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Abstract: This paper presents a Least Popularly Used buffer 
cache algorithm to exploit both temporal locality and content 
locality of I/O requests. Popular data blocks are selected as 
reference blocks that are not only accessed frequently but also 
identical or similar in content to other blocks that are being 
accessed. Fast delta compression and decompression are used 
to satisfy as many I/O requests as possible using the popular 
reference blocks together with small deltas inside the buffer 
cache. The popularity of a reference block is calculated based 
on the statistical analysis of data contents and access frequency. 
A prototype LPU has been implemented as a new cache layer 
for Kernel Virtual Machine (KVM) on Linux system. 
Experimental results show LPU is effective for a variety of 
workloads with the maximum speed up of over 300% compared 
with LRU. 
 

1 Introduction 
While the capacity of disk drives grows rapidly, their 

electromechanical parts have held down the improvement 
of their performance. Buffer cache plays a critical role in 
modern operating systems bridging the gap between disk 
drive and main memory. Most existing storage cache 
algorithms, such as Least Recently Used (LRU), are 
based on the analysis of the sequence of disk addresses of 
I/O requests. Content locality has not been one of the 
major considerations to traditional cache designs.   

Content locality refers to the fact that many data 
blocks in disk storage share similar or even same content. 
Such content locality has been well known by the storage 
community and has been exploited in the design of 
backup storage and data replications. Content 
Addressable Storage (CAS) [1,2] and data de-duplication 
[ 3 , 4 ] are two examples of such data storage system 
designs.  CAS is the technique that stores and retrieves 
information based on its content, not its location. Data 
de-duplication techniques try to find identical blocks 
during data backups or replications so that only one copy 
is stored or transferred to save storage space or network 
bandwidth [5]. Research in both academia [6,7,8,9,10] 
and industry [4] has shown the effectiveness of such 
designs indicating the existence of strong content locality 
in data storage. 

The recent advancement of machine virtualization 
[11] has made content locality even stronger. In such a 
virtual machine environment, each guest virtual machine 
is allocated a virtual disk image for guest OS, application 
codes, and data. As a result, many data blocks in such 
data storage share similar or same content. Liguori and 
Hensbergen have found  high redundancy (79%-96%) of 
virtual disk images among different installations of 
Fedora 9 with Office, SDK, and Web [12]. For better 
resource consolidation, lower power consumption, easy 
management, and strong process isolation, data center 

servers in future cloud computing will have tens and even 
hundreds of virtual machines to provide service to 
thousands of computers and mobile devices [13] resulting 
in much more data redundancy than that running single 
OS.  This increasing data redundancy in virtual machines 
has been successfully exploited recently by Difference 
Engine [8] and Satori [10] to reduce memory 
consumption by means of page coalescing.  

The objective of this paper is to exploit the ever 
increasing content locality in buffer cache design to 
minimize disk I/O operations that are still the main 
bottleneck in computer systems. The idea is to 
dynamically identify the most popular data blocks that 
not only have the most access frequency and recency but 
also contain the information contents that are shared or 
resembled by other blocks being accessed. Such popular 
blocks are called reference blocks because their content   
may be exactly the same as or similar to other active 
blocks with very small differences.  By keeping such 
popular reference blocks and small deltas from other 
active blocks, most disk I/O operations are served by 
combining a reference block with the corresponding delta 
inside the buffer cache as opposed to going to the slow 
disk. A new cache replacement algorithm, Least 
Popularly Used (LPU), is developed based on the 
statistical analysis of frequency spectrum of both I/O 
addresses and I/O contents. LPU increases hit ratio of 
buffer cache greatly for the same cache size because of 
the strong content locality.  

A prototype LPU has been implemented on Linux 
platform as a new application level cache for Kernel 
Virtual Machine (KVM) [ 14 ]. A special metadata 
structure has been developed to effectively keep track of 
popular reference blocks. The popularity of a reference 
block is determined based on two orthogonal parameters, 
reference frequency and content signatures. Using the 
prototype, we have carried out extensive experiments to 
measure the performance of LPU as compared to LRU 
cache and data de-duplication. Experimental results have 
shown superb advantages of LPU over existing buffer 
cache algorithms. 

