
Transaction Models for Massively Multiplayer Online Games

Kaiwen Zhang
Department of Computer Science

University of Toronto, Toronto, Canada
Email: kzhang@cs.toronto.edu

Bettina Kemme
School of Computer Science

McGill University, Montréal, Canada
Email: kemme@cs.mcgill.ca

Abstract—Massively Multiplayer Online Games are consid-
ered large distributed systems where the game state is partially
replicated across the server and thousands of clients. Given the
scale, game engines typically offer only relaxed consistency
without well-defined guarantees. In this paper, we leverage
the concept of transactions to define consistency models that
are suitable for gaming environments. We define game specific
levels of consistency that differ in the degree of isolation and
atomicity they provide, and demonstrate the costs associated
with their execution. Each action type within a game can then
be assigned the appropriate consistency level, choosing the right
trade-off between consistency and performance. The issue of
durability and fault-tolerance of game actions is also discussed.

I. INTRODUCTION

Massively Multiplayer Online Games (MMOGs) is a
popular genre of online games. These games revolve around
large virtual worlds where players control their avatar to in-
teract with others and the environment. The state of the game
is constantly evolving and shared by the players. Personal
data has value: most of the time spent in the game involves
collecting items. Another important aspect of MMOGs is
their size. The millions of players which constitute the user
base of commercial games are divided into shards, each with
a limited capacity measured in thousands of clients. The
focus is put on expanding the scale of games which must
be supported by the underlying system.

The typical structure of MMOGs have clients each con-
trolling a single character, or avatar, in the world through a
graphical user interface. This game world is populated by
various types of objects: characters that are either controlled
by players or artificial intelligence, non-interactive objects
(e.g. trees, buildings) which form the environment, and
mutable items which can be used or interacted with by
characters. Players also take actions, which constitute the
basic mean of interaction in MMOGs. This includes moving
in the world, picking up items, dropping them from the
character’s inventory, and trading with other players. Since
the game world is common to all players, the actions
executed by one should be observable by others.

Game engines are commonly implemented as a middle-
ware. It receives the requests from all clients, manages the
game world, and disseminates updates to the clients. Game
state is also made persistent in a database. In principle, a

MMOG can be treated as a database application [1]. The
world objects are the data and actions are logical sequences
of read and write operations on the attributes of one or
more objects. Ideally, actions are ACID transactions. Action
need to atomicity to be executed in their entirety or not
at all. Durability is essential as these game worlds run for
long periods of time and need to survive various failures.
Players can request actions on the same objects concurrently,
requiring concurrency control to provide isolation.

However, several reasons exist as to why MMOGs can
not be implemented simply as a set of transactions using a
traditional database system. First, most actions are update
transactions, and the high rate of transactions often can not
be handled by a single database server [2]. Secondly, the
system is, by nature, highly replicated. Each player sees part
of the game world and the characters residing in that area.
This is usually achieved by giving each client copies of the
relevant game objects which are updated upon changes [3].

Since these games can have thousands of players playing
simultaneously, the update rate and the degree of replication
are considerable. Propagating every change to every copy
in an eager fashion (within transaction boundaries) in order
to provide a consistent view to every player is simply not
possible [4]. In many cases, existing game engines restrict
the number of players that can populate a game region or
instantiate the game to reduce the number of updates [5].
Furthermore, they commonly allow many inconsistencies to
occur which the players are forced to accept [6]. Durability
is mostly handled in a very optimistic fashion: any gameplay
shortly before an outage can be lost [1].

This paper uses an application-aware approach to achieve
the proper level of consistency despite the large update rates
of MMOGs. Consistency requirements can differ widely
between actions due to their variation in complexity. For
instance, if an action is frequently executed, it might not
require a high level of consistency as it can be easily repeat-
able and can tolerate transient faults. However, if an action
involves more than one object, atomicity becomes a greater
issue. Furthermore, effects of certain actions depend on the
value of read attributes. Isolation is more difficult to maintain
as the number of reads increases. Finally, important events
with a significant impact on the game, actions that take a
long time to be accomplished, or ones using real currency

2011 30th IEEE International Symposium on Reliable Distributed Systems

1060-9857/11 $26.00 © 2011 IEEE

DOI 10.1109/SRDS.2011.13

31

necessitate a high level of consistency. For instance, moving
a character is considered of low complexity because it affects
only a single character and is easily repeatable. Trading
items between two players is highly complex because both
parties must agree to exchange the same set of items. This
involves a series of interaction steps between the players.

Clearly, given this variety in action types, there is no
one-fits-all solution to consistency. Thus, commercial games
employ ad hoc solutions with undefined semantics. Indeed,
there are ample opportunities to optimize for performance
whenever possible while providing strong consistency when-
ever needed. The final goal is to design a system which
provides the desired player capacity, the client response
times needed for enjoyable gameplay, and the level of
consistency needed to support complex game semantics.

We achieve this by defining game-specific consistency
categories and providing a suite of protocols to implement
them. Game developers can then decide the appropriate
consistency category for each action. This allows developers
to choose the right trade-off between performance and con-
sistency, just as they can choose isolation levels in database
systems. One key observation is that low complexity actions
usually have a higher volume than higher complexity ones.
For instance, a player frequently moves its character but
seldom performs trading. The game engine can achieve
scalability and performance by executing low complexity
actions using efficient, weakly consistent protocols.

