an ideal 2MB superpages
(without retired pages) for memory with retired pages.

Further, in Section 2 we describe the basics of x86-64 address
translation, and in Section 4 we describe our experimental
setting and workloads. Sections 6 and 7 summarize related
work and conclusions.

2. Background and Motivation

To simplify the presentation, we use x86-64 as our baseline ar-
chitecture. The proposed ideas are applicable to other proces-
sor architectures that support superpages. To further simplify
the presentation, a traditional page is 4KB and superpages are
2MB, unless otherwise noted. Our scheme can support other
superpage sizes (e.g., 1GB superpages are also common).

2.1. X86-64 Virtual Address Translation

Virtual memory mechanisms use page tables (PTs) to map be-
tween virtual pages and physical pages for every memory ac-
cess. To speed up translation, physical addresses of recently-
accessed virtual pages are cached in the TLB. On a TLB miss,
a hardware page walker traverses the page table to translate
the virtual page address.
In x86-64, as shown in Figure 1(a), the PT has four lev-

els, and a system register (CR3) points to the PT root node.
The corresponding translation entry at each level is Page-
Map Level-4 Entry (PML4E), Page Directory Pointer Entry
(PDPE), Page Directory Entry (PDE) and Page Table Entry

����

����	
���

���

��

�����

���� ���

�������

�����

����

����	
���

�����
�����

����

�����

�������������

���

����

���

���

� ���	���

!""����

���

����

#$�����������

%��
��&
�
"�

'#()

������*
"�&�

'+)

�����*
"�&�

'+)

����*
"�&�

'+)

����*
"�&

'+)

�����,--��
�

'#�)

(����
�.��
����!""����

����������

�����!""����
!��������

(� /#/� #�

0

1

(�

2 !.�

+ 3 2
*

$

0

�
*

$

0

!

�

�

�

�

4

�

5

6

%

�

6

4

�

�# �2

�

!

�

#� 7 (/ � � � #

� ���	��������

�����!""�����
!��������

(� /#/� #�

0

1

(�

2 !.�

+ 3 2

$ � � !

�

�

�

�

4

�

5

6

%

�

6

4

�

�# �2 7 (/ � � � #

'�)�&3(�(�������
����

'�)��8����������

')�������������

Figure 1: VA-to-PA translation in the x86-64 architecture.

(PTE). For each valid 4KB virtual page, the translation en-
tries (PML4E, PDPE and PDE) point to the base address of
the next level node. The size of the translation entry at each
level is 8 bytes. With a 4KB page, there are 512 translation
entries per node, which are indexed by 9 virtual address bits.
Only 48 virtual address bits are used in current x86-64 imple-
mentations: the high 36 bits (9 x 4) are used to traverse the
page table levels and the low 12 bits are the page offset.
Besides the TLB, recently accessed translation entries are

also cached in the MMU as partial translations, which can be
used to speed up page walking [3]. For example, PDE entries
can be cached in a PDE cache. If the PDE of a virtual address
hits in the PDE cache, the page walker needs to access only
the last-level PTE to complete address translation.
X86-64 superpage implementation has a similar structure.

Because the mapping is one-to-one, a 2MB superpage needs
only a three-level PT (PML4, PDPE and PDE). The 7th bit
of a PDE indicates whether the PDE points to a page table
of PTEs, or to the physical base address of a 2MB superpage.
Figures 1(b) and 1(c) show the format of PDE as a 4KB-page
and 2MB-page PDE, respectively. Similarly, for a 1GB super-
page, the 7th bit of a PDPE indicates whether a PDPE points
to a page directory table of PDEs, or to the physical base ad-
dress of the superpage.

2.2. Understanding Address Translation Overhead

There are three performance advantages to superpages. First,
superpages increase TLB reach by the ratio of the size of a
superpage to a normal-page-size page (i.e., TLB can cache

224

2-3 orders of magnitude larger address space), reducing TLB
miss rate. Second, superpages reduce the number of levels
during page walk, consequently reducing the latency of a
TLB miss. Third, superpages significantly reduce the size of
the PT; Table 1 shows PT sizes for different workload mem-
ory footprints and page sizes. Note that for a workload with
a 16GB memory footprint, the PT size for a traditional 4KB
page is 32MB, which is already beyond the capacity of the
Last Level Cache (LLC) for most processors. With 2MB su-
perpages, the size of the page table is reduced to just 64KB to
easily fit in the cache.

Memory Footprint 1GB 16GB
4KB page 2MB 32MB

2MB superpage 4KB 64KB
1GB superpage 8B 128B

Table 1: Page table sizes for different workload memory foot-

prints and page sizes assuming an 8-byte page table

entry.

To further understand the overhead of address translation,
we characterized the performance of different problem sizes
and TLB configurations for the GUPS workload [10], which
is memory-intensive with a random access pattern. We use
cycles per instruction (CPI) for performance. We study three
TLB configurations: a 512-entry 4KB-page TLB, a 512-entry
2MB-page TLB and an 256K-entry 4KB-page TLB, which
is much larger than any practical TLB design. Recent work
shows that TLB reach can be improved by coalescing multi-
ple TLB entries with similar contents [20, 19]. The effective
TLB reach of a 256K-entry 4KB-page TLB is 1GB, which is
an upper bound that can be achieved by TLB coalescing.
As shown in the left side of Figure 2, when memory foot-

print is 1GB, a 256K-entry 4KB TLB has similar perfor-
mance as a 512-entry 2MB TLB, since the memory footprint
is not larger than the 1GB TLB reach. When the memory
footprint increases to 16GB (right side of Figure 2), which
is much more than the 1GB TLB reach, the performance im-
provement from increasing TLB reach becomes very small,
but superpages perform very well.
Figure 2 characterizes the CPU cycles for an instruction on

average, to understand the sources of the address translation
overhead. We note that approximately 15 cycles are needed
to access data, execute the instruction and account for address
translation overhead in the first 3 levels (up to PDE, labeled
No PTE in the figure). Compared to a 512-entry 2MB-page
TLB, the additional address translation overhead of a 4KB-
page TLB mainly comes from accessing PTEs.
The number of cycles to access PTEs can be broken down

into two components: the cycles to access PTEs assuming
all PTEs always fit in the LLC (PTE-Ideal LLC hit, middle
cycles), and the cycles to access main memory if a PTE is
not cached (PTE-Memory, at the top). For workloads with

large memory footprints (16GB), the performance overhead
of accessing PTEs is dominated by main memory accesses.
In conclusion, to avoid address translation overhead from

becoming a performance bottleneck, it is critical for work-
loads with large memory footprints to support superpages,
which avoids accessing PTEs.

�
��
��
��
��
��

��
�

��	
��
��	
 �����	���	���
��	
������

�
���
�����	

���
�� �
�����	

���
���
�����	
���

���
�����	
���

�� �
�����	
���

���
�����	
���

�!� � !�

Figure 2: CPI breakdown with different problem sizes and TLB

configurations for the GUPS workload.