We define block popularity and present the 
replacement algorithm in the next section. Section 3 
presents the implementation of LPU on KVM. 
Experimental settings are discussed in Section 4, 
followed by related work in Section 5. Section 6 
concludes the paper. 

2 Overview of LPU Design 
The key to LPU is how to find blocks that are both 

accessed frequently and resembled by as many other 
blocks as possible. This section presents the algorithm to 
calculate popularity and the design of LPU. 
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2.1 Popularity 
In order to allow the buffer cache to be managed 

based on popularity, we need to determine and keep track 
of both access frequency and content signature of a 
cached block. For this purpose, each cache block is 
divided into S sub-blocks. A sub-signature is calculated 
for each of the S sub-blocks. A special two dimensional 
array, called Heatmap, is maintained in our LPU buffer 
cache design. The Heatmap has S rows and Vs columns, 
where Vs is the total number of possible signature values 
for a sub-block. For example, if the sub-signature is 8 bits, 
Vs = 256. Each entry in the Heatmap keeps a popularity 
value that is defined as the number of accesses of the sub-
block matching the corresponding signature value. As an 
example, consider Figure 1 that shows the 8×256 
Heatmap. In this example, each data block is divided into 
8 sub-blocks and has 8 corresponding signature values.  
When a block is accessed with sub-block signatures being 
55, 00, and so on as shown in Figure 1, the popularity 
value corresponding to column number 55 of the 1st row 
is incremented. Similarly, column number 0 of second 
row is also incremented. In this way, Heatmap keeps 
popularity values of all sub-signatures of sub-blocks.  

 
Figure 1.Sub-signatures and the Heatmap. 

 
To illustrate how Heatmap is organized and 

maintained as I/O requests are issued, consider a simple 
example where each cache block is divided into 2 sub-
blocks and each sub-signature has only four possible 
values,  i.e. Vs = 4. The Heatmap of this example is 
shown in Table 1 for a sequence of I/O requests accessing 
data blocks at addresses LBA1, LBA2, LBA3, and LBA4, 
respectively. Assume that all possible contents of sub-
blocks are A, B, C, and D and their corresponding 
signatures are a, b, c, and d, respectively. The Heatmap in 
this case contains 2 rows corresponding to 2 sub-blocks 
of each data block and 4 columns corresponding to 4 
possible signature values. As shown in this table, all 
entries of the Heatmap are initialized to {(0, 0, 0, 0), (0, 0, 
0, 0)}. Whenever a block is accessed, the popularities of 
corresponding sub-signatures in the Heatmap are 
incremented.  For instance, the first block has logical 
block address (LBA) of LBA1 with content (A, B) and 
signatures (a, b). As a result of the I/O request, two 
popularity values in the Heatmap are incremented 
corresponding to the two sub-signatures, and the 
Heatmap becomes {(1, 0, 0, 0), (0, 1, 0, 0)} as shown in 
Table 1.  After 4 requests, the Heatmap becomes {(2, 1, 1, 
0), (0, 1, 0, 3)}.    

In our current design, the size of a cache block is 
fixed at 4 KB. Each 4KB block is divided into 8 512-
bytes sub-blocks resulting in 8 sub-signatures to represent 
the content of a block. Unlike many existing content 
addressable storage systems, each sub-signature is 1 byte 

representing the sum of 4 bytes in a sub-block at offsets 0, 
16, 32, and 64, respectively, instead of the hash value of 
the sub-block. In this way, the computation overhead is 
substantially reduced. What is more important is that our 
objective is to find the similarity rather than identical 
blocks. Hashing is efficient to detect identical blocks, but 
it also lowers the chance of finding similarity because a 
single byte change results in a totally different hash value. 
Therefore, additional computation of hashing does not 
help in finding more similarities. On the other hand, LPU 
calculates the sha1 value of the whole block to determine 
identical blocks.  