Our consistency categories have similarities with the vari-
ous degrees of isolation, such as read committed and serializ-
ability, that are offered by traditional database systems [7].
In both cases, the developer is presented with a trade-off
between performance and consistency. Our approach goes
further as we consider staleness of replicated objects.

In summary, the paper makes the following contributions:
• We provide a thorough analysis of the execution model
and consistency requirements of current MMOGs.
• We provide a set of consistency categories that are use-
ful in the context of MMOG semantics; our consistency
models consider isolation, atomicity and durability.
• We show how the properties of each category are
leveraged to design efficient coordination protocols for
both single server and distributed models.
• We show how our approach can be integrated into an
existing game engine and show performance results.

II. GAME EXECUTION MODEL

In this section, we present the typical game architecture
and execution model of MMOGs. We first focus on a single
server system. Section VI discusses distribution.

A. Replication Architecture

Each player hosts the client software of the game. It
renders the game world and receives input from the player.
Clients control their avatar and can submit actions. The

Figure 1. Sample action execution

client software sends them to the server who serializes
them, adjusts the game state and notifies all players that are
affected by the change. This can be supported by a primary
copy replication mechanism [3], [4]. That is, the game world
consists of a set of objects, each of them being a collection
of attributes. The server holds a master copy (or master) of
each object (dark shapes in Figure 1). The attribute values
of the master contain the latest and correct state of the
corresponding object. The game state C is defined as the
union of the states of the masters of all objects.

Each client can then hold a read-only replica for an
object (white shapes in the Figure). At any given time,
the state of a replica might be lagging behind that of the
corresponding master, missing some of the changes that have
already been installed at the latter. A client holds replica
only for objects that it is interested in. The composition of
a client’s replication space is determined dynamically by a
process called interest management. Various methods exist
for determining a player’s interest [8]. For example, one
can define a circle around a player: all objects within this
range are considered interesting and must be included in the
replication space. The perceived state of all replicas held by
a client is called the client view.

B. Action Execution and Update Propagation

An action is a sequence of read and write operations
performed on attributes of objects found in the world. We
define the write set WS(A) as the set of all objects updated
by action A. In the following, we ignore the fact that
actions can create new objects. Furthermore, we consider
only actions that contain at least one write operation, as
basically all actions belong to this category.

As part of an action A initiated by a client, the client reads
the state of some of its replicas before submitting the action
to the server. The server then performs a sequence of read
and write operations on some of the masters. As a result
of the action, the master copies of the objects in WS(A)
now possess a new state which must be disseminated to the
replicas. Figure 1 illustrates a sample execution. The client
submits the action to the server (arrow 1), which executes
it and disseminates the changes (arrows 2).

32

C. Read Operations

Understanding what objects are read and how they are
read is crucial to recognizing the required consistency levels.
Action reads. Consider the following actions. Moving an
avatar first reads the current position of the character. Drink-
ing a bottle checks its content attribute: the action succeeds
only if there is water remaining. These read operations
are explicitly written into the action code, hence called
action reads. Some of them are first performed on the
replicas residing at the client side. In particular, validation
reads are used to verify whether an action is possible. For
example, when a player tries to pick up an item, the local
client software first checks the local replica state of the
item. If it is on the ground, it forwards the action to the
master. Otherwise, the action is immediately aborted. At
the master side, the validation reads have to be repeated,
as the state at the server might be different. Thus, the
reads at the client can be considered preliminary, useful to
avoid sending unnecessary actions to the server. However,
an action deemed possible at the client might fail due to
differences with the masters state. For instance, although a
player saw an item on the ground, the pickup request might
not succeed because the state at the server indicates that the
item is already in the inventory of another avatar. In general,
it is important to note that action reads performed on replicas
usually always have the potential of being stale.
Client reads. Additionally to the action reads that are
explicitly encoded in the action, a player continuously
observes the state of all its replicas, whether they are stale
or not. The player uses this information to decide what
action to perform. Essentially, the player is reading certain
semantically relevant attributes before initiating an action on
its client software. The key aspect is that any value from any
object visible to the player can potentially be read and affect
the judgment of the player. These reads are implicit and not
part of the action code. Thus, each action has a client read
set, determined by the player, which is read before the action
is submitted. For instance, consider a player who decides to
move to a location to pick up an item. The move action
itself only reads the position attribute of the player. Yet, the
decision to move is influenced by the position of the item, as
established by the player. Thus, the action read set contains
the current position of the player’s avatar, and the client read
set contains the location of the item.

III. TRANSACTIONS

In principle, an action can be split into three parts. A client
first performs action reads and client reads on its replicas.
The server then executes reads and writes on the master
copies. Finally, clients apply the changes from the server.

We can consider the full execution in two ways. First,
we can view the entire execution as one global transaction.
Accordingly, there exists a set of read operations on replicas
held by clients, a sequence of read and write operations

on the masters, and a set of write operations on replicas.
Secondly, we can treat the execution at clients and server
separately. All operations on masters are considered as a
server transaction, while all operations on replicas for one
client are a separate client transaction.

If possible, the global transaction should be executed
under full transactional properties: atomicity, isolation and
durability. Unfortunately, this would be costly, requiring
distributed locking, eager propagation of updates, and a
distributed commit protocol. No game architecture uses
such approach. In our solution, we relax consistency by
considering correctness criteria for the server transaction and
those for the client transactions separately.