2.3. Page Retirement and Memory Fragmentation

Given that superpages need contiguous physical memory, the
physical memory can become fragmented when there is even
a small percentage of retired pages. Figure 3 shows the prob-
ability of finding a contiguous memory block (of sizes 2MB,
128KB, 64KB and 32KB) as a function of percentage of
retired 4KB pages (retired pages are uniformly distributed).
The probability of allocating a 2MB superpage quickly ap-
proaches zero if the number of retired pages increases (e.g.,
for 0.5% retired pages, the probability is less than 8%). This
implies that a traditional superpage implementation will be in-
effective with retired pages. Nevertheless, it is relatively easy
to find small contiguous memory areas when the percent-
age of the retired pages is small. To ensure that at least 60%
of the memory blocks are contiguous, the threshold on the
percentage of the retired pages for 128KB, 64KB and 32KB
superpages is 1.6%, 3.1% and 6.1%, respectively.
In the next section we describe a new method to construct

superpages from multiple small memory fixed-sized areas in-
stead of a single large contiguous memory area.

3. Superpage in Non-Contiguous Memory

We develop a new mapping to support superpages in memory
with retired pages, and the necessary hardware to implement
this mapping.

3.1. Problem Definition

The goal is to find storage-efficient page table formats to
accommodate superpages in the context of non-contiguous
physical memory. We identified four requirements to achieve
this goal:
1. Allow mapping a superpage to multiple non-contiguous

memory area;

225

��"

��"

 �"

#�"

���"

��
��
��
	
	
��

�
�

��

�
�

��
�	�
��

�
��
�

��� ��#�� ��� ���� ���

�"
�$�" �$�" �$�" �$�" �$�" �$�" $�" %$�" #$�"��

�	
�

����������
��
���	���
�����

Figure 3: Probability of a memory block (of sizes 2MB, 128KB,

64KB and 32KB) to be contiguous (no retired pages)

for different percentages of retired 4KB pages.

�����"�����

'�)�9�
������
�"�����"�

�����
�

��
���"��8������

')�$���
�����

�%�:��

����

�����
�

1

.!

�!

'�)����"�
��
���%��������

�����
�

.!

�!

.!

�!

1

1

1

1

1

1

����"�
��

���	;�

'�����	;)

��<���

%��	�

1

1

1

Figure 4: Examples of different address mapping schemes.

2. Have similar size as traditional superpage table format;
3. Guarantee that address translation is completed in a fixed

number of steps; and,
4. Allow mixing superpages and traditional pages.
For backward compatibility and deployment, our new PT

format is an optional extension to allow a portion of the mem-
ory to be mapped as superpages and the rest of memory to
follow a traditional PT format.

3.2. Gap-tolerant Sequential Mapping (GTSM)

When the physical memory is littered with retired pages, it is
problematic to find a large contiguous memory block to es-
tablish a mapping. We devised Gap-tolerant Sequential Map-
ping (GTSM) to support superpages in memory with retired
pages. Figure 4 shows three ways to map a virtual mem-
ory space (VA) of the size of a superpage to physical mem-
ory (PA) that contains errors (marked with an X). Figure 4(a)
shows traditional superpage mapping, that maps VA to con-
tiguous PA (in this case, there is no contiguous physical space
that can accommodate a superpage).
Figure 4(b) is the traditional page mapping, where each

virtual page can be mapped to an arbitrary non-retired physi-

∙∙∙
'�)�!�<�<�������	�����"���"�"��

��(�������	;�=

��������	;��'����)���������	
�"�
��	�
�
��	
������������=

2(�

���	;�%���	
��
���
<��

#�7 (�

� ���	�������������!""�����!��������

(� /#/� #�

0

1

(�

2 !.�

+ 3 2

$ # � !

�

�

�

�

4

�

5

6

%

�

6

4

�

�# �2

�

!

�

#� 7 (/ � � � #

'�)�$���
�����

�����'$�����)�-��<�
=

Figure 5: Gap-tolerant PDE (GT-PDE) format.

cal page. This flexibility is not free: the storage cost of fine-
grained paged mapping is orders of magnitude higher than tra-
ditional superpage mapping. Figure 4(c) shows how GTSM
divides a virtual superpage into multiple fixed-size smaller
virtual blocks, which are sequentially mapped to memory (B-
blocks, or building blocks). B-blocks are bigger than a regular
page and together form a memory slice, whose size is twice
the size of a superpage. Note that the utilization of memory
is not only 50% with GTSM because remaining unmapped
fragmented memory can still be used for traditional pages.
To maintain a one-to-one mapping between virtual blocks

and B-blocks, exactly half of the B-blocks participate in the
mapping, given the size of the memory slice. Any B-block
that contains at least one retired page cannot be used for
GTSM. Note that GTSM is a generalized form of traditional
superpage mapping, but it is more flexible to take into ac-
count retired pages. If there is no retired pages in a memory
slice, GTSM creates the same (i.e., contiguous) memory map-
ping as traditional superpage mapping. By sacrificing flexibil-
ity of small/traditional page mapping, GTSM tolerates retired
pages and maintains a page table that has similar storage effi-
ciency as superpage mapping.

3.3. Gap-tolerant Page Directory Entry (GT-PDE)

For a 2MB superpage, PDE (page directory entry) is the
last level of address translation; the PDE format contains the
physical page frame base address and control flags of the su-
perpage (present bit, access bit, dirty bit, etc.). To support
GTSM, the 8-byte PDE is extended to a 16-byte GT-PDE
(Gap-Tolerant PDE). Figure 5(a) shows a memory slice di-
vided into 64 B-blocks with half of the B-blocks selected to
construct a GTSM superpage. As shown in Figure 5(b), to
minimize the impact on the OS, we keep the first 64 bits of a
GT-PDE the same as a traditional 2MB-page PDE. An extra
64-bit B-block selection bitmap is appended for GTSM. The
corresponding bit will be set to 1 if the B-block is selected in
the mapping. Otherwise, the bit will be set to 0.
Figure 6(a) shows address translation of a traditional 2MB-

page PDE. The 9-bit PDE index/block offset is used to select
a PDE among 512 regular PDEs. The 9-bit PTE index will
be kept unchanged in the translated physical address. Since
the default size of each page directory table is 4KB, it can
hold 256 GT-PDEs instead of 512 regular PDEs. To avoid
changing the size of the page directory table (4KB) and the

226

'�)�!""�����
��
���
��
 �-������������$�����=

$������*
"�&

'3)

���	;�

*
"�&�'/)

�����,--��

'#�)

���	;�

,--��
�'/)

����*
"�&

'+)

����*
"�& 6

���	;�,--��
�'+)

�����,--��

'#�)

$�����

� ���	�������������!""�����6

%��	�������!""�����'�+)

��
<���

,--��
�'()

�����,--��

'#�)

���	;�

,--��
�'/)

���	;�%���	
��
�

��
<���'(�)

'�)�!""�����
��
���
��
 �-���������������=

���

� ���	�������������!""����

'�#)

�����,--��

'#�)

���	;�,--��
�

'+)

.!