I/O 
sequence 

Content Signature Heatmap[0] 
a  b  c  d 

Heatmap[1] 
a  b  c  d 

  Initialized 0  0  0  0 0  0  0  0 
LBA1 A B a b 1  0  0  0 0  1  0  0 
LBA2 C D c d 1  0  1  0 0  1  0  1 
LBA3 A D a d 2  0  1  0 0  1  0  2 
LBA4 B D b d 2  1  1  0 0  1  0  3 

Table 1. The buildup of heatmap. Each block has 2 sub-blocks 
represented by 2 sub-signatures each having 4 possible values Vs=4.  
 

With 4KB blocks, 512B sub-blocks, and 8 bits sub-
signature for each sub-block, we have Heatmap with 8 
rows corresponding to 8 sub-blocks and 256 columns to 
hold all possible signatures that a sub-block can have. 
Each time a block is read or written, its 8 1-byte sub-
signatures are retrieved and the 8 popularity values of 
corresponding entries in the Heatmap are increased by 
one. This frequency spectrum of content is the key 
difference between LPU and other cache algorithms. It is 
able to capture both the temporal locality and the content 
locality. If a block of the same address is accessed twice, 
the increase of corresponding popularity value in the 
Heatmap reflects the temporal locality. On the other hand, 
if two similar blocks with different addresses are 
accessed once each, the Heatmap can catch the content 
locality since the popularity values are incremented at 
entries that have matched signatures.  

In order to capture the content locality dynamically at 
runtime, LPU scans cached blocks after certain number 
of I/O requests. This number of I/O requests defines a 
scanning window. Within the scanning window, LPU 
examines the popularity values in the Heatmap and 
chooses most popular blocks as reference blocks. A 
reference block should contain the most frequently 
accessed sub-blocks so that many frequently accessed 
blocks share same contents with it. Our objective is to 
select a reference block in such a way to maximize the 
number of remaining blocks that have small differences 
from the reference block. In this way,   more I/O requests 
can be served by combining the reference block with 
small deltas.  

LBAs Block Popularity LRU Reference 
    A B C D A D B D 
LBA1 A B 2+1 = 3 A B A B A B _ B A B 
LBA2 C D 1+3 = 4 C D C D C D C _ C _ 
LBA3 A D 2+3 = 5 A D _ D A _ A D A _ 
LBA4 B D 1+3 = 4 B D B D B _ B _ B D 
  Cache space 4 3.5 3 2.5 3 

Table 2. Selection of a reference block. The popularities of all blocks 
are calculated according to the Heatmap of Table 1.  
 

Table 2 shows the calculation of popularity values 
and the cache space consumption using different choices 
of reference block for the example of Table 1. The 
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popularity value of a data block is the sum of all its sub-
block popularity values in the Heatmap. As shown in the 
table, the most popular block here is the data block at 
address LBA3 with content (A, D) and its popularity value 
is 5. Therefore, block (A, D) should be chosen as the 
reference block. Once the reference block is selected, 
LPU uses delta-coding to eliminate data redundancy. The 
result shows that using the most popular block (A, D) as 
the reference, cache space usage is minimum, about 2.5 
cache blocks assuming perfect delta encoding. Without 
considering content locality, a simple LRU would need 4 
cache blocks to keep the same hit ratio. The saved space 
can be used by LPU to cache more data. Figure 2 shows 
the data layout after selecting block (A, D) as the 
reference block.  

