
Robust Architectural Support for Transactional Memory
in the Power Architecture

Harold W. Cain∗

IBM Research
Yorktown Heights, NY, USA
tcain@qti.qualcomm.com

Brad Frey
IBM STG

Austin, TX, USA
bradf@us.ibm.com

Derek Williams
IBM STG

Austin, TX, USA
striker@us.ibm.com

Maged M. Michael
IBM Research

Yorktown Heights, NY, USA
magedm@us.ibm.com

Cathy May
IBM Research (retired)

Yorktown Heights, NY, USA
mayggg@gmail.com

Hung Le
IBM STG

Austin, TX, USA
hung@us.ibm.com

ABSTRACT
On the twentieth anniversary of the original publication [10],
following ten years of intense activity in the research lit-
erature, hardware support for transactional memory (TM)
has finally become a commercial reality, with HTM-enabled
chips currently or soon-to-be available from many hardware
vendors. In this paper we describe architectural support for

TM added to a future version of the Power ISA
TM

. Two im-
peratives drove the development: the desire to complement
our weakly-consistent memory model with a more friendly
interface to simplify the development and porting of multi-
threaded applications, and the need for robustness beyond
that of some early implementations. In the process of com-
mercializing the feature, we had to resolve some previously
unexplored interactions between TM and existing features of
the ISA, for example translation shootdown, interrupt han-
dling, atomic read-modify-write primitives, and our weakly
consistent memory model. We describe these interactions,
the overall architecture, and discuss the motivation and ra-
tionale for our choices of architectural semantics, beyond
what is typically found in reference manuals.

1. INTRODUCTION
This work describes the first architectural support for TM

in the Power ISA. (The TM feature implemented in Blue
GeneR©/Q 1 contains no instruction set support.) Since the
Power ISA is the basis for IBMR© pSeries servers, whose
strengths are robust and scalable performance in large sys-
tem configurations (e.g. up to 256 cores / 1024 threads

∗The author is now employed by Qualcomm Research-
Raleigh
1IBM, Power, Blue Gene, AIX, Power Architecture, and
z/Architecture are registered trademarks of International
Business Machines.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA ’13 Tel-Aviv, Israel
Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

in current p795 systems, with 8 TB of DRAM), as well as
strengths in RAS that differentiate it in the market, adding
TM must not compromise any of these virtues. A robust
system is one that is sturdy in construction, a trait that
does not usually come to mind in respect to HTM systems.
We structured TM to work in harmony with features that
support the architecture’s scalability. Our goal has been to
provide a comprehensive programming environment includ-
ing support for simple system calls and debug aids, while
providing a robust (in the sense of ”no surprises”) execu-
tion environment with reasonably consistent performance
and without unexpected transaction failures.2 TM must be
usable throughout the system stack: in hypervisors, oper-
ating systems, libraries, compilers, run-time systems, and
applications. Further, TM must be easily exploited in exist-
ing code, as well as newly written software, driving the need
to co-exist with nearly the full scope of the ISA’s functional-
ity. The transactional extensions start with a set of instruc-
tions for implementing strongly-isolated[17]3 transactions as
well as a general mechanism for checkpointing and rollback
of architectural state. It discourages unpredictable transac-
tion behavior (e.g. aborting transactions on some but not all
function calls [19]), while also providing support for identi-
fying the source of transaction failures when the contents of
the transaction are inconsistent with transactional seman-
tics (e.g. code that performs a cache flush operation). One
feature supporting these goals is transactional suspension,
which implicitly occurs when handling interrupts, or can
be explicitly invoked via a new suspend/resume instruction.
This support is described in Section 3.

In the near term, the value of the TM feature is expected
to come from lock elision[24] and to a lesser extent from
speculative compilation techniques that are enabled by the
checkpointing/rollback mechanism[23, 22, 28]. Over time,
the ease of programming relative to the weakly consistent
Power ISA memory model will seed the development and
porting of multithreaded applications. (For example if mul-
tiple memory accesses can be wrapped in a transaction, there
is no need to reason about the necessary memory barriers be-
tween those particular accesses.) The architecture has been

2We use the term failure to refer to any unsuccessful trans-
action, and reserve the term abort to refer to failures that
are explicitly requested via transaction abort instructions.
3While Blundell et. al[17] use the term strongly atomic, we
prefer and use the term strongly isolated.

225

tailored for these uses, while providing a base to support
emerging language standards and eventually be extended
for lock-free programming.

Another aspect of the inclusion of TM is its intersection
with the Power ISA weak memory model. In addition to the
interaction of TM with non-transactional weakly ordered
code, since lock elision enables the transactionalization of
arbitrary code, we must define correct and predictable se-
mantics for the inclusion of memory barriers and atomic syn-
chronization primitives (i.e. load-reserve/store conditional)
within a transaction. We describe the intersection of TM
and the Power ISA memory model in Section 4.

Although this paper summarizes the architectural support
for HTM in one commercial architecture, and the design
challenges and trade-offs involved, some of the features dis-
cussed have not been previously described in the literature,
which we highlight here as novel contributions of this work:

• We define a suspended transactional mode of execu-
tion with deferred failure handling semantics, allowing
for a sequential programming model that can run existing
software (e.g. interrupt handlers) without fear of failure-
induced control redirection. This mode is entered as the
result of an interrupt or via a new suspend instruction,
and is an important ingredient in the architecture’s ro-
bustness. It is described in Section 3.

• We describe the potential for a loss of transactional
atomicity in systems that implement hardware-based
translation shootdowns (i.e. do not rely on interproces-
sor interrupts), motivating support for conflict detection
mechanisms with translation shootdown.

• We describe various mechanisms, most importantly an
integrated cumulative barrier effect on transaction com-
mittal, that are necessary to allow transactional and non-
transactional accesses to interoperate in a sensible fash-
ion. The interaction of TM and the Power ISA memory
model is described in Section 4.

• We define a variant of transactions called rollback-only
transactions that support the checkpointing and rollback
of architectural state without the atomic features of trans-
actions, to be used for software speculation.

We begin with a summary of the requirements that guided
this architecture and a high-level overview in Section 2.

2. ARCHITECTURE: REQUIREMENTS AND
OVERVIEW

The necessary support for our goals was reconciled against
its expected implementation cost, which must be feasible
across a broad class of possible implementations. We began
with an assumption of a mode-based strongly isolated[17]
best-effort HTM, with transactions initiated/committed by
new instructions. One motivation for this design point,
including the use of register checkpointing, is its compact
means of starting and ending transactions with a single in-
struction each, as opposed to proposals that may require
more software overhead such as saving/restoring registers in
software, or alternative mechanisms for initiating, commit-
ting, and aborting transactions that may require memory-
mapped accesses, software-visible logging, marking, or pro-
tection structures. Since TM will compete with alternate
larx/stcx sequences, a compact mechanism is necessary

to be competitive with those primitives. From this start-
ing point, we also imposed the following implementation as-
sumptions:

• We would not require support for maintaining more
than one read or write set per transaction (i.e. no guar-
anteed support for intermediate rollback of nested trans-
actions or multiple speculative versions of a line).

• There would be no guarantee of success for any trans-
action; all transactions must specify a failure handler al-
lowing for non-transactional alternatives.

• Despite a desire for graceful handling of many rare
events, there would be no requirement of support for
transaction survival across context switches or paging of
transactionally accessed data.

• When possible, the primitives themselves must be
largely consistent with existing components of the Power
ISA. Significant deviations were only permissible if abso-
lutely necessary.

• The resulting architecture would allow for decoupled
implementations of TM and existing larx/stcx atomic syn-
chronization primitives.

• We placed no architectural limits on the transaction
size an implementation must support, but encourage the
possible support of large transactions by eliminating many
causes of transaction failure. Implementations must have
the flexibility to choose granule size for tracking transac-
tional conflicts.