�!

.!

�!

Figure 6: Address translation using GT-PDE-4MB.

size of the mapped memory range (1GB), each GT-PDE entry
needs to map a 4MB superpage instead of a traditional 2MB
superpage. Based on GTSM, a 4MB superpage is mapped
to a 8MB memory slice. Since each memory slice has 64
B-blocks, the size of each B-block is 128KB.
Figure 6(b) shows the address translation of a 4MB-page

GT-PDE. Only the upper 8 bits of the PDE index are needed
to index a GT-PDE entry among 256 GT-PDEs. Since each
B-block is 128KB, only the low 5 bits of PTE index are used
as block offset and kept unchanged during address translation.
The remaining 5 bits between GT-PDE index and block offset
are treated as block index. Block index is translated using the
block selection bitmap of the selected GT-PDE. Same as a
2MB-page PDE, the physical page base address field of a GT-
PDE entry is 31 bits. Because the mapped sliced is aligned
at an 8MB boundary, the low 2 bits of the physical page base
address field are always zeros and ignored in the translated
physical address. To translate block index K (0-31), the block
selection bitmap is scanned to find the K selected bit, whose
position in the bitmap (0 - 63) indicates the B-block that the
virtual block is mapped to.
Because at least half of the B-blocks in the memory slice

must have no retired pages, we show in Figure 7 the probabil-
ity of constructing a valid mapping for different percentages
of usable B-blocks, which are assumed to be randomly dis-
tributed in memory. A threshold of 60% is enough for most
memory slices (93.3%) to find a valid mapping. Because only
half of the B-blocks in a slice are used in GTSM, the memory
capacity that can be mapped with GT-PDE is 46.6% with 60%

��"
��"
��"
��"
��"
 �"
%�"
#�"
&�"
���"

��
	
	
��

�
��
��
��
��
��
	�
�

�

��

	�

�
��
��
�

�"
��"

�" ��" ��" �" #�" ���"��
��
�

����������
��
 ���
�
!��
��"�
Figure 7: Probability to construct a valid GT-PDE mapping for

different percentages of usable B-blocks.

B-blocks usable. Recall that the remaining memory capacity
can be mapped as traditional pages.

3.4. Tolerating More Retired Pages

There is a trade-off between B-block size and number of re-
tired pages allowed (robustness of mechanism). The B-block
size used by a 4MB-page GT-PDE is 128KB. From Figure 3
we see that to tolerate more retired pages, a smaller B-block
size should be chosen (to ensure enough usable B-blocks ex-
ist to find a valid mapping).
When the bit of the block selection bitmap represents a

smaller B-block, the format of the GT-PDE is not changed
and the size of the superpage represented by a GT-PDE is re-
duced. To avoid changing the size of the mapped memory
range (1GB), the page directory table needs to be expanded
to hold more GT-PDEs. This change to use large pages (e.g.,
16KB) as the page directory table is feasible. Some architec-
tures, like ARM, already have this capability.
We limit the B-block size to 128KB, 64KB or 32KB. Ta-

ble 2 shows the basic parameters of GT-PDEs. Supporting
16KB or smaller B-blocks requires changing the GT-PDE for-
mat to have more bits for the physical page base address. Al-
though supporting 256KB or larger B-block size is possible,
it is not considered for two reasons. First, 256KB or larger
B-block size implies tolerating fewer retired pages (< 1%),
which is not our goal. Second, the size of the page directory
table will be smaller than 4KB and become partially filled
(i.e., wasted space) assuming a minimum page size of 4KB.

GT-PDE Mode B-block
Size

Page
Directory
Table Size

Retired Page
Threshold

4MB-page 128KB 4KB 1.6%
2MB-page 64KB 8KB 3.1%
1MB-page 32KB 16KB 6.1%

Table 2: Parameters of GT-PDEs with different B-block sizes.

The translation process of GT-PDE with a smaller B-block
size is similar to a 4MB-page GT-PDE. However, with a
smaller B-block size, fewer address bits are used as block off-
set. At the same time, the page directory table is expanded to

227

2

7

2

#

���	;�%���	
��
���
<��

2

>������""�
� ���	;�%���	
��
���
<��

>������""�
�

>������""�
�

#

���	;�%���	
��
���
<��

$�����

�����	;�%�?��@�#�38�

7
�8����������

2

>������""�
�

#

���	;�%���	
��
���
<��
�����	;�%�?��@�(�8�

�����	;�%�?��@���8�

#

(� 2 (� 2

Figure 8: Decoding GT-PDE.

hold more GT-PDEs. More address bits are used to locate the
GT-PDE in the page directory table.

3.5. Mixing Traditional Pages and Superpages

When GT-PDE is enabled, a page directory table can store
both 4KB-page PDEs and GT-PDEs at the same time. Each
4KB-page PDE has the PT base address that points to the PT
of PTEs. Each PTE will further point to each mapped 4KB
pages. Each GT-PDE directly points to the physical base ad-
dress of the mapped memory slice. 4KB-page PDEs need
zero padding to fill the unused space if the page directory
table is expanded. Figure 8 shows how to decode addresses
using GT-PDE for various B-block sizes (see explanations be-
low). When GT-PDE is enabled, the page directory table is
accessed at aligned 16-byte granularity. Similar to a tradi-
tional 2MB-page PDE, the 7th bit of the accessed 16-byte is
utilized to determine whether a PDE is a 4KB-page PDE or a
GT-PDE. If the 7th bit is zero, the PDE should be decoded as
a 4KB-page PDEs, otherwise the PDE should be decoded as
a GT-PDE.
When B-block size is 128KB, every 16 bytes of the page

directory table can store either two 4KB-page PDEs or one
GT-PDE. There is no padding needed. When B-block size is
64KB, the size of the page directory table is doubled. To en-
sure 4KB-page PDEs are evenly distributed in the page direc-
tory table, each 4KB-page PDE needs to be padded with an
8-byte zero padding. When B-block size is 32KB, each 4KB-
page PDE needs to be padded with a 24-byte zero padding.
The storage overhead of the padding is small because the dom-
inant storage cost of 4KB-page PDEs comes from their PTEs.
When B-block size is 32KB, if the first access of a 4KB-page
PDE points to the bottom-half 16 bytes, which are the zero
padding, a second access to the top-half 16 bytes is needed.
Similar to the storage cost, the performance overhead of the
extra access is small because the dominant address translation
overhead is from accessing PTEs.