2.2 Cache Management 
LPU divides cache into 3 parts as shown in Figure 2: 

virtual block list, data blocks, and delta blocks. The 
virtual block list, referred to as LPU queue, stores all the 
information of cached disk blocks with each entry 
containing the address, the signature, the pointer to the 
reference block, and the pointer to delta blocks for the 
corresponding cached block. However, data is not stored 
in the LPU queue allowing a large number of virtual 
blocks to be managed as an LRU queue. The data pointer 
of a virtual block is NULL if the disk block represented 
by this virtual block has been evicted. The delta blocks 
are managed in 64-bytes small blocks. A virtual block 
can have one or more delta blocks due to (i) this virtual 
block refers to a reference block; (ii) this virtual block is 
a reference block and has been written since it was 
selected as a reference. As long as there are sufficient 
delta blocks, a virtual block can always keep its delta 
block even its data block is evicted. Our current 
implementation assumes a fixed portion of LPU cache for 
delta blocks and making the size of deltas adaptive to 
workloads is our future research work. 

A virtual block can be one of three different types: 
reference block, associate block, or independent block. 
An associate block is a virtual block that is associated 
with a reference block together with a delta that is the 
difference between the content of the associate block and 
the reference block. An independent block is a virtual 
block that has no associated reference block in the cache. 

When a disk block is accessed the first time and 
brought in the cache, a virtual block and a data block are 
allocated to cache it. Before this virtual block is selected 
as a reference block or associate block, it is an 
independent block so that data is read from or written to 
its data block. Its signature is updated upon every write 
request. Once it is selected as a reference block or 
associate block, one or more delta blocks are allocated for 
this virtual block. A write request to a virtual block that is 
an associate block needs to read its reference block first, 
calculate the difference using delta-coding, and write the 
difference to the delta block. Read request to an associate 
block combines its delta and the reference block to obtain 
its data. As a result, a reference block is always ahead of 
its associate blocks in the LPU queue because accesses to 
its associate blocks also need to access the reference 
block. Similarly, write requests to a reference block need 

update its delta blocks. But the signature of the block 
does not change since its data is being referred. Read 
requests to the changed reference block needs combine 
with its delta block. 

 
Figure 2. The data layout of LPU buffer cache. 

 
To manage cached data blocks described above, we 

need to consider 3 kinds of replacements. The first is 
virtual block replacement when there is no available 
virtual block. LPU searches from the end of the LPU 
queue and replaces the first non-reference block. This 
kind of replacement rarely happens because the number 
of virtual blocks is large. The second is data block 
replacement. LPU searches from the end of LPU queue 
and replaces the first data block. The data block of a 
reference block also can be evicted indicating that the 
reference block and its associate blocks have not been 
accessed for a long time. The third is delta replacement 
which leads to virtual block replacement. LPU searches 
from the end of the LPU queue, replaces the first block 
that has delta and is not a reference. Both the data block 
and the delta block are released. To save delta block 
space, a block disconnects the link to its reference if this 
block has been changed a lot. The criterion in current 
implementation is whether the delta is larger than 768 
bytes which will be discussed later. Once the link is 
disconnected, all read and write requests go to its data 
block directly. 

3 Implementation 
We have implemented LPU on Linux platform with 

about 5,000 lines of code. LRU and data de-duplication 
are also implemented for the purpose of performance 
comparison with LPU.  

 
Figure 3. LPU cache is implemented as a software module inside KVM.  

3.1 System architecture 
Our LPU is designed as a cache layer within KVM. 

As shown in Figure 3, it works at application level 
providing a block level cache to guest operating systems 
making use of the virtual disk driver of KVM. The I/O 
function of KVM depends on QEMU [15] that is able to 
emulate many virtual devices including virtual disk drive. 
In the guest operating system, the kernel driver for the 
virtual disk receives I/O requests and sends them to the 
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QEMU host kernel driver in the host operating system. 
The QEMU host kernel driver passes these I/Os to 
QEMU application module to perform actual disk I/O. 
Upon completion of an I/O, the QEMU application 
module informs QEMU host kernel module, and then the 
driver in guest operating system, and finally data is 
returned to the guest operating system. LPU provides 
disk operation APIs such as open/close, read/write to be 
called by the QEMU application module. Caching is done 
within the LPU module and is transparent to QEMU. 
Working in the application module of KVM also enables 
LPU to collect more information of I/O requests such as 
filename and virtual machine id which are not available 
at kernel block level. 

