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Abstract

We address issues related to privacy protection in
location-based services (LBS). Most existing research in this
field either requires a trusted third-party (anonymizer) or
uses oblivious protocols that are computationally and com-
municationally expensive. Our design of privacy-preserving
techniques is principled on not requiring a trusted third-
party while being highly efficient in terms of time and
space complexities. The problem has two interesting and
challenging characteristics: First, the degree of privacy
protection and LBS accuracy depends on the context, such
as population and road density, around a user’s location.
Second, an adversary may violate a user’s location privacy
in two ways: (i) based on the user’s location information
contained in the LBS query payload, and (ii) by inferring
a user’s geographical location based on its device’s IP
address. To address these challenges, we introduce CAP,
a Context-Aware Privacy-preserving LBS system with in-
tegrated protection for data privacy and communication
anonymity. We have implemented CAP and integrated it with
Google Maps, a popular LBS system. Theoretical analysis
and experimental results validate CAP’s effectiveness on pri-
vacy protection, LBS accuracy, and communication Quality-
of-Service.

1. Introduction
Location-based service (LBS) provides a user with con-

tents customized by the user’s current location, such as the
nearest restaurants/hotels/clinics, which are retrieved from
a spatial database stored remotely in the LBS server. LBS
not only serves individual mobile users, but also plays an
important role in public safety, transportation, emergency
response, and disaster management. With an increasing
number of mobile devices featuring built-in Global Position-
ing System (GPS) technology, LBS has experienced rapid
growth in the past few years. According to the ABI research
report [19], the number of GPS-enabled LBS subscribers is
projected to reach 315 million by 2013.

A request for LBS can be considered a query over the
LBS server’s spatial database. For example, a query for the
ten nearest four-star hotels can be expressed as the following
SQL-like top-k query:

SELECT TOP 10 FROM Hotel

WHERE STARRATING = 4
ORDER BY DISTANCE(Hotel.Location, userLoc) ASC;

where userLoc is the user’s location. Note that the user’s
location is specified as a constant in the ranking function
and should be sent along with the query to the LBS server.

Despite the benefits provided by LBS, a user may not be
willing to provide its current location to the LBS server
due to concerns on location privacy. Such concerns can
be attributed to the seriousness of location disclosure and
misuse: For example, an adversary may learn a user’s
political and religious affiliations based on the locations the
user regularly visits. In recent years, there have been several
reports on the abuse of LBS by individuals and companies
to intrude others’ privacy [16].

The objective of a privacy-preserving LBS is to protect
the privacy of a user’s location while maintaining a high
level of LBS accuracy (e.g., the rank of a 4-star hotel in
the above example). It has received growing attention from
the research community. A k-anonymity based framework
was proposed to protect location privacy by using a trusted
third-party called the anonymizer [11]. With this framework,
a user sends its location to the centralized anonymizer, which
subsequently generates a k-anonymized [22] cloaking region
that covers not only this user, but also k − 1 other users.
Then, the anonymizer transmits the cloaking region to the
LBS server as the constant in the LBS query, and forwards
the query answer to the user. This framework prevents the
LBS server from distinguishing a user among at least k− 1
others.

Unfortunately, in real systems, it may be difficult, if not
impossible, to find a trusted third-party anonymizer, espe-
cially one which has a large user base to shrink the cloaking
region for better LBS privacy. To the best of our knowledge,
the only existing work which removes the requirement of a
trusted third-party is a private information retrieval (PIR)-
based approach [7]. Nonetheless, this approach has two
critical drawbacks. First, it can only be applied to LBS
servers which support the PIR-based protocol. Second, as
a common problem for PIR-based techniques, it may incur
high computational and communication overhead unafford-
able to mobile devices and the LBS server1.

1. It was shown that PIR may incur even higher communication overhead
than an oblivious transfer of the entire server-side database [21]. Such a cost
may be prohibitive for the LBS server if it needs to process concurrently
a large number of LBS queries.
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In this paper, we initiate the investigation of a privacy-
preserving technique that is efficient in terms of both time
and space complexities, does not require a trusted third-
party, and is transparent to the LBS server so that it can
be readily deployed with existing LBS systems. Such a
technique may have to make a tradeoff between privacy
protection and LBS accuracy. Nonetheless, it should provide
effective guarantees on both measures.