Support for TM was primarily motivated as an enabler
of lock elision and speculative code generation techniques.
Lock elision is a technique that can be implemented purely
in hardware[24], purely in software [21], or using a combina-
tion of the two through transactional lock elision (TLE) [7],
which is the approach we adopt. Lock elision requires the
ability to execute transaction unaware code, as opposed to
small carefully orchestrated transactions that may be con-
structed by a programmer by hand, for example when build-
ing a lock-free data structure. Since lock-based critical sec-
tions can make procedure calls that may end up distantly
removed from the original critical section (potentially even
in system libraries or the operating system), we would like to
handle the execution of unpredictable code within a trans-
action, and in the event of failure in such a disparate loca-
tion, convey enough information back to the originator of the
transaction that a programmer can debug and understand
the cause of such transaction failures.

Further, the ability to build a reliable, bug-free system is
only possible with significant support for reliably debugging
the system. Of concern in debugging transactional applica-
tions was a programmer’s inability to ”peek” inside failing
transactions; in the absence of supporting mechanisms, a
persistent transaction failure may be impossible to debug
since all architectural updates are reverted on transaction
failure. While a persistent failure may not be problem if
transactions can always fall back on non-transactional code,
once a user becomes accustomed to the benefits of trans-
actional execution, subsequent changes to their code or the
system’s operating environment could lead to transaction
failures causing those benefits to disappear. For this and
other reasons outlined in Section 3, our TM system in-
cludes a mechanism for transactional suspension, which en-

226

ables the debugging of persistent failures by permitting non-
transactional actions from within a transaction. It is from
within this context that the following architecture emerged.

Transactional execution is controlled using two new modes
of operation: Transactional and Suspended Transactional
modes, which are controlled using a new 2-bit Transactional
State (TS) in the machine state register (MSR).

2.1 Transactional Mode
Transactional mode is initiated via the execution of a

tbegin instruction, and transactions are committed using
a tend instruction. Transactions can fail due to a variety of
causes, resulting in transactional stores being discarded as
well as the rollback of all registers that are writable in user
mode. Conceptually, this register state is checkpointed at
transaction initiation in what we refer to as the speculative
register checkpoint. Register checkpointing was motivated
by a desire to support low-latency initiation of transactional
execution in lock-elision and software speculation-enabled
code, otherwise at the onset of speculation, software would
be required to checkpoint any register state that may be
modified, creating an initial performance deficit with respect
to conventional code. Table 1 summarizes the new instruc-
tions comprising the transactional facility.

Transactions can be explicitly aborted by software us-
ing five new Transaction Abort instructions. The first,
tabort, unconditionally aborts a transaction and copies
eight bits from its register operand into a diagnostic reg-
ister (TEXASR). The remaining four tabort instructions
support comparison of two different operand widths (word
and doubleword), conditionally causing transactional abort
based on the comparison of two registers or a register and im-
mediate. These conditional tabort instructions reduce path-
length (replacing a compare-branch-tabort sequence) in code
with many transactional exits.

In addition, we include support for suspending and re-
suming transactions using the tsr instruction, reading the
transaction mode and checking transaction validity using
tcheck, and saving and restoring the checkpointed transac-
tional register state on context switches via treclaim and
trechkpt. These are described in more detail in Section 3.

An example transaction is shown in Figure 1. Most TM
instructions, including tbegin, set a condition register as a
side-effect, indicating the transactional state (abbreviated
MSR[TS]) at the time that the instruction is executed. On
successful initiation, the branch following tbegin will fall
through to the transaction body. On failure, the branch will
transfer control to a programmer-defined failure handler. In
the overly simplified handler shown here, the logic simply
tests a “persistent” hint bit located in the TEXASR, and if
unset retries the transaction.

2.1.1 Registers for Failure Handling
We also add three new special-purpose registers to manage

failure handling:

• Transaction Failure Handler Address Register (TFHAR):
On the initiation of a transaction, records the address fol-
lowing tbegin, which is responsible for redirecting control
flow to the transaction failure handler.

• Transaction Failure Instruction Address Register
(TFIAR): Records the address of the instruction respon-
sible for transaction failure, when available.

tmstart:
tbegin 0 #TFHAR <= tbegin PC + 4
beq- failure #If failure, goto handler
... #Transaction body
tend #Commit transaction
...

failure:
mfspr r4, TEXASR #Read diagnostic register
andi. r4,r4,MASK #Is persistent bit set?
beq tmstart #If not, retry, or use non-TM path

nontransactional_path:
...

Figure 1: Example transaction

• Transaction Exception and Status Register (TEXASR):
Records a variety of information about the status of the
current or most recently executed transaction, encoded in
the fields shown in Table 2.

2.1.2 Transaction Failures
Transactions can fail for a number of reasons, as enumer-

ated in the first half of Table 2. While many of these causes
will be familiar to readers, we note the following causes
which may not be obvious:

• Failures caused by detection of a suspend-mode access
by the transactional thread that conflicts with its own
read or write set, as further described in Section 2.2.

• Failures caused by conflicts with concurrent shootdown
of translation entries, described in Section 3.3.

• Differentiation of failures caused by conflicts with
transactional and non-transactional accesses.

On detection of failure, the act of failure processing is
divided into two separate parts: failure recording and failure
handling.

Failure recording is the process of recording information
about the cause and circumstances of failure in SPRs associ-
ated with the transactional facility. This includes setting of
failure cause bits defined in TEXASR, as well as failure con-
text bits such as the privilege, suspend, and transaction level
bits, and the setting of the TFIAR. Since some failure types
may not be caused by a particular instruction (e.g. TM
footprint overflow), or an associated PC may be difficult to
capture (e.g. conflicts caused by stores), the TEXASR in-
cludes a TFIAR valid bit, indicating whether or not TFIAR
is a precise address of the failure-causing instruction, or an
approximation. Failure context bits are an aid to program-
mers to determine the failure’s context, particularly in cases
where the TFIAR does not contain a precise value. Fail-
ure recording is performed once per transaction that fails,
despite cases where multiple failure conditions may simulta-
neously present themselves.

During failure handling, all updates to memory and spec-
ulative registers are rolled back, and control is transferred to
the failure handler address, with a condition register (CR0)
set to indicate that failure has occurred. The timing of fail-
ure handling is dependent on whether the machine is in the
Transactional or Suspended Transactional mode at the time
of detection. In Transactional mode, failure recording and
handling occur immediately. In Suspended mode, failure
recording occurs immediately on detection of the first fail-
ure, but in order to preserve the sequential semantics of

227

User-mode instructions

tbegin. R Transaction begin. Initiates transactional execution. The R parameter indicates this is a roll-back only
transaction. Transaction initiation prevented in Suspend mode.

tend. A Transaction end. Commits a transaction. When set, the A parameter forces commit of transaction
regardless of current nesting level. Execution from Suspended mode is disallowed.

tabort. RA Transaction abort. Unconditionally aborts a transaction. Lower byte of register parameter RA is
copied into TEXASR to record cause of transaction failure. In Suspend mode, causes transaction failure
recording, but not failure handling.

tabortwc. TO, RA, RB
tabortdc. TO, RA, RB

Transaction abort conditional. Register operands RA and RB are compared using an operator specified
by TO. Depending on the outcome of the comparison, the transaction is conditionally aborted. Word
(w) and doubleword (d) variants are supported.

tabortwci. TO, RA, SI
tabortdci. TO, RA, SI

Transaction abort conditional immediate. Similar to tabort[w|d]c, except compares register RA to a
signed immediate operand.

tsr. L Transaction Suspend or Resume. L parameter controls whether to suspend or resume. We refer to
these two types as tsuspend and tresume.

tcheck BF Transaction Check. Sets condition register indicating whether transaction failure has been detected,
including whether prior memory operations are currently conflict-free. Can be used in Transactional and
Suspended modes to check transaction validity.