3.6. Compressing GT-PDEs

Recent research showed that TLB entries with similar con-
tents can be coalesced to store more address translations in

�!.2

� ���	�����<���

�!.#
��<����� �
;�#

���

���

�!.�

%��	��2

%��	���

'�)���
�
��	
��
��-���$������

'�)������"�$������'��$�����)

� ���	�������������

!""����
!��������

(� /#/� #�

0

1

(�

!.�

+ 3 2

$ # � !

�

�

�

�

4

�

5

6

%

�

6

4

�

���	;�%���	
��
���
<��

#�7 (�

�# �2

�

!

�

#�

,--��
�! ,--��
��

�7 �(

��$������

��<����� �
;�2�

'#�3���)

��<����� �
;�0

��
	 �
�%��	��#

#�

2

(/ � � � #7

Figure 9: P-GT-PDE and its construction.

the TLB [20, 19]. Similarly, it is possible to halve the size
of the page directory table by coalescing every two adjacent
GT-PDEs. Figure 9(a) shows a Paired GT-PDE (P-GT-PDE)
format to support GT-PDE coalescing. To coalesce two GT-
PDEs with P-GT-PDE, two GT-PDEs use memory slices in
a smaller range (128MB). Only the low 6 bits of physical
page base address are different for the two slices. Also, the
two GT-PDEs need to have the same block selection bitmap.
Therefore, the low 6 bits of physical page base address of the
second GT-PDE can be stored in the unused field (bit 15-20)
of the first GT-PDE to form a P-GT-PDE. As shown in Fig-
ure 9(a), when a P-GT-PDE is accessed, it is simple to restore
the coalesced GT-PDEs by masking the Offset-B field as ze-
ros and overriding the Offset-A field with the value of the
Offset-B field.
Figure 9(b) shows the matching process to construct P-GT-

PDEs. First, the physical memory is divided into multiple
aligned 128MB memory chunks. Each chunk is further di-
vided into memory slices. Based on the distribution of re-
tired pages, each slice has a 64-bit Block Availability Vector
(BAV), which indicates which B-blocks of the slices can be
used in the P-GT-PDE mapping. If a B-block is usable, the
corresponding bit in BAV is set to 1, otherwise it is set to
0. A matching algorithm finds memory slices that should be
paired.
Algorithm 1 is our matching algorithm to find GT-PDE

pairs to construct P-GT-PDEs. First, for each memory chunk,
we can get a BAV for each memory slice. A 128MB memory
chunk has 64 2MB-size slices or 32 4MB-size slices. Then,
BAVs are sorted based on the number of usable B-blocks in
ascending order. The algorithm sequentially scans the remain-
ing BAVs to find two unprocessed BAVs that can be paired
using the bitwise-AND. If the result has at least 32 bits set,
the slices can share a valid block selection bitmap. Matching
continues until there are no more unprocessed BAVs. A spe-
cial case is a memory slice which does not have any retired
page, whose top half and bottom half slices can be Self-Paired.
For a Self-Paired P-GT-PDE, the block selection bitmap is all
ones.
Because the matching algorithm is done locally for each

228

Algorithm 1 Construction of P-GT-PDEs in a Memory
Chunk

Parameters:
B0...BN : a group of BAVs

Initialize the state of each BAV to Unprocessed.
Sort BAVs based on the number of usable B-blocks of each BAV in ascen-
dant order.
Any BAVs with all B-blocks usable are marked as Self-Paired.
while the number of unprocessed BAVs ≥ 2 do

Scan the BAV list to find the first Unprocessed BAV Bi.
for each remaining unprocessed BAV Bj do

Bmerged = Bi bitwise AND Bj .
if the number of usable B-blocks of Bmerged ≥ 32 then

Record (Bi,Bj) as a valid P-GT-PDE.
Mark Bi and Bj as Paired.
Go to find next unprocessed BAV Bi to process.

end if
end for
Mark Bi as Discarded.

end while

128MB memory chunk, the time complexity of the algorithm
is proportional to memory capacity. We tested our serial ver-
sion of the algorithm on a 2.8GHz Intel Xeon E5-2680v2 pro-
cessor. It takes less than 0.1s to find all BAV pairs for 128GB
memory.

3.7. Hardware Implementation

To support GTSM, we introduce three hardware changes.
First, a new 64-bit Gap-Tolerant Page Table Control Register
(GTPTCR) is used to manage the parameters of GTSM. Sec-
ond, the hardware page walker is extended to support loading
missed TLB entries from GT-PDEs. Third, the PDE cache in
the MMU is extended to hold 16-byte GT-PDEs. Next, we
describe these hardware changes in detail.
As shown in Figure 10(a), GTPTCR has three fields: GT,

P and BS. GT indicates whether GTSM is enabled. The page
table of a process can use both 4KB-page PDE and traditional
2MB-page PDE. Or the page table of a process can use both
4KB-page PDE and GT-PDE. To avoid adding an extra flag
in the PDE, the page table of a process cannot use both tra-
ditional 2MB-page PDE and GT-PDE. P indicates whether
P-GT-PDE format is used. BS indicates the B-block size. If
BS is n, the corresponding B-block size is 2n × 4KB. The
remaining unused bits in GTPTCR are reserved for future ex-
tension. Table 3 shows the PDE modes that are defined by the
GTPTCR.

GT P BS B-block Size PDE Mode
0 0 0 - 2MB-page PDE
1 0 3 32KB 1MB-page GT-PDE
1 0 4 64KB 2MB-page GT-PDE
1 0 5 128KB 4MB-page GT-PDE
1 1 3 32KB 2MB-page P-GT-PDE
1 1 4 64KB 4MB-page P-GT-PDE

Table 3: List of all PDE modes in GTPTCR.

When a GT-PDE/P-GT-PDE is accessed, the hardware
page table walker needs to translate the block index to a
bitmap offset using the block selection bitmap. As shown
in Figure 10(b), each PDE cache entry needs an extra 15-
byte storage to store the block selection bitmap (8 bytes) and
byte-granularity prefix sums (7 bytes). When a GT-PDE/P-
GT-PDE is loaded into a PDE cache entry, byte-granularity
prefix sums are calculated and cached to reduce translation la-
tency. As shown in Figure 10(b), byte-granularity prefix sum,
Si, is the accumulated number of 1s of the first i+1 bytes of
the block selection bitmap. Similar bit-counting logic is al-
ready implemented in modern processors and can be reused
to reduce hardware implementation cost. For example, x86-
64 POPCNT instruction counts the number of 1’s of a 64-bit
register in 3 cycles. S7, which is the number of 1s of the
whole block selection bitmap, is not stored because it is never
used in address translation.
For each address translation using GT-PDE/P-GT-PDE, the

byte-granularity prefix sums are compared with the value of
blockindex. The (i+ 1)th byte of the block selection bitmap
contains the matched bit position if Si > blockindex and
Si−1 ≤ blockindex. After the matched byte is determined, bit-
granularity prefix sums are calculated for each bit position
of the matched byte. The eight bit-granularity prefix sums
are compared with the value of blockindex−Si−1+1, the bit
position of the matched bit-granularity prefix sum is the trans-
lated bitmap offset. Also, address translation using the block
selection bitmap can be done in parallel with other operations
that are needed to fill a TLB miss (e.g., validating the access
rights of the superpage). We assume that loading a TLB en-
try from a GT-PDE takes an extra 3 cycles than a traditional
PDE. We also carried out a sensitivity study on this penalty
(see Section 5).
In this work, we assume that the baseline processor has a