A. Server Transactions

Maintaining ACID properties for server transactions is
crucial as they keep the game world as a whole consistent.

To begin, we assume that actions are designed in a
consistent manner: given a consistent game state C, the
full execution of an action at the server under isolation
transitions C to a new consistent state C ′.

Further, master atomicity is maintained if all or none of
the action succeed at the server. This can be implemented
easily via a standard rollback. Atomicity is more challenging
in a distributed setting (see Section VI).

Also, isolation is easily provided by using a concurrency
control mechanism such as two-phase locking [9]. Assume
one action breaks a bottle and a concurrent action picks it
up. If the break is serialized before the pickup, then a broken
bottle is picked up. If the pickup gets the lock and executes
before the break, then the break will not succeed as a bottle
that is in the inventory of another avatar can not be broken.
Formally, we say that master isolation is provided if the
execution at the server is serializable. That is, the concurrent
execution of a set of actions at the server is equivalent to
serial execution of these actions.

Our approach for durability is dependent on the consis-
tency level. We will discuss it in Section V.

B. Client Transactions

The atomicity and isolation properties of client transac-
tions reflect the player’s gameplay experience.

We define replica atomicity to be given if every update
performed at a master is also applied at the related replicas.
For performance reasons, we assume that this happens
after the action commits at the server and not within the
boundaries of the server transaction. That is, our definition
of atomicity is more relaxed than the traditional definition.

Replica isolation refers to the notion that if a client
initiates an action based on its local action reads and client
reads, then the updates determined by the corresponding
server transaction and forwarded to the client conform to
said reads. In other words, if the client transaction had acted
in isolation (performing only local reads and changing the

33

Figure 2. Master/Replica consistency relationship

local replicas) the outcome would be the same as the updates
triggered by the server transaction.

For example, assume the purchase of an item. The client
reads the price as P from the item replica. If replica isolation
is maintained, the price read at the master should also be
value P . Suppose not, and the master value is actually P+1.
Assuming the player has enough funds, the update triggered
from this action notifies the client that the item was bought at
P+1. Since the outcome is different from an execution using
the locally read price value, replica isolation is violated.

Looking at this formally, replica isolation does not provide
serializability at the global level. The state of the master
might be different to the state read at a replica, leading to
something similar to non-repeatable reads. However, if the
difference does not change the outcome of write operations,
then it does not violate replica isolation. This means that our
definition of replica isolation considers the game semantics.

Figure 2 illustrates the relationship between client and
server transactions. When the server receives an action
request, master atomicity and isolation enables the game
state to move from one consistent state to the next. The view
perceived at the client depends on whether replica isolation
and atomicity are supported or not.

IV. CONSISTENCY CATEGORIES

Games consist of various types of actions with different
consistency requirements. Current single-server game sys-
tems often provide master isolation and atomicity through
standard concurrency control and rollback mechanism or by
simply executing transactions serially. In contrast, replica
isolation and atomicity are often ignored. In fact, it is unclear
what semantics are typically provided.

Given the variety of actions, a multi-level approach to
game consistency is sensible as it provides the best trade-
off between consistency and performance. Lower categories
are more efficient and scalable while higher levels offer
more consistency guarantees. Thus, application developers
can choose for each of their actions the proper consistency
level. In total, we identify five categories, and show action
handling protocols that can satisfy the requirements of each
category while maximizing its performance and scalability.

All single server categories assume master atomicity and
isolation and the use of strict 2-phase-locking (2PL) at the
server. The three lowest category levels do not offer replica

isolation and differ on replica atomicity. The three highest
levels offer replica atomicity but differ on replica isolation.

We consider read and write operations to be on object
attributes and not entire objects to allow for fine-grained
concurrency. Attributes are tagged with a category. An
attribute x is said to be of category c if c is the lowest
category for which there exists an action which writes to x.

A. No Consistency

Properties: The lowest consistency category provides
no guarantee and follows a “best-effort” maybe semantic
model. Replica atomicity and isolation are not guaranteed.
The server is not required to inform clients about any state
changes incurred by no consistency actions.

This consistency category can be used for actions whose
importance on game play is very low. These actions are
usually easily repeatable to compensate failures. Examples
are graphical effects such as rotating a character or showing
an emote (such as dancing or smiling).

Protocol: The server executes these actions only when
it has enough resources. Assuming strict 2PL, the server
locks all objects before accessing them and releases locks
at the end of the action. The state changes are propagated
to the replicas using an unreliable message channel (e.g.,
UDP), as replica atomicity is not required.

B. Low Consistency

Properties: The idea is to provide a bound on the stale-
ness of the data. Like no consistency, not every update needs
to be propagated to every replica, but propagation must
take place when the bound is reached. Replica atomicity is
therefore provided partially. This is useful for large volume
actions requiring some guarantee in regard to their visibility.

The most common action type that fits into this category
is the progressive movement of an avatar. While clients
might not perceive the exact position of a player at any
time, they always know its approximate location, possibly
defined through a specific error bound. For instance, the
position seen at any replica should not be off by more than x
movements or a distance of y units from the current position
at the server. Another possibility is to support eventual
convergence to the real position value.