Privileged and Hypervisor instructions

treclaim. RA Transaction Reclaim. Reclaims transactional facility for a new use, forcing failure for any active trans-
action. Lower byte from register operand RA copied to TEXASR, similar to tabort. Execution from
Non-transactional mode is disallowed.

trechkpt. Transaction Recheckpoint. Sets the transactional facility’s register checkpoint to the current register
state. Execution from Transactional or Suspended mode is disallowed.

Table 1: Summary of New Instructions

non-transactional execution, failure handling is deferred un-
til transactional execution is resumed. We decouple failure
recording and handling to allow for their separate occur-
rence when failure occurs during a suspended transaction.
This decoupling also supports the precise recording of an
initial failure cause; failure handling may be delayed for a
variety of reasons, and for potentially a very long time (if a
transaction is suspended). Supporting the early capture of
failure cause separately from failure handling allows subse-
quent diagnosis of the original failure condition.

2.2 Suspended Transactional Mode
The Suspended transactional mode is explicitly entered

with the execution of a tsuspend form of the tsr instruction
during a transaction, the execution of a trechkpt instruction
from non-transactional mode, or as a side-effect of an inter-
rupt4 while in the Transactional mode. Once suspended,
transactional execution can be resumed by executing the
tresume variant of the tsr instruction, or by execution of a
return-from-interrupt instruction (e.g. rfid).

Suspended transactional execution is defined by the fol-
lowing semantics:

• Memory accesses are performed non-transactionally;
they will be performed independently of the outcome of
the transaction.

• The initiation of a new transaction is prevented.

• In the event of transaction failure, failure recording is
performed, but failure handling is deferred until transac-
tional execution is resumed.

• Until failure occurs, load instructions that access mem-
ory locations that were transactionally written by the
same thread will return the transactionally written data.
After failure is detected, but before failure handling is per-
formed, such loads may return either the transactionally

4In the Power ISA, all system interactions occur via inter-
rupts, i.e. we use this generic mechanism for system calls,
synchronous exceptions, and asynchronous exceptions, so
discussion of interrupts is applicable to all of these types
of events.

written data, or the current non-transactional contents of
the accessed location.

• Store instructions that access memory locations that
have been accessed transactionally (due to load or store)
by the same thread will cause the transaction to fail.

These semantics provide a programming model identical
to the non-transactional programming model so long as pro-
grammers follow these rules: they read transactionally writ-
ten memory locations only as described in the next para-
graph, they do not store to memory locations that have
been transactionally read or written, and they do not ex-
pect transactions to be initiated successfully. Once in Sus-
pended mode, the processor remains in Suspended mode fol-
lowing sequential execution semantics even in the presence
of transaction failure; it is only after the transaction is re-
sumed that failure handling takes place. This preservation
of the sequential execution model allows for the execution
of transaction-unaware code such as the hypervisor, operat-
ing system, or certain library calls (or portions thereof) in
Suspended transactional mode.

Transactionally modified memory locations may be read,
but on transaction failure those modifications may be dis-
carded. Therefore, when a load is executed, it is uncertain
whether the load returned the transactionally written value,
or the current value present at the location. (The archi-
tecture guarantees that one or the other will be returned).
A tcheck instruction can be used to check the validity of
the current transaction, indicating that any prior loads to
the transactional write set observed the transactionally writ-
ten value. (Although it would have been nice to preserve
the transactional stores until the end of the suspend-mode
block, that would require saving/restoring the store foot-
print across context switches, a prohibitive implementation
cost.) If a suspended transaction stores to a location in the
transactional read or write set, transaction failure is incurred
in order to preserve transactional semantics. (Such failure
is handled when the transaction is resumed.)

The final difference between Non-transactional and Sus-
pend mode execution is that any attempt to initiate a new
transaction during suspend-mode execution is denied, with

228

Failure Cause Bits

Field Description
Disallowed Set when failure is caused by a disallowed instruction or access type.
Nesting overflow Set when failure is caused by exceeding the maximum transaction level.
Footprint overflow Set when failure is caused by overflowing the capacity of the transactional footprint.
Non-transactional conflict Set when failure is caused by a conflict with a non-transactional access.
Transactional conflict Set when failure is caused by a conflict with a transactional access.
Self-induced conflict Set when failure is caused by a self-induced conflict. (Described in Section 2.2.)
Translation invalidation
conflict

Set when failure is caused by conflict with a translation shootdown. (Described in detail in Section 3.3)

Implementation-specific Set when failure is caused by some other implementation-specific reason. Such failures must not be persistent.
Instruction fetch conflict Set when failure is self-induced due to an ifetch that conflicts with a transactionally written location.
Abort Set when failure is caused by the execution of an unconditional transaction abort or transaction reclaim

instruction, in which case the Failure code and Failure persistent bits are user-supplied.

Failure Context Fields

Failure code (7 bits) Copied from bits 0:6 of tabort or treclaim source operand, set to 0 by other failure types.
Failure persistent Indicates the failure is likely to recur on each execution of the transaction. This bit is a hint. It is copied

from bit 7 of tabort. or treclaim. source operand, otherwise is set by hardware depending on failure type.
Suspended When set to 1, the failure was recorded while the transaction was in the Suspended mode.
Privilege (2 bits) The privilege mode of the thread at the time failure is recorded.
Failure Summary Set to 1 when failure has been detected and failure recording has been performed. Failure recording occurs

only if unset.
TFIAR Exact The contents of the TFIAR register are precise.
ROT Set to 1 when a ROT is initiated. Set to 0 when a non-ROT tbegin is executed.
Transaction Level (12
bits)

Nesting depth for the active transaction, if any. Otherwise 0 if the most recently executed transaction
completed successfully, or the transaction level at which the most recently executed transaction failed.

Table 2: Transaction Exception and Status Register (TEXASR) Format. Each field is a single bit unless
otherwise noted.

a special condition code being set indicating transactional
“failure to launch”; the failure handler has the choice of co-
opting the TM facility (via an operating system service) or
choosing an alternative non-transactional path.

2.3 Rollback-only Transactions
Rollback-only transactions (ROTs) are used for single

thread algorithmic speculation, and can be initiated by an
extra parameter to tbegin. They are not used to manipu-
late shared data, enabling the following efficiencies as com-
pared to atomic (conventional) transactions. First, since
atomicity is not provided, ROTs are not required to do any
conflict tracking. Software must ensure that ROTs do not
access potentially shared data. However to provide support
for rollback, ROTs must track the write set of the transac-
tion. As a result, given a fixed-size access tracking buffer
that must only track stores for ROTs, ROTs can be signif-
icantly larger than atomic transactions. Second, ROTs do
not maintain the serializability of atomic transactions nor
do they have the implicit barriers associated with atomic
transactions (explained below in Section 4).

Just as with atomic transactions, ROTs may be nested.
ROTs are nested using a flattened nesting model. ROTs
may be nested with atomic transactions, but beginning with
the first nested atomic transaction, the execution will be
characteristic of an atomic transaction (e.g. read set track-
ing will be performed).

3. ROBUST ARCHITECTURAL SUPPORT
FOR EXCEPTIONAL CONDITIONS

In the following section, we summarize three features of
the TM architecture that qualitatively improve its capacity
for supporting hardware and software corner cases: debug-
ging and other escapes via suspended transactions, support
for system interactions (interrupts, exceptions, and system
calls), and support for detecting conflicts with concurrent
translation shootdowns.

3.1 Explicit Suspend and Resume
While the suspend mode described in section 2.1 is largely

motivated by interrupts, controlling it explicitly through tsr

is also included for the following reasons:

• To support breadcrumb-style debugging through non-
transactional Suspend mode stores.