32-entry PDE cache to store recently-accessed PDEs [3, 6].
The total storage overhead to support GT-PDE is 488 bytes:
8 bytes (GTPTCR)+32×15 bytes (PDE cache entries).
To minimize the changes to the MMU, our design does not

change the TLB hierarchy. The hardware page table walker
is enhanced to support GTSM. When address translation is
completed, a 4KB TLB entry is inserted into the TLB hierar-
chy for the translated address. Early x86-64 processors have
also used a similar method to support traditional superpages.
Alternatively, the TLB hierarchy can be enhanced to provide
native support for GT-PDE.

3.8. Software Support

To enable GTSM, the OS needs to support functions to 1)
configure GTPTCR; 2) determine whether to use traditional
or GT-PDE superpages based on the setting of GTPTCR; 3)
track memory slices that can be mapped as GTSM super-
pages; and, 4) install and release GTSM superpages.
To track memory slices that can be mapped as GT-PDE

superpages, a BAV array can be used to store the usability in-

229

2 �%

'�)�$���������

����������� ��

���������
���'$�����)

(� 7 � 2

$

�
�

#3

'�)�������	 ���

���
��������
�$�����6��$�����

.��
����!""����

���
���

���	;�%���	
��
 ��
<��

%(%/ %� %� %� %# %2

Figure 10: Hardware implementation of GT-PDE.

formation of B-blocks. Each memory slice has a dedicated
64-bit BAV. When the B-block size is 128KB, the memory
storage cost of the BAV array is 128KB for 128GB main
memory. If the B-block size is halved, the memory storage
cost of the BAV array will be doubled.
When the OS boots, it initializes the BAV array using a

fault map of pages with errors. The fault map can be ei-
ther stored in a permanent storage or constructed with mem-
ory built-in self-test (mBIST) during boot. The OS needs to
keep the BAV array updated by using information from kernel
physical page allocator (e.g., Linux Buddy Allocator). Once a
memory page of a B-block is allocated, the corresponding bit
of the BAV needs to be set to 0. Once all the memory pages of
a B-block are freed, the corresponding bit of the BAV needs
to be set to 1. A memory slice can be used for GT-PDE mem-
ory allocation if more than half of its B-blocks are usable. To
avoid scanning the BAV array for each GT-PDE memory allo-
cation, all BAVs that can be used for GT-PDE allocations can
be maintained in a dedicated list.
Unlike GT-PDE, P-GT-PDE should be used only for pro-

cesses with very large memory footprints, and compressing
GT-PDEs can further reduce TLB miss penalty. Because the
matching algorithm described in Section 3.6 needs to be ap-
plied to the BAV array to find BAVs that can be paired, it is
more expensive to make memory allocation with P-GT-PDE
than GT-PDE. To utilize P-GT-PDE, physical memory should
be allocated at the early stage of the process lifetime and re-
leased when the process is completed.
In this paper, we assume that all processes use the same

B-block size. To support per-process B-block size, the OS
needs to track BAVs at multiple granularities.

4. Experimental Methodology

4.1. Configuration

We use PTLsim [31], a cycle-accurate simulator, for perfor-
mance evaluation. The simulation parameters are detailed in
Table 4. The CPU is configured as a 3GHz out-of-order pro-
cessor core with a 256KB L2 cache and a 2MB LLC cache

slice. Main memory capacity is 128GB with 50ns access la-
tency.
To evaluate different page table designs, we extended PTL-

sim with a TLB performance model. The L1 DTLB has 64
entries for 4KB pages and 32 entries for 2MB pages. The
L1 ITLB has 64 entries for 4KB pages. The unified L2 TLB
has 512 entries for both 4KB and 2MB pages. L1 TLB miss
penalty is 7 cycles if it hits in L2 TLB.
Besides the two-level TLB, a MMU cache [3] is mod-

eled. The MMU cache has 32 PDE/GT-PDE cache entries,
32 PDPE cache entries and 2 PML4E cache entries. Al-
though the number of entries in the PDPE is larger than
usual, we increased it to reduce TLB miss penalty for work-
loads with large memory footprints, as suggested in previ-
ous work [3, 6]. The MMU cache is indexed by virtual ad-
dress and is concurrently looked up with L2 TLB [3]. We
assume 5 cycles for the hardware page walker to access a
PTE/PDE/PDPE/PML4E not including the cycles to load the
entry from the cache/memory hierarchy. We assume that it
takes an extra 3 cycles to access a GT-PDE due to the address
translation latency using the block selection bitmap. The
hardware page walker is not speculative (all configurations).
Since the B-block size is larger than a traditional page of

4KB (we experimented with 32KB, 64KB and 128KB), the
selection of B-blocks in a memory slice has negligible im-
pact on performance. For L1 and L2 cache, if a virtual page
is mapped to different B-blocks, data at a given virtual ad-
dress is still mapped to the same cache set. The selection of
different B-blocks only affects the value of cache tags, the
cache replacement sequence is kept unchanged. The memory
pages for the page table are pre-allocated to simplify the sim-
ulation process. A similar reservation-based allocation policy
has been used to allow MMU cache coalescing [6].
We use a Monte Carlo method to calculate the effective

capacity of different GT-PDE/P-GT-PDE designs with differ-
ent percentages of retired pages. To reduce the error intro-
duced by the Monte Carlo method, we modeled randomly-
distributed retired pages in a large physical memory sample
(16PB capacity). We use Intel RdRand instruction [15] to
generate different percentages of retired pages with a uniform
random distribution.