Protocol: If the error bound is given as a percentage
of received updates, only a fraction of the updates needs
to be sent reliably, while the rest can be sent unreliably
or dropped in case of overload. If the bound is given as a
threshold difference, then an update is propagated reliably
once the difference between the value at the master and the
last reliably propagated value exceeds the threshold.

A special form of bounded position approximation is
provided using dead reckoning mechanisms [10]. Instead of
sending every position change, the player’s final destination
and average speed is sent to the replicas. The client software
then locally simulates each position change. While this does

34

not guarantee an exact view on the player’s position, the
replicas will be only slightly off the true position.

Again, master isolation is achieved through strict 2PL.
We expect actions of this type to build a large portion

of the volume of all activity in the game. In fact, the most
common action type is player movement. Thus, optimizing
the performance of this action type is significant.

C. Medium Consistency

Properties: The medium consistency category reflects
the way current game middleware handles most of the
actions. Replica atomicity is provided and requires exact
updates to be sent. According to our definition, it is enough
to send these updates after the action committed at the server.
The bound on replica staleness is therefore the maximum
latency for delivering an update from the server to a client.

Actions at this level still do not require replica isolation.
Since clients can perform stale reads, the outcome at the
server may be different to what the client expects.

This consistency level is appropriate for actions which
are important enough to require exact updates. The incon-
sistencies which arise from the lack of replica isolation must
be tolerable or predictable. For example, two nearby players
send a request to pick up an item. At the server, one action is
serialized before the other. The second action will be rejected
because the item will already be picked up. Upon receiving
this result, the client of the second action can justify the
outcome due to the close proximity of the other player, as it
can deduce that other player must have picked up the object.

Protocol: When a player submits a medium consistency
action, the client software performs local validation reads. If
successful, the action is forwarded to the server. The master
executes the action under master isolation and atomicity.
After commit, each master reliably sends the exact changes
to all associated replicas.

D. High Consistency

Properties: Unexpected outcomes are sometimes un-
desirable. This is the case if critical attributes are affected
by an action. For example, price is a critical attribute when
buying an item. Normally, one does not want to buy an item
for more than the locally visible price, but it is acceptable
if the item is cheaper. With medium consistency, however,
the item will be bought independently of the exact price at
the server as long as the client has enough funds.

Thus, the high consistency category introduces the con-
cept of critical attributes and guarantees a limited form of
replica isolation on such attributes. Our isolation property is
relaxed along two dimensions.

First, we do not require strict repeatable but only compa-
rable reads: the difference between the value at the master
and the value at the replica must be acceptable for the action.
This depends on the game semantics. For instance, if the
price attribute at the client is larger than at the server then

the difference is acceptable, otherwise it is not acceptable,
and the action should fail as a repeatable read is violated.

Second, we only offer replica isolation safety. If the
difference is unacceptable, the action must be rejected. High
consistency essentially reduces any inadmissible executions
into a rejection, avoiding inconsistencies.

Protocol: The protocol is similar to the one for medium
consistency. The main difference is that an action submitted
to the server contains the client replica values of all critical
attributes. When the server reads the master copy, the
value is compared to that of the client. If the difference is
acceptable, the action continues; otherwise it aborts. In order
to perform the comparison, the action code needs to provide
a predicate that, given the replica and master values as input,
either returns true (acceptable) or false (not acceptable).

From a performance point of view, the message exchange
is the same as for medium consistency. However, messages
have to carry additional attributes and the server has to per-
form extra predicate evaluation. Furthermore, action aborts
can occur due to the violation of attribute comparability.

E. Exact Consistency

Properties: The high consistency protocol is optimistic
as possibly stale values are read at the client and validated at
the server. This can lead to many aborts. Exact consistency
avoids stale reads, and thus, provides full replica isolation.
Guaranteeing that data is fresh requires the integration of
client confirmation into the action itself. This category is
designed specifically for those complex actions with multi-
ple client input steps. An example is trading where items
and money are exchanged between two avatars. Given the
importance of this type of action for gameplay, performance
is not that crucial. In contrast, all players need to have the
accurate state for decision making, and want to be assured
that the action succeeds properly at all involved parties.

We also enforce a stronger condition than replica atomic-
ity. In all lower categories, changes are sent asynchronously
to all replicas. In contrast, with exact consistency, all in-
volved players receive the updates within the boundaries of
the transaction, i.e., eagerly. Thus, atomic execution on all
replicas of involved players is provided.

Protocol: We use a pessimistic approach consisting of
two steps: a request and a confirmation. Upon receipt of the
request from a client, the server sets long shared locks on all
involved objects in order to avoid concurrent updates. It then
propagates the current state of these objects to the replicas
of all clients involved in the action. Once the client(s) have
received the latest state, they have to confirm the action. The
server then performs the write operations at the masters, and
the changes are propagated to all involved client replicas.
Thus, clients receive immediate confirmation on the success
of the action. Others are updated asynchronously.

35

V. DURABILITY

Games run for months and years. Therefore, game state
has to be made persistent, i.e., written to stable storage, in
order to recover from system failures. Persisting all changes
before commit would lead to an immense overhead, similar
to sending updates synchronously to replicas. The consis-
tency categories described above reflect the importance of
write operations and the attributes that are written. Thus, we
define durability categories along the same levels.
No-durability attributes: We do not need to persist changes
of no consistency actions, as they are not crucial to the game.
Low durability attributes: As clients can see bounded stal-
eness for low consistency attributes, we can use the same
staleness bounds for making changes persistent. Whenever
the server decides to send an update reliably to the replicas,
this update is made persistent.
Medium and high durability attributes: Medium and high
consistency attributes can be stale. Therefore, we can persist
all changes asynchronously after commit.
Exact durability attributes: Whenever an exact consistency
action is executed, its changes are persisted before the
transaction commits in order to provide the transactional
durability property for these crucial actions.