A straightforward method for efficient privacy protection
is to randomly perturb a user’s location based on pre-
determined noise distributions on longitude and latitude.
This method is, in principle, similar to the randomization
approach for privacy-preserving data mining [24]. Nonethe-
less, it is unlikely to suffice for LBS because, with a pre-
determined noise distribution, the levels of privacy protec-
tion and LBS accuracy largely depend on the “context”, such
as road and population density, around a user’s location. For
example, intuition suggests that, to achieve the same level of
privacy and LBS accuracy, a user should (or could) deviate
more from its real location in a rural area than in downtown.

Thus, a critical challenge for privacy-preserving LBS
is to achieve context-aware privacy protection. The ex-
isting k-anonymity framework does so by leveraging the
anonymizer’s global knowledge of user distribution (so that
the cloaking region is automatically larger in a rural area
which has fewer users). Without a trusted third-party, we
must acquire the context information from other sources.
A simple solution is for each mobile device to store a
complete topology map and retrieve it before perturbation
to compute the adjacent area’s context. However, this may
lead to computational and storage overhead unaffordable
to mobile devices that are not designated GPS navigation
systems.

In this paper, we introduce CAP, a Context-Aware
Privacy-preserving LBS system. The main idea behind CAP
is a dimension-reducing projection of every 2-d geographical
location to a 1-d space, such that (i) every point in the 1-d
space has homogeneous context (e.g., equal road/population
density), and (ii) adjacent locations remain close after the
projection. We refer to such a projection as a Various-grid-
length Hilbert Curve (VHC)-mapping. With CAP, a user first
projects its current location to the 1-d space based on VHC-
mapping, and then randomly perturbs the 1-d value based
on a pre-determined noise distribution. The perturbed value
is mapped back to the 2-d space according to VHC-mapping
and then transmitted as the user’s location to the LBS server.

VHC-mapping is designed to provide guarantees on both
privacy protection and LBS accuracy. It is also very effi-
cient in terms of both time and space complexities: The
VHC-map itself is computed offline based on a real-world
topology map, but only costs minimal storage space (e.g.,
our experiments use a VHC-map which is only 1/2000
the size of a topology map) and retrieval cost. The usage
of perturbation technique ensures transparency to the LBS
server, and enables CAP to be readily integrated into existing

LBS systems.
In the design of CAP, we also initiate an investigation

of the network anonymity perspective of location privacy.
Existing work has shown that a user’s location may be
derived from its IP address based on public information
about base stations’ locations and IP addresses [6]. For
example, when 802.11b base stations are used, the user may
be positioned within a small radius of 50 meters. As such,
without a trusted third-party anonymizer, location privacy
may be breached through not only an LBS query, but also
the traffic that carries the query. To address this problem,
we use Tor [4], a popular anonymous routing network, to
hide a user’s IP address. Unfortunately, we found that Tor
suffers from serious Quality-of-Service (e.g., response time)
degradation which may be unbearable for mobile (e.g., driv-
ing) applications that require short response time. To solve
the problem, we present a set of new routing algorithms for
Tor which reduce latency and maximize throughput.

To the best of our knowledge, CAP is the first real
privacy-preserving LBS system that provides an efficient and
context-aware solution for both data privacy and communi-
cation anonymity without the presence of a trusted third-
party. We have implemented CAP in both SUSE Linux
11.0 and Mac OSX Operating Systems, and are porting
the system to Linux and OSX-based mobile devices. More
information about the system implementation can be found
at http://seas.gwu.edu/∼nzhang10/cap.

The remainder of the paper is organized as follows. In
Section II, we formally specify the problem and present
the architecture of CAP. Section III is devoted to the devel-
opment of VHC-mapping. In Section IV, we discuss other
design issues of CAP, including the anonymous routing.
Section V contains a detailed experimental evaluation of
CAP. Section VI discusses the related work. We conclude
in Section VII.

2. System Overview of CAP
In this section, we present an overview of CAP, our

context-aware privacy-preserving LBS system. The focus is
on the system infrastructure of CAP and its performance
measures.

2.1. Parties

There are two parties in the system: a user who uses
the LBS and a server which provides it. In practice, a
user may be a mobile device, such as a laptop, PDA, cell
phone, etc, which obtains its location from a positioning
device such as a GPS receiver. Examples of LBS server
include point-of-interest search engines such as Google
Maps (http://maps.google.com).