• To support polling within a transaction, allowing com-
mit to be dependent on external signaling, for use in spec-
ulative multithreading and helper-threading systems.

• To allow registration of commit and compensating ac-
tion routines to be run at commit or abort [9, 18].

• To allow emulation routines to execute in the Transac-
tional, rather than Suspended mode using tresume.

As an example of bread-crumb style debugging, an im-
plementation of a transactional print function using the tsr

instruction (through mnemonics tsuspend and tresume) is
shown in Figure 2. Such a function can be called from within
a transaction to non-transactionally record the string pa-
rameter. On transaction commit or abort, a subsequent
call to a conventional printf routine is made using variable
buffer. In this example, the tcheck instruction is used to
detect transaction failure, terminating the string copy early.
In the event of transaction failure, a partial version of the
input string will be printed, which would indicate the trans-
action failed asynchronously in the middle of the string copy.

3.2 Interrupt and Exception Handling
One of the basic tenets of the Power ISA is the option

of different implementations to choose not to implement in
hardware certain instructions, or certain instruction corner
cases (e.g. some rarely occurring memory alignment cases),
and instead rely on software emulation of these instructions
through the use of different types of interrupts (for exam-
ple alignment interrupts for some unaligned accesses, or hy-
pervisor emulation assistance interrupts for unimplemented

229

char buffer[]; //preallocated output buffer
int curindex = 0;
void trans_print(char *str) {

int i = 0;
tsuspend //Suspend transaction
//while not the end of str
while(str[i] != ’NUL’) {

buffer[curindex] = str[i++];

//break on failure, since last read could be garbage
if(!tcheck) break;
curindex++;

}
//terminate string with NULL char
buffer[curindex] = ’NUL’;
tresume //Resume transaction

}

Figure 2: A transactional print routine. Assumes
a conventional printf is called on transaction com-
mit or failure using buffer. Input parameter string

may be partially printed in the event of transaction
failure.

instructions). When designing the transactional instruction
set extensions for the Power ISA, we were faced with the
choice of architecting an “abort on interrupt” model similar
to Sun Rock [7] and IBM zEC12 [16]5. Instead we chose a
“Suspend on interrupt” model, in which the machine mode
is changed from Transactional mode to Suspended Transac-
tional mode on the occurrence of the interrupt. We made
this decision for the following reasons:

• to allow for the flexibility of instruction emulation in
future implementations without compromising the exe-
cution of enclosing transactions, for example to prevent
cases where code running on one system is able to suc-
cessfully use transactions, while the same code on a later
generation of system suffers from transaction failure due
to emulation.

• to allow for transactions to survive memory-related in-
terrupts, for example those caused by translation faults
that may miss in our hashed page table but are resident
in the backing software-managed page table and can be
quickly serviced by the operating system.

• to allow for transactions to survive other types of inter-
rupts, such as those that are caused by interactive debug-
gers, or timer interrupts that do not result in a context
switch.

• to allow for the availability of certain transaction-aware
operating system services, as have been motivated by
other prior work [20, 2].

• to allow future flexibility, in areas that have not yet
been anticipated.

In the abstract, the suspend on interrupt model does sim-
ply that: the machine state is transitioned from a Transac-
tional mode to a Suspended Transactional mode when inter-
rupt occurs. The mechanics of running the operating system

5Intel Haswell also appears to support an abort-on-interrupt
model, although the Intel TSX architecture does not rule out
future support for interrupts and system calls within RTM
and HLE regions [15].

in the Suspended mode, and managing the register check-
point of multiple transactions, are described in the following
two subsections.

3.2.1 Mode Transition
In the Power ISA, like others, first-level interrupt han-

dlers (FLIHs) assume a specific operating environment, for
example that they will be invoked with external interrupts
masked. Consequently, the process of generating an inter-
rupt involves the implicit setting of MSR state by hardware
on the occurrence of the interrupt to a FLIH-friendly state,
as well as making a backup of the MSR version at the time
of the interrupt, which is recorded in register SRR1. When
interrupt handling is complete, an rfid (Return From In-
terrupt) instruction is used that returns control to the inter-
rupted context, including resetting the MSR state using the
contents of SRR1. With these existing mechanisms, it was
natural to implement the suspend-on-interrupt mechanism
by simply setting MSR[TS] to Suspended on any interrupt,
and recording the previous value of MSR[TS] in SRR1 like
any other mode bits.

For example, in cases where a page fault occurs during a
transaction, for a page which is not in the hashed page table
but is available in the software-managed backing page table,
the interrupt handler is invoked in the Suspended transac-
tional mode, and the previous version of the MSR[TS] field,
indicating that the thread was transactional, is saved in the
SRR1 register. After installing the mapping in the hashed
page table, the OS will resume the interrupted thread using
its conventional return-from-interrupt sequence. Since the
SRR1 register indicates it was in the Transactional mode at
the time of the interrupt, the thread will naturally be re-
turned to the Transactional mode on the execution of rfid,
allowing the transaction to continue without failure.

Because the handling of failures that occur in the Sus-
pended mode is deferred until resuming the Transactional
mode, the OS or hypervisor handling the interrupt is pro-
tected from being routed to the failure handler; execution
will continue without interruption due to failure until the
transaction is resumed.

3.2.2 Time-sharing the Transactional Facility
While some interrupts can be serviced without failing an

interrupted transaction, in many circumstances (e.g. con-
text switches) the transactional facility will need to be freed
and re-initialized for re-use. For this purpose, we define an
instruction called treclaim that is similar to tabort in that
it reverts registers and memory to their pre-transactional
state. However, it does not transfer control flow to the fail-
ure handler. For example, as shown in Figure 3, an operat-
ing system or hypervisor can use treclaim during process-
ing of a timer interrupt after first saving the state of the
interrupted transaction. Since the treclaim instruction will
revert the checkpointed registers (including GPRs) to their
pre-transactional state, the necessary code (not shown) re-
sembles a first-level interrupt handler in terms of its register
use. Since its GPRs are overwritten by the treclaim it must
leverage privileged registers that are not reverted. The OS
then has access to the checkpointed register state, which can
also be saved.

In the sequence shown in Figure 3, the timer interrupt
occurs in the middle of a suspended transaction. Due to the
deferred-failure semantics of suspended transactions, both

230

tbegin.
...
tsuspend. //Thread starts Suspend mode block
...

Decrementer interrupt
OS interrupt handler runs
OS chooses to switch threads
OS saves precise register state from moment of interrupt
treclaim. //failure recording occurs
OS saves register state checkpointed at tbegin
OS schedules a different thread
...
OS chooses to reschedule original thread
OS restores thread’s checkpointed register state
trechkpt. //checkpoints current regs
OS restores thread’s precise register state
rfid //Return from interrupt

...
tresume. //Thread completes suspend-mode code
Hardware performs failure handling
Failure handler executes

Figure 3: Context-switch during transaction, OS re-
turns to precise interrupt location for completion of
suspend-mode code block.

precise interrupt state, as well as checkpointed state, are
saved. Once the OS chooses to reschedule the interrupted
thread, it restores the checkpointed register state, then re-
saves this state in the hardware register checkpoint using a
new instruction called trechkpt. Once the register check-
point is re-initialized, the OS will restore the precise inter-
rupt state before returning to the interrupted suspend block
via rfid. Execution continues in the suspend block until
the transaction is resumed, which triggers failure handling.