The I/O requests captured by LPU are identified as 
virtual blocks and managed by the LPU queue. The LPU 
queue is scanned after every 50,000 I/O requests to select 
reference blocks based on their popularities. Popularity 
value alone is not sufficient for determining reference 
blocks because some highly popular blocks are very 
similar to each other. For example, “00” is observed to be 
the most frequently used signature. If the signature of the 
first block is “00 00 00 00 00 00 00 00”, the signature of 
the second one is likely to be “80 00 00 00 00 00 00 00”. 
For good performance, the second block should refer to 
the first block instead of being selected as a reference 
block. Therefore, LPU picks up 20,000 warm blocks in 
the LPU queue and groups them to ensure reference 
blocks are sufficiently different from each other so that 
we can have as many associate blocks as possible. For 
this purpose, the signature of a candidate reference block 
is compared with the reference blocks that have been 
selected.  The candidate reference block is discarded if 7 
or more sub-block signatures match those of any one of 
other reference blocks.  Our experimental evaluation 
shows this method works very effectively in selecting 
reference blocks. The associate-to-reference delta 
compression ratio with this selection method ranges from 
20:1 to 30:1 on average. 

3.2 Caching in KVM 
To emulate a virtual IDE drive, QEMU monitors the 

IDE command port, for example 0x170-0x177, to get 
IDE commands sent by the guest virtual machine. The 
read and write IDE commands are handled by registered 
callback functions and are finally translated into read and 
write requests to the virtual disk image file in the host 
machine. The entire processing of an I/O request is at 
application level which makes it possible to develop a 
cache layer in QEMU. However QEMU does not provide 
storage cache because data sharing in application level is 
not as straight forward as in kernel level.  Several issues 
arise to share data and exchange message between virtual 
machines and the LPU cache. 

The first issue is how to share data between virtual 
machines. LPU uses mapping files to build a shared 
buffer for all virtual machines. Each virtual machine 
opens the same temporary file, e.g. “/tmp/vmshare”, and 
call mmap() function to establish a mapping between its 
memory address and the temporary file. The shared data 
stores both cache block and the mutex to protect the 
consistency of shared data. Since each process in Linux 

has its own memory space so data cannot be transferred 
by passing the pointer from one virtual machine to 
another.  The buffer Id replaces the use of pointer in most 
cases especially for organizing queue data structure. 

The second issue is asynchronous I/O. QEMU uses 
both synchronous I/O and asynchronous I/O to read and 
write data. We need to implement all I/O interfaces to 
replace the corresponding system calls. Table 3 lists the 
APIs provided by LPU. For synchronous I/Os, QEMU 
calls open_share() to get the handle of target file. Read 
and write requests are sent to read_share() and 
write_share(), respectively, and the results are returned at 
the end of the calls. Asynchronous I/O aio_read_share() 
and aio_write_share() return immediately without 
finishing the request. The request is queued to a separate 
aio thread to be processed later. The caller process can 
either query the status using aio_error_share() or wait for 
the completion signal. We need to emulate the signal of 
what kernel driver does after finishing a request. The aio 
thread setups the signal mask to be the same as QEMU 
and sends out SIGUSR2 on which QEMU is waiting. 

 
API name Description 
open_share Open file 
close_share Close file handle 
read_share Synchronous read data  
write_share Synchronous write data  
aio_read_share Asynchronous read data 
aio_write_share Asynchronous write data 
aio_error_share Asynchronous query status 
aio_return_share Asynchronous complete request 
aio_cancel_share Asynchronous cancel request 

Table 3. I/O APIs provided by LPU 
 

The third issue is context switching. This issue 
occurs when flushing evicted block and accessing 
reference blocks. For example, virtual machine A needs 
to replace block_b in the cache, and block_b belongs to 
file_b which is opened by virtual machine B. Though the 
handle of the file_b is stored in the cache table, virtual 
machine A cannot use that handle to write block_b back 
because file handle is not allowed to be shared between 
processes. So virtual machine A has to open file_b itself 
to write file_b back. To reduce the unnecessary file 
open/close operations, LPU maintains a small temporary 
buffer for blocks that are loaded and evicted by different 
processes. When the temporary buffer is full, the current 
process opens related files to flush all temporary blocks.  