4.2. Workloads

Since we study address translation overhead of virtual mem-
ory, we consider memory-intensive benchmarks with large
memory footprints. We use these applications because they
are becoming prevalent and suffer the most from address
translation overhead. We choose GUPS [10], Canneal from
PARSEC [8] and 7 benchmarks from Problem Based Bench-
mark Suite [26]. GUPS is a popular benchmark to test ran-
dom memory access performance. Canneal is a cache-aware
simulated annealing kernel to minimize the routing cost of a
chip design. Dict is a benchmark to test performance of batch
insertion, deletion and search operations with a dictionary

230

CPU Core 3GHz, out-of-order, 32KB L1 I/D
L2 Cache 256KB, 8-way, 64-byte line size,

8-cycle latency
LLC 2MB per core, 32-way,

64-byte line size, 20-cycle latency
L1 DTLB 64-entry 4-way 4KB page

32-entry 4-way 2MB page
L1 ITLB 64-entry 4-way 4KB page
L2 TLB 512-entry 4-way 4KB/2MB page

7-cycle latency
MMU Cache 32-entry 4-way PDE/GT-PDE cache

32-entry 4-way PDPE cache
2-entry PML4E cache
5-cycle PTE/PDE/PDPE/PML4E access
8-cycle GT-PDE access

Main Memory 128GB DRAM, 50ns latency

Table 4: System settings.

data structure. BFS runs a breadth first search in a directed
graph. SetCover finds an approximate solution to the NP-
hard set cover problem. MST finds the minimum spanning
tree (MST) in an undirected graph. SPMV is multiplication
between a sparse matrix and a dense matrix. Matching finds
a maximal matching in an undirected graph. MIS finds a max-
imal independent set (MIS) in an undirected graph. With our
current simulator, only single-threaded workloads are evalu-
ated. Multi-threaded workloads should have similar results,
given there will be even larger memory requirements by mul-
tiple applications or threads running concurrently. The pres-
sure on the cache and sizes of page tables tend to be even
bigger.

Name
Memory
Reads PKI

TLB Miss PKI Mem. Footprint(GB)
4KB 2MB Touched Total

GUPS 17.9 17.9 13.4 4.0 4.1
Canneal 24.4 21.2 2.9 3.7 4.0
dict 23.1 21.4 0.0 0.7 6.5
BFS 93.2 88.1 4.4 1.4 7.4

setCover 60.4 49.4 0.0 0.9 7.8
MST 50.0 43.2 0.0 1.0 13.0
SPMV 128.7 113.5 0.0 1.7 7.3
matching 119.1 109.7 0.0 0.9 6.2
MIS 144.4 124.3 0.0 1.3 7.3

Table 5: Simulated workloads and PKIs.

For the graph benchmarks, we use R-MAT graphs [9] as the
input. For Dict, we use an uniform random distribution as the
input. For each workload, we skipped the initialization phase
and simulated 2 billion instructions. All benchmarks are 64-
bit binaries, compiled with gcc 4.1.2. Table 5 shows the num-
ber of memory reads per 1000 instructions (PKI), TLB Miss
PKI after a 512-entry L2 TLB (both 4KB pages and 2MB
pages), and memory footprints of each workload (both the to-
tal footprint and the size of memory touched by the 2B-cycle
simulation we ran). Most workloads can only touch a small

portion of their total memory footprints during the simula-
tion interval. A 512-entry 2MB-page L2 TLB can provide
enough memory coverage (1GB). Most workloads have neg-
ligible TLB misses with ideal 2MB superpage.

Characterizing Applications: PTE Access Breakdown
Since accessing PTEs is a major source of address transla-
tion overhead for workloads with large memory footprints,
Figure 11 shows the breakdown of PTE accesses based on
whether the PTE is accessed in memory, LLC, or L2 cache.
We assume that the L2 cache is the fastest cache large enough
to cache PTEs; essentially, caching PTEs in the L1 cache
could cause significant adverse cache pollution and severely
harm performance. The breakdown of PTE accesses is an in-
herent characteristic of each workload, and is sensitive to the
memory footprints of the workloads. The workloads that we
studied can be divided into two categories. The slower PT ac-
cess category are those applications that have a large portion
(i.e., more than 10%) of PTE accesses to memory, given that
the access to memory is 7.5 times slower than LLC: GUPS,
Canneal, dict and BFS. The second category are those appli-
cations that have faster time to access PTs, with few PTE ac-
cess to memory: setCover, MST, SPMV, matching and MIS.

��"
��"
��"
��"
 �"
%�"
#�"
&�"

���"

��

#
��
��
�
!
��
�"
��
$
�

������ ���	��� ��	���

�"
��"��

Figure 11: PTE access breakdown.

5. Results

This section presents simulation results of GT-PDE/P-GT-
PDE superpages. We show how performance is improved in
comparison to traditional 4KB pages. We also show Ideal
case, that is, traditional 2MB superpages with no retired
pages (in other words, no errors occur in memory). Tradi-
tional 2MB superpage is only suitable for memory where re-
tired pages are rare. In the figures, we use GT-PDE-xMB
to denote xMB-page GT-PDE. Similarly, we use P-GT-PDE-
xMB to denote xMB-page P-GT-PDE.

5.1. TLB Miss Penalty

Since our proposed design does not change the TLB hierar-
chy, it has the same TLB miss PKI as the traditional 4KB
page baseline. As a superpage table format, GT-PDE does
not need to access a PTE for each page table walk, which sig-
nificantly reduces the TLB miss penalty. Figure 12 shows the

231

�#%$#

�
��

��
 �
#�
���

%
�
&!

'
	��

�
��
�

��

(�
�

�
��

�
)

��� !�

'�
��� !�

'�
��� !�

'�
���

�

#�
�%

Figure 12: Average TLB miss penalty.

�$�

�$�

�$�

�$

�$#

��
�*
�

	+�
�

��
�

��� !�

'�
��� !�

'�
��� !�

'�
��� �����	(���)

�$#

Figure 13: IPC normalized to traditional 4KB page baseline.

average TLB miss penalty of the traditional 4KB page base-
line and GT-PDEs. Compared with Figure 11, we observe
strong correlation between PTE access breakdown and the re-
duction of TLB miss penalty. For GUPS, Canneal, dict and
BFS, average TLB miss penalty reduces by 40-160 CPU cy-
cles because a significant portion of PTEs are accessed from
memory for the traditional 4KB page baseline. For the work-
loads we studied, the average TLB miss penalty of GT-PDE
for 1MB, 2MB, and 4MB are all similar because the page
tables fit in the same cache level.