3.3 Transactions and Translation Shootdown
Most architectures (the Power ISA included) guarantee

that once a translation entry for a page has been removed
from the page table and invalidated from translation buffers,
the page is no longer accessible. However, since TM sys-
tems delay the exposure of transactional stores until commit,
which is decoupled from the address translation happening
as memory accesses are executed (in a conventional microar-
chitecture), there is a window of vulnerability to translation
invalidations where (unless detected) transactions may erro-
neously commit despite conflicts. As an example, consider
the code shown in Figure 4, in which a transaction exe-
cuted by Thread 1 erroneously commits despite a conflict by
Thread 3. While this example may seem implausible given
most page fault handling latencies (e.g. disks), a variety
of lower-latency memory-mapped devices (e.g. solid-state
disks) significantly increase the likelihood. Even in the ab-
sence of such low-latency paging mechanisms, however, cor-
rectness is a requirement no matter how unlikely an error
may appear to be.

Some architectures implement TLB shootdown via inter-
processor interrupts [14, 29, 1], whereby the operating sys-
tem will interrupt each processor in the system, causing that
processor to locally execute a TLB invalidation instruction.
In such systems, forcing transactions to fail on the occur-
rence of such interrupts, or on the occurrence of a locally
executed translation shootdown instruction, is sufficient to

Thread 1

tbegin

ld r1, [A]

tend

Thread 2

stw r1, [B] //page fault

OS pages out page A

tlbie A

Thread 3

ld r1, [A] //page fault

OS reloads page A at

new physical address

stw r2, [A]

Time

1

2

3

4

5

Figure 4: Interaction between transaction and TLB
shootdown: (1) Thread 1 starts a transaction and
loads from page A. (2) Thread 2 incurs a page fault
to a different page, causing page A to be paged out.
(3) Thread 3 incurs a page fault to page A, and the
OS installs page A at a new physical address. (4)
Thread 3 performs a store to page A, which should
conflict with Thread 1’s transaction. (5) Thread 1’s
transaction erroneously commits.

prevent the associated correctness issue.
On architectures that support TLB shootdown via invali-

dation instructions that result in a system-wide TLB shoot-
down [13, 12], including the Power ISA, such reliance on
interrupts or locally executed instructions is not possible.
In such architectures, a translation invalidation instruction
(e.g. tlbie) causes a broadcast to all translation buffers,
where matching entries are invalidated.

In the Power ISA, which employs a two-level virtual mem-
ory system, translation entries in first-level TLBs (called
ERATs in IBM terminology) are dependent on two different
resources: page table entries, which are invalidated using
tlbie instructions that cause system-wide page-table shoot-
down, and segment table entries, which are invalidated us-
ing segment table invalidation instructions (e.g. slbie, slbia)
that affect only local segment tables. The architectural se-
mantics we define for the Power ISA guarantees that page
table invalidations due to tlbie instructions executed by
any thread will cause transaction failure, if the invalidation
of the associated page’s translation would compromise the
semantics of the transaction. For segment table invalida-
tions, we require that a programmer performing segment
table invalidation also ensure transactional correctness by
explicitly aborting any transaction currently executing on
the thread. Such segment table invalidation cases are highly
unlikely given the low frequency of segment table invalida-
tion, but they may occur in some corner cases when a user-
level transaction is interrupted.

While the details of conflict detection mechanisms
between transactions and translation shootdowns are
implementation-specific and therefore beyond the scope of
this paper, it is important to note that tlbie operations
have a system-wide effect and can occur at a high rate
in many workloads. As such, as the number of hardware
threads per system increases the frequency of system-wide
tlbie operations will similarly increase, and simply abort-
ing a transaction on the receipt of any translation shootdown
operation will lead to frequent unnecessary transaction fail-
ures. Despite significant research in the area of transactional

231

memory, we are not aware of any prior work that describes
this problem. Solutions include tracking the transaction-
ally accessed pages (either by marking translation buffer en-
tries or via a bloom-filter-like approach) and performing con-
flict detection with translation invalidations; we consider the
evaluation of such solutions an open area of research. Oth-
ers have described the need to detect interactions between
transactions and translation shootdown in the context of
virtualized TM systems, where the affected transaction has
been context-switched out [25]. We show that this problem
can also exist for active transactions given concurrent paging
by other threads.

4. INTERACTION OF TM WITH THE
POWER ISA MEMORY MODEL

Implementation of transactional memory in a weakly-
ordered, non-multi-copy-atomic[6] architecture such as the
Power ISA presents certain unique challenges. Such an
architecture permits the non-atomic propagation of writes
and significant reordering of memory accesses. In contrast,
transactions, by their very nature, require that the accesses
within a transaction be presented to the rest of the system
as an indivisible atomic unit. Also, specific measures must
be taken to ensure that transactional and non-transactional
accesses interact in a sensible manner.

In the following sections we begin with an overview of the
Power ISA memory model and then discuss how transactions
are serialized in an atomic fashion over the weak memory
model. We then describe a unique barrier effect needed at
transaction committal to ensure the proper inter-operation
of transactional and non-transactional accesses. Finally, we
conclude with a discussion of how the Power ISA atomic up-
date instructions larx and stcx interact with transactions,
as well as the ordering properties of tbegin, tend and mem-
ory barriers within transactions.

4.1 Power ISA Memory Model Background
While a complete description of the Power ISA memory

model is beyond the scope of this paper, the following brief
summary will provide some context for the subsequent dis-
cussion of the interaction of TM with weak ordering. More
complete descriptions are available elsewhere [12, 27, 26].

Unlike stronger memory models such as Sequential Con-
sistency and TSO, the Power ISA memory model does not
guarantee multi-copy atomicity of writes or ordering among
accesses to differing addresses. When a program requires
ordering or atomicity, the programmer must use dependen-
cies, synchronization (isync), or memory barriers like sync

and lwsync. The sync instruction provides the most strin-
gent ordering guarantee, enforcing order and atomicity for
all four possible ordered pairs of access types: load→ load,
load→ store, store→ load, store→ store. The lightweight
sync (lwsync) instruction provides the same ordering guar-
antees as hwsync except the store → load ordering (i.e.
loads following a lwsync may be performed with respect to
other processors before stores that precede the lwsync). The
sync and lwsync instructions provide a cumulative memory
barrier that additionally and transitively orders all applica-
ble memory accesses that have been performed with respect
to the processor executing the memory barrier before all
memory accesses caused by the instructions that follow the
memory barrier. The cumulative memory barrier also ad-

ditionally and transitively orders, after the memory barrier,
all applicable memory accesses, by other processors, that are
performed after that other processor has read a value that
is already ordered after the memory barrier.

4.2 Serialization of Transactions
The TM architectue extensions to the Power ISA de-

fine a property of serializability of transactions which states
that successful transactions are serialized in some order
and that no processor (whether using transactional or non-
transaction loads and stores) can observe the accesses caused
by these transactions as occurring in an order conflicting
with the serialization order. To achieve this serialization,
we follow principles similar to those for the existing Power
ISA atomic update instructions: Load and Reserve (larx)
and Store Conditional (stcx). larx/stcx instruction pairs
provide a means to perform an atomic update of a memory
location even in the absence of multi-copy atomicity.