When the server crashes and restarts, it reconstructs the
game world with the persisted information. An issue arises
if a player has received an update on one of its replicas
before this update was persisted. For example, it could have
observed a new value for the energy level, but this change
is not persisted, and thus, is lost when the server restarts.
This inconsistency is avoided by first persisting the change,
and then propagating it to the replicas.

The persistence layer can be part of the game server or
decoupled. In the latter case, the persistence server maintains
replicas of all objects. The game server sends updates to
these replicas as it does for other replicas. In the case of
exact consistency, changes are sent synchronously to these
persistence replicas. When the persistence server receives
the updates, it writes them to stable storage.

VI. DISTRIBUTION

In order to scale, current games deploy server farms. A
simple distribution model lets each server host an instance
of the game or a partitioned region of the game world.
Each client resides in one instance or region and is con-
nected to the corresponding server. With such simple model,
each server can implement the above categories without
any server coordination. Recent approaches go beyond this
simple model and offer a continuous space that is maintained
by cooperating servers [11]. One way to distribute load is
by using cells which form non-overlapping regions of the
whole game world. Cells are assigned to servers who hold
the master copies of objects residing in that cell. If an object
moves from one cell to another, its master copy is migrated
to the server of the new cell. Clients can host replicas of

Figure 3. Cell-based architecture

objects whose masters reside on different servers. This could
be the case, for instance, if an avatar is close to a cell
boundary. To allow for interest management, each server
holds replicas of objects that are potentially interesting to the
characters within its cell. Figure 3 shows the responsibility
range of a server, maintaining the four red cells. The red
triangles show objects for which the server holds master
copies, black triangles shows objects for which the server
holds replicas and empty triangles are ignored by the server.
Execution model. Distributed actions can write to objects
whose masters reside on different servers. Thus, these ac-
tions require a distributed execution. Each server holding a
master copy to be updated executes part of the action (called
sub-action) that refers to these updates. We assume that the
client software coordinates distributed actions sending the
individual sub-actions to the affected servers. The action
code must be written accordingly and specify for each read r
the set of writes WSr that depend on it. If a server requires
the value of a read on some object X for which it does not
have the master, it can either request that value from the
appropriate server or perform the read on its replica of X .
Master isolation. In a single server system, an action
executed at the server is always guaranteed to read correct
values as the server has all the masters. With distributed
actions, a server might perform a read operation on a replica
which can be stale as update propagation is lazy. Relying
on this stale information can quickly lead to inconsistencies.
Assume for instance two concurrent players want to drink
from an originally full water bottle. Server S1 has the master
of player P1. Server S2 has the masters of player P2 and the
bottle. P1 has to send sub-actions to both servers. When S1
executes P1’s action it reads its replica of the water bottle,
which is full, and gives the avatar the appropriate energy
points. At S2, the concurrent action is executed, providing
P2 with the same energy points and changing the state of
the water bottle to empty. When now P1’s sub-action arrives
at S2 it succeeds (emptying an empty bottle). However, the
final execution is inconsistent because two players received
the full energy points. In contrast, a single server would
serialize the actions; the last action will see an empty bottle
and not provide the player any points.

This form of inconsistency violates master isolation, since
the server transaction depends on stale data. It is much

36

more severe than the optimistic reads at the clients since the
game state becomes inconsistent. In contrast, inconsistencies
related to replica isolation only affect the client view and not
the authoritative state of the game.

When master isolation is requested, servers must always
retrieve values at the masters: additional synchronization is
thus required to communicate read values across servers.
Master atomicity. A second challenge is to guarantee the
atomicity of distributed actions. All or none of the servers
need to commit the action.

A. Consistency Levels

As master isolation and atomicity are more costly to
achieve in a distributed environment, we determine for each
consistency level their requirements. Table I summarizes our
revised consistency categories for distribution.

We require master isolation and atomicity for medium
consistency and higher, as we want to maintain a consistent
game state. For actions which involve a large number of
reads, however, it is very beneficial to let the servers read
from replicas (either their own or the coordinating client’s).
This reduces the number of master reads and indirectly the
number of servers involved. Therefore, we do not require
no and low consistency levels to guarantee master isolation.
Then, actions with massive reads have the option to use
these low levels and avoid expensive execution. Similarly,
we also do not require master atomicity for the lowest two
levels. In fact, if an action affects many objects, the clients
often do not recall the exact values at their replicas. Thus,
inconsistencies do not become visible.
Exact consistency. In the case of exact consistency actions,
the client will request from all servers the latest state of all
objects read. These requests will lock the master copies at
the servers. When the client sends the confirmation, it sends
to each server that is involved in an update the changes on
the replicas the server has to read. Thus, it is guaranteed
that the server will read the latest values. Compared to a
single server system, message exchange is multiplied by the
number of involved servers.
High and medium consistency. Our solution leaves the
action coordination to the client. In the worst case, we
need an additional round of synchronization to provide every
server with the latest state of all masters read similar to what
is done with exact consistency. However, a more efficient
linear protocol is possible for a common class of actions
where there is no circular dependency. Assume the case of
picking up a bottle which is only possible if the bottle is
on the ground. The change on the bottle (being picked up)
only depends on its own state (it has to be on the ground).
In contrast the update on the character is conditional on the
state of another object (the bottle being on the ground).