5.2. Performance

Figure 13 shows IPC improvement over the traditional 4KB
page baseline. The graph shows the improvement for GT-
PDE with different superpage sizes and Ideal superpages
(i.e., superpages with no retired/faulty pages). Similar to Fig-
ure 12, we observe strong correlation between PTE access
breakdown and IPC performance improvement. For GUPS,
Canneal, BFS and dict, we observe significant performance
improvement (20% to 60%) with GT-PDEs because PTEs
are no longer accessed from memory. For setCover, MST,
SPMV, matching andMIS, we observe moderate performance
improvement because these workloads access PTEs that are
mostly cached in the L2 and the LLC; the address translation
overhead is not significant enough to cause a large difference
in the IPC, which is approximately 2% to 8%. MIS has the
lowest performance gain (2.6%). MIS has 90% PTE accesses
to the L2 cache, and is less sensitive to address translation
overhead. On average, GT-PDE-4MB achieves 96.8% perfor-
mance of Ideal. The 3.2% overhead mainly comes from the
extra 3 cycles to translate and access GT-PDE entries from
the cache hierarchy. For the workloads we studied, the IPC

��"

��"

 �"

#�"

���"

-�
�-
��
�

��
��
��
��
��

�����	(���) !�

'�
���	(��#��) !�

'�
���	(���)

!�

'�
���	(����) !�

'�
���	(����) ���
�������	
�*�+

�"

��"

�" �" �" �" �" �" " %" #"

,�

����������
��
���	���
�����

Figure 14: Superpage percentage of different GT-PDEs.

performance of GT-PDE for 1MB, 2MB, and 4MB are all sim-
ilar because they use the same address translation procedure
and have similar TLB miss penalty. Due to the same reasons
(both fit in the L2 or LLC), even though the paired schemes
(P-GT-PDE, not shown) reduce the page table size by 50%,
they have similar performance as GT-PDE. We demonstrate
the performance advantage of a smaller page table size in Sec-
tion 5.4.

In our default configuration, the L2 cache is the highest
level to cache the page table. We also evaluated the config-
uration that PTEs can be cached in the L1 cache. For the
workloads that we studied, the performance change is very
small (< 0.1%) compared to our default configuration for the
traditional 4KB pages. On the other hand, there is extra 1%
performance gain on average if GT-PDEs can be cached in
the L1 cache instead of only in the L2 cache.

5.3. Memory Capacity Used as Superpages

Figure 14 shows superpage percentage, that is, the percent-
age of memory capacity that can be used as superpages us-
ing different page table formats. Using more superpages
is beneficial due to the speedup achieved (recall that super-
pages do not need to traverse the last level of page tables).
Note that the remaining non-retired memory pages can still
be used and mapped using traditional 4KB-page PDEs. For
traditional 2MB superpages, the percentage quickly drops to
0%. For GT-PDEs, the superpage percentage to utilize GT-
PDEs drops to 50% with increased retired pages, because
each memory slice is likely to have at least one retired page.
When there is a retired page, only 50% of B-blocks of a mem-
ory slice can be used in the GT-PDEs. As shown in the fig-
ure, to have 50% superpage percentage, the thresholds of re-
tired pages should be 1.4%, 2.8% and 5.5% for B-block sizes
of 128KB, 64KB and 32KB, respectively. The superpage
percentage of P-GT-PDE-2MB (paired approach) is bounded
from below by GT-PDE-2MB and above by GT-PDE-1MB.
Compared to GT-PDE-2MB, the smaller B-block size allows
P-GT-PDE-2MB to tolerate more retired pages while main-
taining the same page table size.

232

�$�
�$�
�$
�$#
�$�
�$�

��
�*
�

	+�
�

��
�

��� !�

'�
��� !�

'�
��� !�

'�
��� �����	(���)

�$�

Figure 15: IPC with different problem sizes normalized to a

problem size of 64MB using traditional 4KB page.

�$&
�$&�
�$&�
�$&
�$&#

�
�$��

��
�*
�

	+�
�

��
�

� � & �� ��

Figure 16: IPC of GT-PDE-4MB with different translation laten-

cies of GT-PDEs normalized to a default latency of

3 cycles.

5.4. Sensitivity to Problem Size

Figure 15 shows IPC of GUPS with different problem sizes
and page table formats. We choose to evaluateGUPS because
it is a common benchmark in scalability studies, given that
its memory footprint varies with problem size from 64MB to
64GB. As shown in the figure, the performance of traditional
4KB pages is sensitive to the problem size. When the problem
size is increased from 64MB to 8GB or more, IPC reduces by
40% or more due to increased address translation overhead.
On the other hand, the performance advantage of superpages
is significantly increased with lager problem size. When the
problem size is 8GB, the IPC of GT-PDE-4MB superpage is
63.4% better than 4KB page. The performance of GT-PDEs
with different B-block sizes shows difference when the prob-
lem size is very large. When the problem size is 64GB, GT-
PDE-4MB is 16.6% better than GT-PDE-1MB because of the
smaller size of the page table. Since the major advantage of
P-GT-PDE is to reduce the size of the page table, this also im-
plies that P-GT-PDE should only be used for processes with
very large memory footprints.

5.5. Sensitivity to GT-PDE Address Translation Latency

Figure 16 shows the IPC of GT-PDE-4MB assuming differ-
ent translation latencies of GT-PDEs. All results are normal-
ized to the default 3-cycle extra latency. As shown in the fig-
ure, the performance overhead is mostly consistent among the
workloads and is less than 1% if GT-PDE translation latency
is 6 cycles instead of 3 cycles.

�$&
�$&%
�$&#
�$&&

�
�$��
�$��
�$��
�$��

��
�*
�

	+�
�

��
�

�� � ��# �� ���

Figure 17: IPC of GT-PDE-4MB with different PDE cache sizes

normalized to 32-entry PDE cache.

5.6. Sensitivity to GT-PDE Cache Size

Figure 17 shows the IPC improvement of GT-PDE-4MB with
a larger PDE cache. The results are normalized to the 32-
entry PDE cache baseline. As shown in the figure, the perfor-
mance is not very sensitive to the size of the PDE cache (the
range of the Y-axis is quite small); 32 or 64 entries are enough
for the PDE cache. In fact, the maximum improvement of
making cache sizes much larger is less by approximately 2%
on average (see last column of the figure).

5.7. Comparing to TLB Coalescing

TLB coalescing is a technique which can substantially in-
crease TLB reach by coalescing multiple adjacent PTEs into
a single TLB [20, 19]. Note that for our target workloads,
that is, those with large memory footprints, the gain of TLB
coalescing is not as significant as for smaller applications.
Figure 18 shows the performance comparison between

TLB coalescing and GT-PDE. We evaluated the configuration
that the 512-entry L2 TLB supports 8x and 32x TLB coalesc-
ing, which merges adjacent 8 PTEs and 32 PTEs, respectively.
In order to avoid favoring our own scheme, we assume no
extra CPU cycles to load L2 TLB entry with TLB coalesc-
ing. As shown in the figure, the performance gain with TLB
coalescing is virtually nonexistent because TLB reach is still
limited even with 32x TLB coalescing considering workloads
with large memory footprints. For address translations that
are missed in the TLB, the dominant performance overhead
is from accessing PTEs. To avoid address translation becom-
ing a performance bottleneck, it is critical to eliminate PTE
accesses by supporting superpages.