Unlike in earlier non-multi-copy memory models, the non-
atomic propagation of writes in the Power ISA leads to cer-
tain unique requirements for processing memory updates to
allow larx/stcx pairs to produce an atomic update. These
requirements are insufficient for transactions and must be
extended to allow transactions to serialize properly as dis-
cussed below. A larx instruction may read a stale value
for a location (a value that is not the most recent value se-
rialized in the coherence order for the location), but if it
does, the larx/stcx pair will fail and will not update mem-
ory. If, however, the larx reads a non-stale value and the
subsequent stcx to the same location can place its written
value immediately after the value read by the larx in the co-
herence order for the location, the larx/stcx pair succeeds
and updates memory. [12, 27, 26]. A stcx instruction can
succeed as soon as its write is serialized into the coherence
order, but before the effects of the write have propagated to
the other processors. In other words, other processors may
still read a stale value for a location that has been written by
a stcx. The effect of an atomic update is maintained, how-
ever, because all threads atomically updating the location
must use larx/stcx instruction pairs and if a competing
larx reads a stale value, the competing thread’s larx/stcx

pair will fail.
Transactions provide their serialized atomic updates in a

similar fashion. To provide this effect, transactional loads,
like larx instructions, must read a non-stale value or the
transaction will ultimately fail. In addition to reading a
non-stale value, the value read by a transactional load must
still be the most recent value in the coherence order for the
location when the transaction reaches the final tend instruc-
tion and the transaction must complete before any new value
is serialized into the coherence order for the location, oth-
erwise the transaction will fail. In contrast, a transactional
store must gain control of the coherence mechanism for the
given location to ensure that the transactional write will en-
ter the coherence order for the location as the most recent
value, and that no store by another thread will subsequently
be serialized into the coherence order for that location be-
fore the transaction commits. This is typically achieved by
gaining write ownership of the location in the coherence pro-
tocol and either holding that ownership until the transaction
commits successfully or failing to hold that ownership due
to a conflict with another transactional or non-transactional
access and failing the transaction.

232

Thread 1

tbegin.

std X=1

tend.

Thread 2

ld X

<addr>

ld Y

Thread 4

tbegin.

std Y=1

tend.

Thread 3

ld Y

<addr>

ld X

Figure 5: Independent Reads of Independent Writes
(IRIW). All memory locations and registers initially
contain a value of 0.

Additionally, a major difference between transactional se-
mantics and larx/stcx semantics is that, unlike larx/stcx

pairs for which the stcx can succeed once the write has been
serialized into the coherence order and before the write has
propagated to all processors to eliminate stale copies, the
transaction must propagate (or at least appear to propa-
gate) to all processors and make any stale cached copies of
the locations un-readable before a transaction can success-
fully commit. This is necessary to prevent non-transactional
loads on other threads observing an inconsistent image of the
aggregate store.

To illustrate why the aggregate store must logically prop-
agate to all processors before the transaction commits, con-
sider the transactional variation of the well known IRIW
testcase [4] illustrated in Figure 5. In this testcase, threads
1 and 4 are transactions consisting of a single store of ’1’ to
X and Y respectively (these code examples are illustrated in
pseudo-code form and omit the failure handler branches for
clarity). By serialization, all threads, whether using transac-
tional or non-transactional accesses, must observe the trans-
actions as occurring in the same order. Both threads 2 and
3 read the locations written by threads 1 and 4, but in a
reversed order (the order of the loads on thread 2 and 3 are
maintained by an address dependency from the first load’s
returned value to the second load’s address illustrated as
<addr> in the figure). A serialization error would occur if
both threads read a value of ’1’ for their first read and a
value of ’0’ for their second read.

If the transactions were able to commit when their writes
had been serialized into the coherence order but before those
writes had propagated to all the threads, the write propa-
gations could happen in different orders at threads 2 and 3
and lead to a serialization error. Transactional writes prop-
agating to all threads and rendering all stale copies of the
locations unreadable before the transaction can commit pre-
vents this serialization error. It should be noted that aggres-
sive implementation techniques can be employed to achieve
the net effect of a full propagation without actually requir-
ing the full propagation to occur before the transaction can
commit.

It is interesting to note that if all accesses to locations
were constrained to be transactional accesses, a transaction
could commit as soon as the writes in the aggregate store
were serialized into the coherence order. The transactional
loads on other threads would, much like larx/stcx pairs,
cause the transaction to fail if a stale value was read. How-
ever, locations written by transactions can be read by non-
transactional loads and maintaining serialization requires
that the aggregate store propagate to all threads, to ren-
der stale values unreadable, before the transaction commits.

Thread 1

std X=1

Thread 2

tbegin.

ld r1, X

std r1, Y

tend.

Thread 3

ld Y

<addr>

ld X

Figure 6: Example of cumulative memory access or-
dering

In essence, the requirement to propagate the transactional
stores fully before committing the transaction is necessary
only to support non-transactional accesses interacting with
transactional accesses in a sensible manner.

To summarize, for a transaction to commit successfully,
all transactional loads must read non-stale values and these
values must remain the current values until the transaction
commits. All transactional stores must gain control of the
coherence mechanism and ensure that no other stores can
serialize into the coherence order for the location until the
transaction successfully commits, and furthermore the ef-
fects of all transactional stores must propagate (or appear
to propagate) to all threads to ensure that no thread can
read, either transactionally or non-transactionally, any stale
value for those locations before the transaction can success-
fully commit.

4.3 Non-transactional Access Cumulativity
Another interaction between non-transactional accesses

and transactional accesses relates to cumulativity as il-
lustrated in Figure 6. In this testcase, thread 1 non-
transactionally stores the value ’1’ to location X. This store
propagates and becomes visible to the threads 2 and 3 at
different times (due to the absence of multi-copy atomic-
ity). Thread 2 reads the new value for X and stores that
value into Y within a transaction. Finally, thread 3 non-
transactionally reads the new value of Y and then (due to
a address dependency illustrated as <addr> in the figure)
reads X. Should the read of X by thread 3 return the new
value of X stored by thread 1? Presumably yes, because the
programmer would not expect the third thread to see the
new value of Y from the second thread, which was set to the
valued stored to X by the first thread, and then not see the
new value of X by reading X directly. Causality would be
violated: an effect of the store to X, namely the new value
in Y, was visible to thread 3 before the cause, the store to
X itself, was visible.

However, the process of committing the transaction on
the second thread, as described above, does not ensure that
thread 3’s read of X will return the value stored by thread 1.
Committing the transaction on the second thread does not
affect the propagation of non-transactional stores by other
threads (thread 1 in this case) that the transaction may have
read. In this example the non-transactional store by thread
1 needs to be ordered ahead of the transaction’s aggregate
store, at each thread, to ensure that any stores the trans-
action read propagate to third party threads (in this case
thread 3) before the aggregate store from the transaction.

To achieve this ordering, the architecture requires a tend

instruction that ends a successful transaction to create
an implicit memory barrier. This memory barrier, called

233

the integrated cumulative memory barrier, orders all non-
transactional accesses, by other threads, that are performed
with respect to the transaction’s thread before the barrier
is created before the aggregate store, and before all non-
transactional accesses, by other threads, that are performed
after the other thread has read a value stored by the aggre-
gate store or by any non-transactional store that is already
ordered after the barrier.

In the example above, the integrated cumulative memory
barrier causes thread 1’s store to X to be ordered before the
transaction’s aggregate store to Y at thread 3. This ensures
that thread 3 feels the effects of any memory accesses that
affected the transaction (thread 1’s store to X in this exam-
ple). The effects of this barrier are similar to the cumulative
effect of the normal memory barriers in the Power ISA, but
are limited to non-transactional accesses by other threads
and the aggregate store of the transaction.

The integrated cumulative memory barrier is defined to
order only non-transactional accesses before the barrier be-
cause, due to serialization, transactional accesses are fully
propagated before a transaction can commit. Thus trans-
actional accesses do not need to be “pushed along” by the
integrated cumulative memory barrier. Once again, this is
a circumstance in which specific architectural mechanisms
were required in order to ensure a sensible interaction be-
tween transactional and non-transactional accesses.

4.4 Interactions with Load And Reserve and
Store Conditional

In most cases, larx/stcx pairs that straddle transac-
tional mode changing instructions lead to nonsensical pro-
gramming constructs. To simplify implementations and
verification, the TM architecture extensions to the Power
ISA require that the reservation is reset when crossing
over these mode changing instructions with one excep-
tion. The exception is that, within a transaction, if a
larx/stcx pair straddles a tsuspend/tresume region (i.e.
tbegin/larx/tsuspend/tresume/stcx/tend), the reserva-
tion is not reset by tsuspend and tresume. This is to permit
emulated instructions (which are handled by an interrupt
which causes an implicit suspend region to occur while the
instruction is emulated) to be used within a larx/stcx pair
within a transaction. In all other cases, the reservation is
reset. This includes a larx/stcx pair that completely strad-
dles an entire transaction. It was not deemed necessary to
support a transaction executing inside a larx/stcx pair and
not supporting it reduced verification complexity. In gen-
eral, for a larx/stcx pair to succeed, the larx/stcx pair
must be either (a) entirely outside of a transaction and not
straddling a transaction or (b) within a single transaction,
but possibly spanning over suspend region(s) within that
transaction.