Thus, we sort the sub-actions of an action based on
their dependency. First, the client submits the sub-action on
objects that do not depend on the state of other objects. The

Category Description Examples
Exact Master and replica atomicity, mas-

ter and replica isolation
Trading between
players

High Master and replica atomicity, mas-
ter and limited replica isolation

Buying an item at a
critical price

Medium Master and replica atomicity, mas-
ter isolation

Picking up an item

Low Limited replica atomicity Player moving
None No guarantees Player turning

Table I
CONSISTENCY CATEGORIES IN A DISTRIBUTED ENVIRONMENT

server acquires the locks and executes the operation. If it
succeeds, it sends the state of the objects needed for other
writes to the client. The latter then forwards this state with
its next sub-action to the corresponding server. The server
installs the changes, requests the locks and executes the sub-
action. This repeats until either all sub-actions succeed or
one fails. In the first case, the client submits the commit
to all servers. In the latter case, the client sends the abort
information to all servers where the sub-action succeeded,
which roll back their operations. All servers release the locks
only after commit/abort is completed.
Low and no consistency. For these two levels, the client
simply sends the sub-actions to the affected servers. Each
server executes its own sub-action independently and com-
mits locally whenever the sub-action is completed. Master
isolation is not provided. A server can either read its own,
possibly stale replicas, or the client can send the state of its
read replicas to the server. Master atomicity is not provided
as each server commits independently allowing for partial
execution if some of the sub-actions abort. The protocol is
efficient as a single message exchange is involved between
the client and each server. Locks at the servers are only held
for the duration of the local sub-action.

B. Failure Handling and Durability

Persistence can be offered by a single persistence server
or by a set of persistence servers, each responsible for
the persistence of a subset of objects. Cell servers send
object changes to the persistence servers according to their
durability categories presented in Section V.

The persistence layer can be used not only for recovery
of a failed server but also for failover if immediate restart
is not possible. As the objects managed by the failed server
have replicas at the persistence servers, they can reconstruct
the latest state of each of these objects and transfer new
masters to one of the available servers.

The biggest challenge is maintaining master atomicity
as servers might fail before sending the changes within
their sub-actions to the persistence layer. Providing a correct
solution in all failure cases would require a 2-phase commit
protocol where all involved parties write appropriate log
records during the protocol. Clearly, this is too expensive for
anything other than exact consistency as this is significantly

37

more costly than lazy propagation. Such overhead can be
avoided if every sub-action contains enough information to
replay the sub-action at any server. Therefore as soon as one
of the sub-actions is made persistent, the entire action can
be replayed in case of server failures.

In case of client failures, the servers involved in a pending
action of a failed client may block in higher consistency
levels. This can be resolved by using a termination protocol.

VII. PERFORMANCE EVALUATION

The performance improvements perceived by using lower
categories depend on many factors, such as expected volume,
pattern and computational cost of the actions. In this section,
we provide an analysis of two types of action: “Player Move-
ment” and “Pickup Item”. We compare different implemen-
tations of the actions based on the consistency categories.
We only study low, medium and high consistency as the
performance of exact consistency is difficult to measure as
it involves user interaction. Our evaluation will not include
the persistence aspect. A study case for persistence of player
movement is offered in [12].

A. Implementation

1) Player Movement: Movement is implemented using
the position and destination attributes of a character. When
a player selects a new destination, it updates the destination
attribute. At regular intervals, the game will read the current
position attribute which and update it by a small value to
be closer to the destination. This repeats until both attributes
have the same value. The player movement only updates the
player object. We have implemented low, medium and high
consistency versions of this action.
Low consistency. After a client submits a movement request,
the server propagates the current position and the destination
read at the master to all replicas. Server and clients then
perform dead reckoning locally to update the current position
of their copies. No further messages are sent. The actual
position of the player at the different replicas can vary
since dead reckoning produces slightly different results due
to clock differences between the nodes. We note that the
object is locked each time it is being updated and released
immediately. This lock does not span any message rounds.
Medium and high consistency. The client first submits a
movement request to the server which initiates the action.
Upon position changes at each time interval, the server sends
the new position to all replicas which simply apply it. The
difference between high and medium consistency is that
position is treated as a critical attribute. At the time the
player sets the destination, the replica’s position is compared
to the master’s. Since position is a floating point, it is
difficult to obtain exact matches due to numerical errors. We
set a threshold of 0.1, which does not result in any visual
difference for the client.

2) Pickup Item: This actions updates two objects, and
thus, allows us to evaluate a distributed environment. A
player can pick up an item and place it in its inventory.
The action reads the weight and location attribute of the
item, and the current carried weight and the capacity of the
player. The action only succeeds if the item is on the ground
and the current carried weight plus the weight of the item are
not larger than the capacity. The action changes the location
to be in the inventory of the player, and increases the current
carried weight by the weight of the item.