The interactions between the two parties can be stated
as follows: The user issues an LBS query to the server.
The LBS query is a top-k query with ranking function
specified as the distance to the user’s current location. After
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receiving the LBS query, the server executes it against a
spatial database and returns the answer to the user.

Due to privacy concerns, the user is unwilling to disclose
its location to the server. Thus, the user’s objective is to
obtain the relatively accurate LBS query answer without dis-
closing its real location. The server is supposed to correctly
answer the received LBS query. Besides, the objective of
a malicious server is to compromise the user’s location. In
this paper, we refer to a malicious server as an adversary.

2.2. System Architecture
Figure 1 illustrates the baseline architecture of CAP.

Recall that there are two possible ways for a user’s location
to be disclosed: through the location information included
in the LBS query, or through the user’s network (e.g., IP)
address. CAP has two components, location perturbing and
anonymous routing, principled on eliminating these two
disclosure channels, respectively.

The location perturbing component perturbs the user’s
location included in the LBS query. It also rearranges the
results returned by the LBS server based on the original
user location, in order to provide better data utility. The
anonymous routing component hides the user’s network
identity by routing the LBS query through relaying nodes in
an anonymous communication network, Tor, before sending
it to the LBS server.
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Figure 1. Baseline Architecture of CAP

2.3. Performance Measures
The performance of a privacy-preserving LBS system

should be measured in terms of the accuracy of LBS
query answer, the privacy protection of user’s location, and
the communication quality-of-service (e.g., query response
time). We define these three measures respectively, as fol-
lows.

2.3.1. Accuracy Measure. Since an LBS query is essen-
tially a top-k query over a spatial database, we consider
accuracy measures for top-k queries. A number of measures
have been proposed, including rank distance (i.e., the differ-
ence between the returned and the true rank of a returned
tuple), true positive rate (i.e., the probability that a tuple in
the result is indeed a true top-k tuple), score distance (e.g.,

the extra distance driven according to the returned tuples),
etc [1]. In the theoretical analysis part of this paper, we
adopt rank distance as the accuracy measure. Nonetheless,
in the experimental results, we shall evaluate other possible
measures such as the true positive rate.

Definition 2.1. The average rank distance of a privacy-
preserving scheme that perturbs userPos from x to R(x)
is

lr(x) = AV Gt∈q(x)(|rank(t, q(x))− rank(t, q(R(x))|).

where AV G(·) represents the average value, q(x) is the LBS
query answer when userPos = x, and rank(t, q(x)) is the
rank of tuple t in the returned answer q(x).

2.3.2. Privacy Measure. Our privacy measure is principled
on the same anonymity standard as k-anonymity. The differ-
ence, however, is that our system does not feature a trusted
third-party which has a global view of active users. Thus,
our measure is defined over the population among which
the user is hidden. This is similar to the usage of historic
footprints of active users for the k-anonymity definition in
[23].

Definition 2.2. A privacy-preserving scheme which perturbs
userPos from x to R(x) satisfies N -camouflage iff there
exists a region C of population at least N , such that for any
subregion C ′ ⊆ C, Pr{x ∈ C ′|R(x)} = |C ′|/|C|, where | · |
is the area of the region.

According to the definition, a privacy-preserving scheme
satisfies N -confidentiality iff no adversary can distinguish
between any two locations in a region of population N .

2.3.3. QoS Measure. Since an LBS user may be constantly
moving, the overhead of LBS query processing is important
for the utility of LBS. Such an overhead is a combination of
three parts: the location perturbing component, the random
routing protocol of anonymous routing network, and the
query processing at the LBS server. Since CAP is transparent
to the LBS server, we discuss the first two parts in the paper.

3. Location Perturbing Based on VHC-
Mapping

We focus on the location perturbing component of CAP
in this section. We begin with introducing our basic ideas,
and then substantiate the ideas by describing VHC-mapping,
our main technique for this component.