With the exception of the reservation flag resets men-
tioned above, the TM extensions to the Power ISA explicitly
allows for independent, decoupled, implementations of the
larx/stcx and transactional mechanisms. For example, we
explicitly allow for, and implementations will exploit, the
possibility that a larx/stcx pair inside a transaction fails,
but the enclosing transaction still succeeds. This is to allow
for certain implementation conditions that need to reset the
reservation flag speculatively, and thus cause the stcx to
fail, but don’t need to kill the transaction. The architecture
does not, however, preclude implementations in which the

larx/stcx and transactional mechanisms are implemented
as a single unified mechanism. In either style of implemen-
tation, a larx/stcx pair inside a transaction may succeed as
far as is necessary to honor the semantics of larx/stcx (e.g.
the stcx may succeed when the write is serialized into the
coherence order, but before the write has fully propagated).
However, the stcx is still transactional, and cannot become
visible to other threads until the conditions necessary for the
enclosing transaction to commit are met. In other words, a
stcx may succeed within a transaction, and the enclosing
transaction may fail, in which case the stcx’s store will not
be seen by other threads. Also, while transacations can be
used to perfrom simple atomic updates on single locations
in memory, larx/stcx pairs are more efficient for these up-
dates and should be used instead of transactions.

4.5 Memory Barriers and Transactions
Since one motivation for TM is to simplify multi-threaded

programming in the Power ISA, providing a TM semantics in
which the aggregate store is not ordered with respect to the
surrounding code would run counter to our goal, even though
such semantics would be consistent with the philosophy of
weak ordering. For this reason, and because we could imple-
ment them efficiently, we defined additional implicit memory
barriers (beyond the integrated cumulative memory barrier
described above) which are created by the outermost tbe-

gin and tend for a successful transaction. These implicit
barriers act like sync barriers placed before and after the
transaction with the exception that, unlike sync, they do not
order non-cacheable accesses. In a sufficiently aggressive im-
plementation, implementation techniques largely eliminate
the cost of these implicit memory barriers. Because the
memory accesses within the transaction (in particular the
transactional stores) are conditional on the transaction suc-
ceeding, the processing required to honor the implicit mem-
ory barrier effects for tbegin can be deferred until tend (or
until entering the first suspend region at which point a bar-
rier is created to honor the ordering effects of the tbegin

barrier). The processing required to successfully commit a
transaction is essentially the same as the processing neces-
sary to enforce the implicit barrier for both tbegin and tend

instructions and therefore the cost of implementing these
barriers is essentially overlapped with the tend processing
costs. The implicit barriers are therefore far more efficient
than explicit sync instructions placed before and after the
transaction. While, as a consequence of the implicit bar-
riers, an empty transaction (one with no loads or stores)
that succeeds will have the same barrier effects as a sync

for cacheable operations, it is more efficient to use a sync

instruction explicitly. Because the implicit memory barriers
had a low performance cost, benefited important use cases
such as transactional lock elision in Java, and simplified the
programming model, we included them in the tbegin/tend
behavior. If future circumstances warrant, a ”weak” tbe-

gin and tend without these barriers can be added to the
architecture.

Ignoring suspend/resume regions, it is generally not use-
ful to employ explicit memory barriers within a transaction
because the loads and the stores within a transaction log-
ically happen as an indivisible atomic unit, so there is no
relative ordering that a barrier inside a transaction can ef-
fect for these accesses. However, an explicit memory barrier
within a transaction between two suspend regions will order

234

the sets of accesses within those two suspend regions. Also,
explicit memory barriers within a suspend region will order
the accesses within that suspend region and also accesses
within other suspend regions straddling that suspend region.
Generally speaking, barrier instructions occurring anywhere
provide their usual ordering effects for non-transactional or
suspend mode accesses straddling the barrier instruction.

These rules were intended to allow processors to imple-
ment the explicit barrier instructions in an ”as-they-come”
fashion. The processors simply implement the barriers using
the existing mechanisms. This eases implementation and
verification complexity. These rules also ease the transac-
tionalization of existing code. A barrier within code that
is being transactionalized retains its usual ordering proper-
ties for accesses not included in the transaction. While the
implicit tbegin/tend barriers would enforce most orderings
done by a barrier within a transaction, the implicit barri-
ers do not order non-cacheable operations and therefore the
explicit barrier must provide this ordering even after it is
included in a transaction. Explicit memory barriers within
the transaction should occur only when existing code is be-
ing transactionalized. New code should avoid explicit mem-
ory barriers within the non-suspend regions of transactions
as they serve no useful purpose that cannot be met by using
memory barriers outside the transaction.

5. OTHER RELATED WORK
Recent work in defining commercial ISA support for TM,

including our own, builds upon significant prior work that
appears in the literature, more than there is space to dis-
cuss here. We will focus on prior work that is particularly
relevant to the novel features described.

Prior work has proposed transactional pause/unpause op-
erations [30], pause/resume[25], xpush/xpop [11], and es-
cape actions [20], and open nesting mechanisms [18] that
provide support for transaction suspension, including in-
teraction with operating system services during transac-
tional execution. A significant complication of any form
of transactional suspension is the handling of the transac-
tional register checkpoint, which must be saved/restored in
the presence of context switching. While prior work in the
area has assumed that such register checkpoints would be
saved/restored by software, the interfaces for accomplishing
the access of checkpointed registers were not explicitly dis-
cussed. The addition of treclaim and trechkpt primitives
enable such suspend mode regions to be multiprogrammed.
While transaction suspension can be used to support inter-
rupts, I/O, and system calls in a transaction, others have
proposed such support via various forms of transaction in-
evitability [8, 3]. Chung et al. explored the handling of
interrupts in transactions, selecting among policies for de-
laying interrupt processing, aborting, or context-switching
a transaction depending on interrupt type[5]. Our suspend-
on-interrupt approach allows for software-defined behavior
tailored to each type of exception, interrupt, or system call,
including interrupts due to emulation.

At this point in time, HTM has officially been adopted in
three commercial architectures: x86-64, Power ISA, and the
IBM z/ArchitectureR©. Although there are numerous mi-
nor differences among the three, major differences include
the inclusion of Hardware Lock Elision (HLE) in x86-64,
constrained transactions in the z/Architecture, and Sus-
pend/Resume (including suspend on interrupt) and ROTs

in the Power ISA.
In lieu of supporting a general suspended transactional

mode of execution, the z/Architecture developers include
a new opcode for explicit non-transactional stores, provid-
ing part of suspend mode’s value while avoiding some of its
design complexity (for example its support for deferral of
transaction failure handling). We also considered such an
approach; however in addition to the motivations listed in
Section 3 for suspend/resume, there was also a fear that
over time piecemeal support for non-transactional opera-
tions within transactions would proliferate on a case-by-case
basis, particularly considering TM’s early but evolving soft-
ware use cases. While we saw an immediate value in sus-
pend/resume for the aforementioned reasons, we also de-
cided the investment in suspend/resume may have unfore-
seen benefits in the future as TM use cases evolve, since
it can be used to enable software implementations of many
features that we do not support in hardware.

Support for constrained transactions in the Power ISA
was also given serious consideration, however the burden
of implementing and verifying such guarantees, particularly
the guarantee of a minimum transactional data footprint per
thread in the presence of multithreaded core designs and
shared caches, precluded adoption of the feature.