We implement low and medium consistency versions of
this action. In our experiments, the player and the item
always reside on different servers.
Low consistency. No master isolation and atomicity is re-
quired. The client sends both sub-actions concurrently and
the servers read from their local master/replica. The servers
commit immediately without requiring further synchroniza-
tion. They send their updates to the replicas after commit.

Several inconsistencies can occur. The server that has the
master of the player can have a stale replica of the item
indicating that it is on the ground while it is already picked
up. Thus, the server will update the players current carried
weight. However, the master of the item will reject its sub-
action as the item is no more on the ground. Atomicity is
violated. The successful sub-action needs to be rolled back.
This compensation is outside of the action’s execution and
allows for the inconsistent carried weight to be disseminated.
Other inconsistencies can occur if the player replica has a
stale current carried weight or the item’s replica has a stale
weight. In this case, picking up the item might put the player
overweight. Master isolation is violated. The severity of this
inconsistency depends on the semantics of the game.
Medium consistency. Master isolation and atomicity is re-
quired and we implement the linear approach. The client
first sends the sub-action to the server with the item master,
which acquires a lock, verifies that the object is on the
ground, changes its state to be picked up, and returns its
weight. Then, the client sends the sub-action to the server
with the player master, including the item’s weight. The
server acquires the lock, verifies that the object’s weight
is less than or equal the remaining capacity, and if so, puts
the object into the inventory and adjusts the total weight.
When it confirms to the client, the latter sends a commit to
both servers. The servers commit the sub-actions and release
the locks. If either master determines that the action is not
possible, it aborts and sends the corresponding information
to the client who ensures the other sub-action also aborts.
Our locking scheme is special in that if an action finds the
item already locked, it does not wait but immediately aborts.

B. Setup

Our benchmark application is the Mammoth frame-
work [3]. It is built on a distributed replicated architecture

38

Figure 4. Movement: Throughput vs. Number of NPCs

as described in this paper. The network engine uses a pub-
lish/subscribe system built on Apache MINA. To generate
actions, Non-Playing Characters (NPC) clients are instructed
to continually perform the benchmarked action. The servers
were ran on Quad-Xeon processors machines with over
8Gb of main memory. NPC clients were ran on separate
virtual machines located on 80 different machines ranging
from Pentium 4 to Core Duo processors. All machines were
connected in a local network.

C. Analysis

1) Player Movement: Our analysis focuses on throughput
and not response time. In fact, the computational over-
head incurred by medium and high consistency compared
to low consistency is negligible because movement is a
simple action and involves only one object. However, the
dead reckoning algorithm to determine the next position is
costly [13]. We do not consider path-finding costs in our
analysis. Instead, our low consistency optimization aims at
reducing the network traffic sent to the replicas.

There is a clear difference in the throughput between low
and the two other implementations (see Figure 4). This is
because players update their position approximately 10-15
times per second. In medium and high implementations,
each of these position changes results in an update to all
replicas. At around 60 players, performance degradation
occurs for medium and high consistency.

The difference between medium and high is negligible.
The average message size for high consistency is 875.48
Bytes, while it is 873.08 Bytes for medium. The overhead
of appending the local read is small, so the choice between
those two levels is more of a concern towards isolation
control rather than performance.

2) Pickup Item: Four servers are assigned to equal quad-
rants. As pickup is a distributed action, response time is our
main concern. Figure 5 shows the average execution time
for low and medium pickup actions. The additional message
round of the medium action accounts for the increased delay
(119.34 ms compared to 23.47 ms).

Further experiments have shown that the execution time
stays stable for an increasing number of players for low and
medium consistency. Even though the number of concurrent

Figure 5. Pickup Item: Average Execution Time

requests increases, any medium consistency request that fails
to acquire a lock on an object is immediately rejected instead
of waiting. Therefore, actions do not block when concurrent
pickups on the same item occur: a high throughput with
good response times can be achieved.

Although the base cost is higher, the medium consistency
implementation is a good fit for pickup because it scales
as well as the low consistency one. We think the perfor-
mance advantage of the low consistency implementation
is not significant enough to compensate for the numerous
inconsistencies that might occur.

D. Summary

We have shown how low consistency can be used to
optimize the performance of actions which generate a large
number of state changes as low consistency can reduce
the number of updates sent. Medium consistency can be
appropriate for actions with no obvious optimization op-
portunities. This is the case with pickup item, which does
not generate a large number of updates nor read a large
number of objects. The difference between medium and high
consistency is functional rather than performance-based.
Including more critical attributes with more stringent com-
parison predicates will only increase the rate of rejection,
not necessarily affect the performance of the action.

VIII. RELATED WORK

In [1], [14], the authors propose consistency protocols that
move the execution of actions to the clients. The task of
the server is to serialize actions and to forward them to
all relevant clients. Instead of using locality-based interest
management, the server takes the read and write sets of
actions and their transitive closure into account in order to
determine which actions conflict, influence each other, and
are relevant for which players. The protocols are optimistic
and allow the client to read stale data and to execute an
action first on this stale data. When the client later receives
the correct order of its action, it might have to reconcile.
Some of the presented protocols send, similar to our exact
protocol, to the client the current state of all objects to be
read by an action and possibly conflicting concurrent actions.
Only after having received this information can the client
send a confirmation back to the server with the final write
operations to be performed. However, client reads are not
considered as the protocol does not allow the player itself to
decide whether the action is still desirable to be executed.
Instead, it will be executed based on the conflicting data

39

received. Thus, the protocol appears to provide the level of
medium consistency.