3.1. Key Idea
Recall that the location perturbing component perturbs a

user’s position included in an LBS query before sending
the query to the LBS server. The objective is to provide
“context-aware” perturbation without incurring the cost of
storing and retrieving a full-scale topology map in a mobile
device. Our key idea is to pre-compute a projection from
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the original space (of latitude and longitude) to a new space,
such that

• the projection is locality-preserving i.e., two nearby
points in the original space are also close in the
projected space, and vice-versa,

• all points in the new space have homogenous “context”
i.e., population density, and

• the projection must be stored with space orders of
magnitude smaller than the topology map, and can be
efficiently computed.

After projecting a user’s location to the new space, we
apply homogeneous perturbation to all mapped points in
the new space, project the perturbed points back to the
original 2-d space, and then output the result as the perturbed
location.

Figure 2(a) provides a simple illustration of the projection
on 1-d data, where the population density is defined based
on 6 people A to F . In the original space, the population
density near B, C, or D is higher than A, E, or F . The
mapping is designed such that every point in the new space
has equal density. Thus, the same noise applied to B, C,
or D will become smaller after being mapped back to the
original space. This is consistent with our intuition that, in
order to provide universal privacy and accuracy guarantees
for all locations, less perturbation should be applied a higher-
density area.

3.2. VHC-Mapping
We now introduce Various-size-grid Hilbert Curve

(VHC)-mapping, our main technique for the projection to
homogeneous-context space. We will first describe the con-
struction of VHC-mapping, and then discuss how it satisfies
the above-mentioned three conditions.

3.2.1. Construction of VHC-mapping. The construction
of VHC-mapping must refer to context information such as
road or population density. In the design of CAP, we choose
road density as input because (i) economic studies show
that road and population densities are strongly correlated,
following (approximately) a linear relationship [8], and (ii)
in practice, road density information is readily available2

and usually more accurate than population information.
Nonetheless, our design of VHC-mapping can be easily
adapted to population density.

Without loss of generality, we consider the original 2-
d latitude/longitude space as a square. VHC-mapping in-
volves a recursive partitioning of the square into various-size
cells according to context information. Each cell is either
partitioned into 4 equal-size square cells, or not (further)
partitioned (i.e., becomes a base cell), based on the following
rule:

2. To calculate the road density of an area, we use the information pro-
vided by the by the US Census Bureau Topological Integrated Geographic
Encoding and Referencing (TIGER) system which contains information
about roads for every county in the US.

Min-Density Rule: Partition a cell into 4 equal-size
subcells iff the total road length (in the original space)
covered by the cell is at least µ times the edge length of
the cell, where µ > 1 is a pre-determined granularity ratio.

An example of the partitioning result is shown in Fig-
ure 2(b). One can see that the base cells have three possible
sizes. According to the min-density rule, a larger base cell
represents an area with lower road density.

After the partitioning process, we construct the mapped 1-
d space as a variation of the Hilbert space-filling curve [17]
to connect all various-size cells in the original 2-d space.
Figure 2(b) depicts an example of such a Hilbert curve, while
Figure 2(c) demonstrates a real implementation on the map
of Baltimore, MD with granularity ratio µ = 20.

The VHC-mapping is then constructed as follows: A 2-d
point in the original space is mapped to its (geographically)
nearest point on the Hilbert curve. A 1-d point, after being
perturbed by additive noise, is mapped back to the original
space by randomly selecting a 2-d point which can be
mapped to the 1-d perturbed point.

(b) Illustration (c) Baltimore, MD

ProjectedOriginal

A

B
C
D

E

F

A'

B'

C'

D'

E'

F'

(a) 1-d Example

Figure 2. Examples of VHC-Mapping

3.2.2. Justification. We now explain how VHC-mapping
satisfies the three requirements we outlined in Section 3.1: (i)
locality-preserving, (ii) constant density, and (iii) efficiency
of storage and retrieval.

First, a well-known property of Hilbert curve is locality
preserving, e.g., two adjacent points in the projected space
are likely to be close in the original space. Thus, VHC-
mapping satisfies the locality-preserving requirement.

Next, for the constant-density requirement, there are two
key observations: First, due to the min-density rule, the total
road length covered by each base cell is at most µ times the
edge length of the cell. Second, due to our construction of
the VHC, the length of the Hilbert curve covered by a base
cell is approximately the same as the edge length of the cell.