6. Related Work

Both software and hardware changes are necessary to sup-
port superpages. Talluri et al. discussed the tradeoffs and
challenges to support superpages in hardware [28]. Ganapa-
thy and Schimmel described possible ways to support super-
pages in the OS [11]. Navarro et al. described a design to
transparently support superpages in the OS [18]. Zhang et
al. described a design to map superpages to disjoint physical
pages using traditional base page table format [32]. In their
proposed design, page table still needs to be accessed when

233

� #

�$�

�$�

�$�

�$

�$#

��
�*
�

	+�
�

��
�

#,	���	�����+-��* ��,	���	�����+-��* !�

'�
��� �����	(���)

�$#

Figure 18: IPC of TLB coalescing and GT-PDE normalized to

traditional 4KB page baseline.

there is a cache miss. To the best of our knowledge, this is
the first work to propose a new storage-efficient superpage
format designed for memory with retired pages.
There are much work on improving TLB performance.

TLB hit rate can be improved by sharing TLB entries among
CPU cores [27, 30, 5]. TLB miss penalty can be reduced by
prefetching [7]. Recently, TLB coalescing has been studied
to improve TLB reach [19, 20]. Similar to TLB coalescing,
MMU cache coalescing has been proposed to reduce TLB
miss penalty [6]. Our work does not require any changes to
TLB and is orthogonal to the work proposed for TLB perfor-
mance improvement. For workloads with large memory foot-
prints, improving the TLB performance alone is not enough
to solve the problem.
Memory errors can be tolerated using managed runtime

systems [13], but this requires the program to be written in
managed code (e.g., Java). Our work can be used for both
managed code and unmanaged code. Gandhi et al. described
an escape filter design which handles a total of 16 retired
pages with a 256-bit on-chip bloom filter [12]. GTSM is de-
signed to tolerate significantly more retired pages (e.g., 1.6%,
or 2GB of retired pages in a 128GB main memory).

7. Conclusion

Superpages are critical for workloads with large memory foot-
prints. Traditional 2MB superpages are not suitable for mem-
ory with retired pages, because a superpage must be mapped
to large contiguous physical memory. We proposed gap-
tolerant sequential mapping (GTSM) to allow mapping a su-
perpage to memory with retired pages. We proposed GT-PDE
which has a block selection bitmap to support GTSM. We
also proposed P-GT-PDE, a variant of GT-PDE, which can re-
duce the size of the page table by 50%. Our evaluation shows
that the performance of GT-PDE and P-GT-PDE is close to
the ideal 2MB superpaging (i.e., with no retired pages). For
large-footprint workloads, the 4MB-page GT-PDE achieves
96.8% of traditional 2MB superpaging, while tolerating mem-
ory faults.

References

[1] “Linux memory page offlining,” 2009, https://www.kernel.org/doc.

[2] S. Baek, S. Cho, and R. Melhem, “Refresh now and then,” in IEEE
TC, 2013.

[3] T.W. Barr, A. L. Cox, and S. Rixner, “Translation caching: Skip, don’t
walk (the page table),” in ISCA, 2010.

[4] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers,” in ISCA, 2013.

[5] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared last-level tlbs
for chip multiprocessors,” in HPCA, 2011.

[6] A. Bhattacharjee, “Large-reach memory management unit caches,” in
MICRO, 2013.

[7] A. Bhattacharjee and M. Martonosi, “Inter-core cooperative tlb for
chip multiprocessors,” in ASPLOS, 2010.

[8] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec bench-
mark suite: Characterization and architectural implications,” in PACT,
2008.

[9] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining,” in ICDM, 2004.

[10] J. Dongarra and P. Luszczek., “Introduction to the hpc challenge
benchmark suite.” http://icl.cs.utk.edu/hpcc/pubs/

[11] N. Ganapathy and C. Schimmel, “General purpose operating system
support for multiple page sizes,” in USENIX ATC, 1998.

[12] J. Gandhi, A. Basu, M. M. Swift, and M. D. Hill, “Efficient memory
virtualization,” in MICRO, 2014.

[13] T. Gao, K. Strauss, S. M. Blackburn, K. S. McKinley, D. Burger, and
J. Larus, “Using managed runtime systems to tolerate holes in wear-
able memories,” in PLDI, 2013.

[14] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic rays don’t
strike twice: understanding the nature of dram errors and the implica-
tions for system design,” in ASPLOS, 2012.

[15] Intel, “Intel 64 and ia-32 architectures developer’s manual.” 1997.
[16] W. Korn and M. S. Chang, “Spec cpu2006 sensitivity to memory page

sizes,” SIGARCH CAN, vol. 35, no. 1, 2007.
[17] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “Raidr: Retention-aware

intelligent dram refresh,” in ISCA, 2012.
[18] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical, transparent

operating system support for superpages,” SIGOPS Oper. Syst. Rev.,
vol. 36, no. SI, 2002.

[19] B. Pham, A. Bhattacharjee, Y. Eckert, and G. Loh, “Increasing tlb
reach by exploiting clustering in page translations,” in HPCA, 2014.

[20] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “Colt: Co-
alesced large-reach tlbs,” in MICRO, 2012.

[21] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing lifetime and security of pcm-based main
memory with start-gap wear leveling,” in MICRO, 2009.

[22] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high per-
formance main memory system using phase-change memory technol-
ogy,” in ISCA, 2009.

[23] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page placement in hy-
brid memory systems,” in ICS, 2011.

[24] S. Schechter, G. H. Loh, K. Straus, and D. Burger, “Use ecp, not ecc,
for hard failures in resistive memories,” in ISCA, 2010.

[25] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram errors in the wild:
A large-scale field study,” in SIGMETRICS, 2009.

[26] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V.
Simhadri, and K. Tangwongsan, “Brief announcement: The problem
based benchmark suite,” in SPAA, 2012.

[27] S. Srikantaiah and M. Kandemir, “Synergistic tlbs for high perfor-
mance address translation in chip multiprocessors,” in MICRO, 2010.

[28] M. Talluri, S. Kong, M. D. Hill, and D. A. Patterson, “Tradeoffs in
supporting two page sizes,” in ISCA, 1992.

[29] D. Tang, P. Carruthers, Z. Totari, and M. W. Shapiro, “Assessment of
the effect of memory page retirement on system ras against hardware
faults,” in DSN, 2006.

[30] C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramirez,
A. Mendelson, N. Navarro, A. Cristal, and O. Unsal, “Didi: Miti-
gating the performance impact of tlb shootdowns using a shared tlb
directory,” in PACT, 2011.

[31] M. T. Yourst, “Ptlsim: A cycle accurate full system x86-64 microar-
chitectural simulator,” in ISPASS, 2007.

[32] L. Zhang, E. Speight, R. Rajamony, and J. Lin, “Enigma: Architec-
tural and operating system support for reducing the impact of address
translation,” in ICS, 2010.

[33] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy effi-
cient main memory using phase change memory technology,” in ISCA,
2009.

234