Colyseus [4] uses primary-copy replication in its dis-
tributed architecture. It supports a rich query interface used
for interest management. Colyseus considers the problem
of missing replicas where a client’s view is missing an
object that should be visible. Such concern is addressed by
interest management, which is orthogonal to the focus of
our paper. Colyseus also considers missing or late updates
by specifying game-specific bounds on the staleness of
replicas, which we discussed in our models, especially at
the lower levels of consistency. The paper also considers
inconsistencies only at the replica level and not in the context
of transactions or the resulting conflicts between the masters
involved in an action.

Our low consistency model share similarities with weak
consistency models in replicated databases [15] where read-
only replicas have some form of bounded staleness. Such
staleness factors have been explored widely in the database
community. Materialized views, recently introduced for very
large distributed data stores [16], provide concise but some-
what stale read-only replicas. However, while work on mate-
rialized views is concerned with keeping the views updated,
they do not consider distributed update transactions that span
data read from the view and updates to the base table.
In [17], the authors discuss a middleware-based database
caching system where a transaction can read stale data from
the cache and then perform updates on the primary copy. The
authors describe staleness limits that restrict how much the
read cached versions may differ from the current value at the
primary copy. Our medium and high consistency protocols
have similarities with this approach but do not offer staleness
limits. In contrast, our approach considers several other
consistency levels and also considers distributed servers.

Our lower consistency categories rely on client-side com-
putation to achieve the desired scalability. This approach is
prone to cheating, as replica isolation is not maintained and
allow for faulty client reads. This issue can be addressed
by offloading computations to an external arbiter, such as
another client [18].

IX. CONCLUSIONS

We argue that a generic solution for handling MMOG
actions is not scalable. This paper proposes transactional
models which offer varying consistency properties suitable
for different MMOG actions. Action handling protocols can
then be optimized accordingly. Our performance analysis
shows that it is up to the developer to analyze each action
separately and determine the suitable category. The goal is
to make MMOGs scalable while maintaining the minimum
consistency required for the semantics of the game.

REFERENCES

[1] N. Gupta, A. Demers, J. Gehrke, P. Unterbrunner, and
W. White, “Scalability for virtual worlds,” ICDE, 2009.

[2] B. Dalton, “Online gaming architecture: Dealing with the
real-time data crunch in mmos,” in GDC, 2007.

[3] J. Kienzle, C. Verbrugge, B. Kemme, A. Denault, and
M. Hawker, “Mammoth: a massively multiplayer game re-
search framework,” in FDG, 2009.

[4] A. Bharambe, J. Pang, and S. Seshan, “Colyseus: a distributed
architecture for online multiplayer games,” in USENIX NSDI,
2006.

[5] F. Glinka, A. Ploss, S. Gorlatch, and J. Müller-Iden, “High-
level development of multiserver online games,” Int. J. Com-
put. Games Technol., 2008.

[6] T. Henderson, “Latency and user behaviour on a multiplayer
game server,” in COST264 NGC, 2001.

[7] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O’Neil,
and P. E. O’Neil, “A critique of ANSI SQL isolation levels,”
in SIGMOD, 1995.

[8] J.-S. Boulanger, J. Kienzle, and C. Verbrugge, “Comparing
interest management algorithms for massively multiplayer
games,” in ACM SIGCOMM NetGames, 2006.

[9] D. Lupei, B. Simion, D. Pinto, M. Misler, M. Burcea,
W. Krick, and C. Amza, “Towards scalable and transparent
parallelization of multiplayer games using transactional mem-
ory support,” in SIGPLAN PPOPP, 2010.

[10] A. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda,
J. Pang, S. Seshan, and X. Zhuang, “Donnybrook: enabling
large-scale, high-speed, peer-to-peer games,” SIGCOMM,
2008.

[11] J. Chen, B. Wu, M. DeLap, B. Knutsson, H. Lu, and C. Amza,
“Locality aware dynamic load management for massively
multiplayer games,” in SIGPLAN PPOPP, 2005.

[12] K. Zhang, B. Kemme, and A. Denault, “Persistence in
massively multiplayer online games,” in ACM SIGCOMM
NetGames, 2008.

[13] A. Botea, M. Müller, and J. Schaeffer, “Near optimal hierar-
chical path-finding,” Journal of Game Development, vol. 1,
2004.

[14] N. Gupta, A. J. Demers, and J. E. Gehrke, “SEMMO: a
scalable engine for massively multiplayer online games,” in
SIGMOD, 2008.

[15] A. Fekete, “Weak consistency models for replicated data,” in
Encyclopedia of Database Systems. Springer US, 2009.

[16] P. Agrawal, A. Silberstein, B. F. Cooper, U. Srivastava,
and R. Ramakrishnan, “Asynchronous view maintenance for
VLSD databases,” in SIGMOD, 2009.

[17] P. A. Bernstein, A. Fekete, H. Guo, R. Ramakrishnan, and
P. Tamma, “Relaxed-currency serializability for middle-tier
caching and replication,” in SIGMOD, 2006.

[18] J. Goodman and C. Verbrugge, “A peer auditing scheme
for cheat elimination in MMOGs,” in ACM SIGCOMM
NetGames, 2008.

40