As such, intuitively, every point on the Hilbert curve (i.e.,
in the projected space) can be considered as corresponding
to about µ points on the roads in the original space. Thus,
the road density is approximately constant for all points
in the projected space. This fulfills the constant-density
requirement.

We now consider the third requirement on the efficiency
of storing and conducting VHC-mapping. VHC-mapping
can be stored as a 4-tree based on the partitioning of the
original space, where each node is either a leaf node (if
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corresponding to a base cell) or has 4 children (if further
partitioned). Figure 3(b) depicts an example of such a 4-
tree for the VHC-mapping in Figure 3(a). One can see from
the figure that base cells of different sizes are corresponding
to leaf nodes at different layers of the tree.

1 2

4 3
7

5 6

8

109

12 11

13

1 2 43

5 6 7

8 13

9 10 11 12

0

0101

01111111

1111

(b)(a) (c)

Figure 3. 4-Tree for Storage of VHC-Mapping

Since each node either is a leaf node or has 4 children,
we only need to store 1-bit information to indicate whether
it is a leaf. Figure 3(c) shows an example of such encoding
scheme for the tree in Figure 3(b). Since a 4-tree with n leaf
nodes has at most 4n/3 (total) nodes, the space required by
the serialized map file is at most 4n/3 bits.

Based on the 4-tree, VHC-mapping can be retrieved and
used as follows: First, we reconstruct the 4-tree from the
serialized map file and traverse every leaf node to assign its
corresponding range in the 1-d projected space. In particular,
a leaf node at level i is corresponding to a range of length
d/2i where d is the edge length of the entire map. This step
has time complexity of O(n). Then, we can conduct VHC-
mapping by searching for the corresponding leaf node (i.e.,
base cell) of the original 2-d location. The time complexity
is O(log n). The inverse mapping of a 1-d location in
the projection space back to the original space can be
done through a binary search on all leaf nodes. The time
complexity is O(log n).

3.3. Algorithms for VHC-Mapping
We now present two detailed algorithms for our approach:

One is the offline construction and storage of VHC-mapping.
The other is the online retrieval of VHC-mapping and the
perturbation of a user’s locations.

Algorithm VHC-Build: Offline Construction
Require: Map, C as the (rectangle) boundary of the map

1: Store C‖BUILDTREE(C) as the HC-mapping file.
2: function BUILDTREE(C)
3: if total road length in C ≥ µ· edge length of C then
4: Partition C equally into Cnw, Cne, Cse, Csw.
5: for i = nw,ne, se, sw do
6: return 0‖BUILDTREE(Ci)
7: end for
8: else
9: return 1

10: end if
11: end function

Algorithm VHC-Build depicts the offline construction
and storage of VHC-mapping. In the algorithm, we use ‖

to represent the concatenation operation. We partition the
original map based on the min-density rule (Line 3) and
store the 4-tree into a bit stream BUILDTREE(C) (Line 6).

Algorithm VHC-Perturb: Online Location Perturbation
Require: Pre-computed VHC-mapping file hcF ile

1: Load a 4-tree T of the partition from hcF ile and assign
the 1-d value range for each base cell.

2: Wait until receiving userPos for perturbation.
3: Find the mapped value F (userPos) based on the 1-d

value range of the base cell which contains userPos.
4: Generate random noise r according to uniform distribu-

tion on [−σ, σ].
5: Compute R(userPos) = F−1(F (userPos) + r) by

searching for the base cell which contains 1-d value
F (userPos) + r. Output R(userPos).

6: Goto 2

Algorithm VHC-Perturb depicts the online retrieval of
VHC-mapping for the perturbation of a user’s loca-
tion. Given a 2-d location userPos, we map it to 1-d
point F (userPos), add a homogeneous noise r, and use
F−1(F (userPos) + r) as the perturbed location. Note that
r is generated from a pre-determined distribution.

Algorithm VHC-Build is executed offline and has compu-
tational complexity of O(n). The computational complexity
of Algorithm VHC-Perturb is O(n) for the retrieval of VHC-
mapping file (i.e., Line 1) and O(log n) for the perturbation
of each location.

4. Discussion
In a practical LBS, a mobile’s request should be served

in a timely fashion. Otherwise, it may no longer be useful
when the mobile has already left the location where the
request was made. Recall from Figure 1, the anonymous
communication network also contributes to the overhead of
LBS query processing. We now discuss how to tune up the
communication QoS of the anonymous routing component.