The inclusion of HLE is a notable difference between x86-
64 and both the Power ISA and z/Architecture. This fea-
ture decreases the barrier to entry for adopting lock eli-
sion in some applications, particularly those that might in-
clude custom-implemented lock-routines (where lock-elison
enabled versions of the synchronization library may not be
commonly available) by maintaining the illusion of a“locked”
lock to code in the critical section. We note that many preva-
lent programming languages and synchronization libraries
(e.g. Java, C/C++ with libpthreads and openmp) do not
expose the lockword location or its value semantics to the
end-user, and consequently maintaining the appearance of a
“locked” lock to that end-user code is unnecessary in these
environments; therefore, unmodified applications can benefit
from lock elision through support in libraries or runtimes.

6. CONCLUSIONS
The work to include TM in the Power ISA continues

through current implementation efforts to be released in
future pSeries systems. This multi-year architectural def-
inition process weighed the needs and opinions of many in-
dividuals across a wide range of stakeholders: application
developers, JVM and C/C++ compiler writers, operating
system (AIXR©, Linux, IBM i) and hypervisor developers, as
well as hardware designers responsible for its implementa-
tion and verification. While many aspects of the resulting
architecture will look familiar to those following the research
literature, we were surprised by the number of previously un-
described interactions with existing architectural features.
Our goal has been to develop an enterprise-class TM archi-
tecture capable of handling these, and other, surprises in the
context of an extremely permissive memory model, to serve
as the basis for new generations of PowerR© systems.

Acknowledgments
The definition of this architecture was made possible by con-
tributions from a wide group of IBMers. We would especially
like to acknowledge Bob Blainey, Mary Brown, Susan Eisen,

235

Guy Guthrie, Tom Heller, Ben Herrenschmidt, John Lud-
den, Paul MacKerras, Paul McKenney, Steve Monroe, Jose
Moreira, Naresh Nayar, DQ Nguyen, Randy Pratt, Pratap
Pattnaik, Raul Silvera, Bill Starke, Randy Swanberg, Jim
Van Norstrand, and Julian Wang. We would also like to
thank Christos Kozyrakis, and our reviewers for their feed-
back on this work.

7. REFERENCES
[1] ARM Arch. Reference Manual. ARM Ltd., 2005.

[2] L. Baugh and C. Zilles. An analysis of I/O and
syscalls in critical sections and their implications for
transactional memory. In Proc. of the 2008 Intl. Symp.
on Performance Analysis of Systems and Software.

[3] C. Blundell, E. C. Lewis, and M. M. K. Martin.
Unrestricted transactional memory: Supporting I/O
and system calls within transactions. Technical Report
CIS-06-09, Department of Computer and Information
Science, University of Pennsylvania, Apr 2006.

[4] H.-J. Boehm and S. V. Adve. Foundations of the C++
concurrency memory model. In Proc. of the 2008
Conf. on Programming language design and
implementation, 2008.

[5] J. Chung, C. C. Minh, A. McDonald, T. Skare,
H. Chafi, B. D. Carlstrom, C. Kozyrakis, and
K. Olukotun. Tradeoffs in transactional memory
virtualization. In Proc. of the 12th Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems, 2006.

[6] W. W. Collier. Reasoning about parallel architectures.
Prentice-Hall, Inc., 1992.

[7] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early
experience with a commercial hardware transactional
memory implementation. In Proc. of the 14th Intl.
Conference on Architectural Support for Programming
Languages and Operating Systems, 2009.

[8] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom,
J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional
memory coherence and consistency. In Proc. of the
31st Intl. Symp. on Computer Architecture. Jun 2004.

[9] T. Harris. Exceptions and side-effects in atomic
blocks. Sci. Comput. Program., 58(3), Dec. 2005.

[10] M. Herlihy and J. E. B. Moss. Transactional memory:
architectural support for lock-free data structures. In
Proc. of the 20th Intl. Symp. on Computer
Architecture, 1993.

[11] O. S. Hofmann, D. E. Porter, C. J. Rossbach, H. E.
Ramadan, and E. Witchel. Solving difficult HTM
problems without difficult hardware. In
TRANSACT ’07: 2nd Workshop on Transactional
Computing, August 2007.

[12] IBM Corporation. Power Instruction Set Architecture
v.2.06B, July 2010.

[13] Intel Corporation. Intel IA-64 Architecture Software
Developers Manua l, Volume 2: IA-64 System
Architecture, Revision 1.1, July 2000.

[14] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual, August 2012.

[15] Intel Corporation. Intel Architecture Instruction Set
Extensions Programming Reference: Chapter 8: Intel
Transactional Synchronization Extensions, Feb. 2012.

[16] C. Jacobi, T. Slegel, and D. Greiner. Transactional
memory architecture and implementation for IBM
System z. In Proc. of the 45th Intl. Symposium on
Microarchitecture, December 2012.

[17] M. M. K. Martin, C. Blundell, and E. Lewis.
Subtleties of transactional memory atomicity
semantics. Computer Architecture Letters, 5(2), 2006.

[18] A. McDonald, J. Chung, B. D. Carlstrom, C. C. Minh,
H. Chafi, C. Kozyrakis, and K. Olukotun.
Architectural semantics for practical transactional
memory. In Proc. of the 33rd Intl. Symposium on
Computer Architecture, 2006.

[19] M. Moir, K. Moore, and D. Nussbaum. The adaptive
transactional memory test platform: A tool for
experimenting with transactional code for Rock. In
TRANSACT ’08: 3rd Workshop on Transactional
Computing, February 2008.

[20] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D.
Hill, B. Liblit, M. M. Swift, and D. A. Wood.
Supporting nested transactional memory in LogTM.
In Proc. of the 12th Intl. Conf. on Architectural
support for programming languages and operating
systems, 2006.

[21] T. Nakaike and M. M. Michael. Lock elision for
read-only critical sections in java. In Proc. of the 2010
Conf. on Programming Language Design and
Implementation.

[22] N. Neelakantam, R. Rajwar, S. Srinivas,
U. Srinivasan, and C. Zilles. Hardware atomicity for
reliable software speculation. In Proc. of the 34th Intl.
Symposium on Computer Architecture, 2007.

[23] S. J. Patel and S. S. Lumetta. rePLay: A hardware
framework for dynamic optimization. IEEE
Transactions on Computer Systems, 50(6), June 2001.

[24] R. Rajwar and J. R. Goodman. Speculative lock
elision: enabling highly concurrent multi-threaded
execution. In Proc. of the 34th Intl. Symposium on
Microarchitecture, 2001.

[25] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing
transactional memory. In Proc. of the 32nd Intl.
Symp. on Computer Architecture, 2005.

[26] S. Sarkar, K. Memarian, S. Owens, M. Batty,
P. Sewell, L. Maranget, J. Alglave, and D. Williams.
Synchronising C/C++ and POWER. In Proc. of the
33rd Conf. on Programming Language Design and
Implementation, 2012.

[27] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and
D. Williams. Understanding POWER multiprocessors.
In Proc. of the 32nd Conf. on Programming Language
Design and Implementation, 2011.

[28] L. Su and M. H. Lipasti. Speculative optimization
using hardware-monitored guarded regions for java
virtual machines. In Proc. of the 3rd Intl. Conf. on
Virtual execution environments, 2007.

[29] D. L. Weaver and T. Germond, editors. SPARC
Architecture Manual V9). PTR Prentice Hall, 1994.

[30] C. Zilles and L. Baugh. Extending hardware
transactional memory to support nonbusy waiting and
nontransactional actions. In Proc. of the First
Workshop on Languages, Compilers, and Hardware
Support for Transactional Computing. June 2006.

236