In CAP, Tor [4] is used for anonymous communication
between clients and servers. The challenge of tuning up
Tor for an LBS system is how to optimize its QoS while
preserving anonymity. Tor has suffered serious performance
degradation because of its random path selection algorithms
[18]. Tor is an overlay network on the Internet providing
anonymous communication. Within the Tor network, to
browse a web server while hiding the connection, a client
chooses a series of Tor routers from the Tor router directory.
The sequence of ordered Tor routers is denoted as path.
The number of Tor routers is the path length. The client
negotiates session keys with the chosen routers, one by one,
using the Diffie-Hellman handshake protocol and forms a
circuit.

The client packs application data into cells that are trans-
mitted over the circuit. Therefore, a set of sequential TCP
connections are used to relay packets from the source to the
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destination. Since Tor routers use donated bandwidth from
users, who may limit it using the leaky bucket mechanism,
the end-to-end throughput will be limited by the bottleneck
segment [13]. We found that despite Tor’s weighted band-
width path selection algorithms, there is a high probability
that a node with poor bandwidth is chosen because of the
existence of a large number of small-bandwidth Tor routers.

We propose differential QoS in the Tor network in order
to improve QoS. The Tor network could be partitioned into
classes of Tor routers with high or low donated bandwidth.
Paths drawn from the class of high-bandwidth routers can
provide better performance. Paths can be chosen for flow
requests based on a particular flow request’s priority. In
this way, high priority flows (e.g., LBS query request and
response) will obtain high bandwidth and low priority flows
will obtain low bandwidth. So long as user’s requirements
can be met with differential QoS, this will make more
effective use of bandwidth.

Therefore, the anonymous routing component in Figure
1 will control Tor’s routing in order to achieve differential
QoS for Tor clients. We have implemented the two simple
path selection algorithms in favor of differential QoS in the
Tor network. The first algorithm is shown in Algorithm 1,
which provides the differential routing with two priorities.
This algorithm can be easily extended to support priorities
larger than two. To provide a better QoS for LBS, a mobile
client can choose the top priority, where a user prefers a
path throughput greater or equal to MinBW .

Algorithm 1 Differentiated Routing (Diff)
Require: User specified minimum path throughput

MinBW
1: Build a pool of Tor nodes whose bandwidth is greater

or equal to MinBW .
2: Use weighted random algorithm and build a circuit

through the pool. Record used Tor nodes in existing
circuits and future circuits will not use those used Tor
nodes.

The actual path throughput under Algorithm 1 may be
much lower than MinBW because of congestion on the
Internet as numerous flows share the Tor nodes worldwide.
To overcome this problem, the second routing algorithm
(Diff/CA) we propose to consider the congestion avoidance
as shown in Algorithm 2. Recall that Tor can create circuits
proactively and wait for user connections. To avoid conges-
tion, Diff/CA creates circuits proactively, measuring the path
throughput until it meets bandwidth requirement. This incurs
a delay in circuit creation. Our experiments show that the
delay is within a reasonable range.

5. Experimental Results
In this section, we present the implementation and ex-

perimental evaluation of CAP. We will first introduce the
implementation and the experimental setup, and then present

Algorithm 2 Differentiated Routing with Congestion Avoid-
ance (Diff/CA)
Require: User specified minimum path throughput capacity

MinBW and tolerable throughput TolBW .
1: Build a pool of Tor nodes whose bandwidth is greater

or equal to MinBW .
2: Use weighted random algorithm and build a circuit

through the pool. Measure the circuit throughput until
its bandwidth is greater or equal to TolBW .

the results for the location perturbing and anonymous routing
components, respectively.

5.1. Experimental Setup
We have implemented a prototypical CAP system for

Mac OS X and Linux operating system with support for
GPS and integration with Tor. The positioning device we
used is a SiRF Star III GPS receiver which is connected
to the laptop via USB interface [3]. The location pertur-
bation component of CAP was implemented using C++
and the Boost library. Qt library and Google Maps APIs
(http://code.google.com/apis/maps/) were used for GUI de-
velopment to demonstrate the integration of CAP with exist-
ing LBS systems. For the anonymous routing component, we
revised Tor version 0.1.1.26. The mobile client is connected
to the Internet via 802.11b protocol. The LBS server is
running on a desktop machine with 3.2Ghz Intel Core Duo
CPU, 3GB RAM, and Suse 10.3 operating system.

We performed our experiments on the map of Mid-
dlesex county, Massachusetts, USA. The map was re-
trieved from the 2006 second edition of the Topological
Integrated Geographic Encoding and Referencing (TIGER)
system published by the US Census Bureau. The map
can be downloaded as a zipped TIGER/Line file from
http://www2.census.gov/geo/tiger/tiger2006se/MA.

We downloaded 800 POIs, including restaurants, hotels,
clinics, and supermarkets in the county from http://www.gps-
data-team.com/poi/. We randomly selected 1000 different
co-ordinate points (latitude and longitude), lying in areas
with varying road densities (e.g., downtown, rural areas,
suburbs etc.), as possible user locations.

5.2. Evaluation of Location Perturbing Component
Recall that the “Online Location Perturbation” algorithm

uses random noise generated from uniform distribution
[−σ, σ]. We have tested the performance of location per-
turbing component by changing the noise parameter σ. We
have also tested for the storage requirements by changing
the granularity ratio µ (recall the “Min-Density rule” from
Section 3).

To test against locations with diverse road densities, we
define the road density index of a location as the level of
the leaf node that contains this location (root has level 1).
The depth of the tree is 13 when µ = 8, which is used in
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Figure 4. 2-d Perturbation dis-
tance vs σ
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Figure 5. Naive technique vs
VHC-mapping
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Figure 6. lr (Top-10) vs. σ
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Figure 7. lr (Top-10) vs. Road
Density Index
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Figure 8. True Positive Rate (Top-
10) vs. σ
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Figure 9. True Positive Rate (Top-
10) vs. Road Density Index
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Figure 10. Extra miles vs σ
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Figure 11. Extra miles (%) vs σ
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Figure 12. Binary map file size vs
µ

most experiments. Generally, the road density increases in
exponential order with the road density index.

Figure 4 depicts the relationship between the average 2-d
perturbation distance DISTANCE(userPos, R(userPos))
and the noise parameter σ for locations with various road
densities. The 2-d perturbation distance is the Euclidean
distance between the original and perturbed locations. Be-
sides, we tested with Manhattan distance [12] and obtained
similar results. As we can see, the 2-d perturbation distance
for a rural location (road density index = 5) is much
greater compared to a downtown (road density index = 13)
location. This confirms that a rural location merits a larger
perturbation than a downtown location.

Figure 5 depicts the comparison between VHC-mapping
and a naive technique, which uses universal random noise
to perturb a user’s location, regardless of its context. We
have used the same noise parameter value, σ = 2, for both

techniques. One can clearly observe that in contrast with
the naive technique, VHC-mapping applies context-aware
perturbation, i.e., higher perturbation is applied to locations
with lower road density.

We evaluated the accuracy of location perturbing compo-
nent for a scenario where we issue a top-10 query for the
nearest POI. Figures 6 and 7 depict the relationship between
the degree of LBS accuracy lr and the noise parameter σ for
locations with various road densities. In both the figures,
we can make two observations: First, lr increases with the
increase of σ. Second, there is no significant difference
in LBS accuracy for locations with different road density
indices. Similar observations can be made from Figures 8
and 9, where the LBS accuracy measure is the true positive
rate of the returned top-10 results.

To estimate the real-world experience of CAP users, we
consider the additional distance traveled by a user to reach
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the returned nearest POI (compared with the real nearest
POI). Figure 10 depicts the relationship between extra miles
to be traveled and noise parameter σ. It can be observed that
a user will have to travel more for higher level of privacy
protection desired. However, it would be more useful to have
guarantees on extra distance to be traveled given a particular
level of privacy is desired. In other words, we are interested
in observing the value of extra miles to be traveled as a
fraction of the 2-d perturbation distance. This is depicted
in Figure 11, where for all the different values of noise
parameter σ, the extra miles to be traveled is approximately
65% of the 2-d perturbation distance.

Recall that the granularity ratio µ controls the size of
the 4-tree (i.e., the VHC-mapping), and thus the size of
binary map file. Figure 12 depicts the relationship between
the storage cost of the 4-tree / binary map file and the
granularity ratio µ. As we can see, the storage cost decreases
exponentially when µ increases. In particular, when µ = 10,
we only need 5000 bits for Middlesex county and 500 bit
for District of Columbia to store the 4-tree / binary map
file. This is much smaller than the size of the original
TIGER/Line map. The retrieval of the VHC-map requires
less than 0.1 seconds in our system, and the perturbation of
a user’s location requires less than 1 millisecond.

5.3. Evaluation of Anonymous Routing Component
We evaluated the communication QoS achieved by the

anonymous routing component of CAP. Figure 13 depicts
the cumulative distribution function (CDF) and probability
density function (PDF) of time downloading the map image
of 208,310 bytes from TIGER under the anonymous routing
algorithms we proposed in Section 4. Diff/CA (≤20KB/s)
refers to differential routing with congestion avoidance
whose tolerable throughput is 20KB/s. Table 1 gives the
mean, median and confidence interval (95%) (CI) of the
downloading time for different Tor routing algorithms.

We have a few observations from Figure 13 and Ta-
ble 1: (i) The performance of Tor’s default routing algo-
rithm, weighted routing, can be intolerable for performance
sensitive service such as LBS. The largest downloading
time of the map image is 134.49s. (ii) The differential
routing and the differential routing with congestion avoid-
ance can significantly improve Tor’s performance. With
Diff/CA(≤20KB/s), the median downloading time is 5.23s
compared with the weighted routing’s 20.04s.

6. Related Work
Existing schemes on preserving location privacy in LBS

can be generally classified into two categories: trusted third-
party based and user based schemes.

Most research on trusted third-party based schemes adopts
a k-anonymity based framework. In this framework, a trusted
third-party called anonymizer is used to protect location pri-
vacy [9], [23]. For example, Gruteser et al. in [9] studied the
k-area cloaking schemes in which the space is divided into
a set of zones where each zone has at least k-sensitive areas.
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Figure 13. Download Time

Therefore, the adversary cannot identify which area the user
visits. To relax the trusted third-party assumption, Mokbel et
al. in [15] studied a scheme that leverages the peer-to-peer
concept. However, the management of trust relationships
among autonomous peers in LBS remains an open issue. A
recent work removed the requirement of trusted third-party
by using a private information retrieval (PIR) based scheme
[7]. Most research on user-driven schemes adopts various
obfuscation techniques at the user side aimed at protecting
location privacy [2], [5]. For example, Duckham el al. in
[5] studied the scheme to protect a user’s real location by
inserting some faked locations.

There has also been research on protecting location
privacy by hiding users’ network identities, such as net-
work address. For example, Hu et al. in [10] presented a
framework which uses random identity addresses such as
IP and MAC addresses and adopts random silent periods
in which mobile nodes don’t transmit or receive frames.
Not much work has been done on the QoS for anonymous
communication networks. McCoy et al. in [14] plainly
presented some results of Tor’s performance measurement
including router geopolitical distributions, circuit latency
and throughput. Snader and Borisov [20] proposed to use
bandwidth measurement algorithms and schemes that allow
users to choose higher performance or higher anonymity.

7. Conclusion
In this paper, we developed CAP to address two chal-

lenging issues in privacy-preserving LBS: protection of
user location privacy from both location data and network
communication perspectives. CAP seamlessly integrates its
location perturbation and anonymous routing components.
We measure CAP in terms of location privacy, LBS query
accuracy and communication QoS of the entire system. Its
effectiveness is demonstrated by theoretical analysis, sim-
ulations, and experiments with an implemented prototype.
Our work is the first end-to-end solution to protect location
privacy and improve the accuracy of LBS while taking
communication QoS into account. We believe that this paper
lays the foundation for ongoing studies of privacy-preserving
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Table 1. Downloading Time Comparison (unit: seconds)

Weighted Routing Diff Diff/CA (≤5KBs) Diff/CA (≤10KB/s) Diff/CA (≤20KB/s)
Median 20.0422 9.2733 8.9566 7.3709 5.2343
Mean 24.3192 15.0296 12.0749 8.6298 5.711

CI lower limit 19.9743 12.9606 9.8527 6.9204 5.1213
CI upper limit 30.0927 18.4387 14.6869 10.6894 6.4669

LBS.
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