The last but not the least issue is the impact of Linux 
buffer cache. File system cache and buffer cache make it 
difficult to evaluate LPU accurately compared with other 
cache algorithms. To deal with this issue, we first limit 
the size of allocated RAM for each virtual machine to 
192MB to meet the minimum requirement for all 
benchmarks so that little free RAM is left for Linux 
buffer cache that makes use of all available free RAM. 
Secondly, LPU bypasses the host system cache by 
specifying O_DIRECT flag while opening files and 
aligns the buffer to 512 bytes for read and write request. 
Therefore, we can evaluate LPU as a second level storage 
cache without any underlying cache. 
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3.3 Scanning and Coalescing 
Each time when the LPU queue is scanned to select 

reference block, 20,000 warm blocks are picked up and 
divided into two groups: the reference blocks and the 
remaining warm blocks as the candidate for associate 
blocks. For each candidate associate block, LPU tries to 
find the most similar reference block. To make the search 
fast, an array, reference_index[8][256], is used to store 
pointers to reference blocks with matching sub-signature. 
For example, the pointers to the reference blocks which 
have the first sub-signature of “10” are stored in 
reference_index[0][10]. Each candidate associate block 
finds the maximum similarity between its signature and 
any of reference blocks using reference_index[8][256].  

Two threshold values are used to connect an 
associate block with a reference block: similarity 
threshold and delta threshold. When the maximal 
similarity between a candidate associate block and a 
reference block exceeds the similarity threshold, zdelta 
compression [16] is performed for the candidate associate 
block. Then we examine the length of the delta result. If 
it is less than or equal to a delta threshold, the candidate 
associate block is selected to be associated with the 
reference block. Otherwise, it is false positive and the 
candidate associate block remains as an independent bock. 
The similarity threshold determines whether a candidate 
associate block needs to do delta-coding and the delta 
threshold determines how many eligible associate blocks 
can be found. The smaller the similarity threshold is, the 
more delta encodings are needed increasing the 
computation overhead. The smaller the delta threshold is, 
on the other hand, the less number of associate blocks can 
be found giving rise to more false positive. We use 7 for 
similarity threshold and 768 bytes as delta threshold in 
our current implementation based on our empirical 
observations. The average number of false positive is 
controlled to below 50 for each scan. 

LPU does not allow cascading references, which 
increases the coding complexity and degrades 
performance. If an associate block is selected as a 
reference, it will be replaced using its reference block 
instead.  

4 Experiments and Evaluations 

4.1 Experiment Settings 
Two server machines are used to characterize LPU’s 

performance. The primary server, which hosts virtual 
machines, is a Dell PowerEdge T410 with 1.8GHz Xeon 
CPU, 2GB RAM, and 160G Dell SATA drive. A Dell 
Precision 690 with 1.6GHz Xeon CPU, 2GB RAM, and 
400G Seagate SATA drive is the secondary server to 
generate client requests for benchmarks. The two servers 
are connected using a gigabit Ethernet switch. The host 
OS and virtual guest OS are both Ubuntu 8.10 server 
edition while the host OS has GUI needed to run KVM.  

To be able to evaluate the performance of LPU, we 
need real world I/O workloads that have meaningful 
contents as well as access patterns similar to real 
applications. We have selected 7 standard benchmarks in 
our performance evaluation experiments as shown in 
Table 4. Each of the first 6 benchmarks runs with the 

same configuration on 5 virtual machines, and the Mixed 
workload runs 5 different benchmarks concurrently. 

 
Abbrev. Name Description 
RU RUBiS e-Commerce web server workload 
TP TPCC-UVA Database server workload 
SM SPECmail2009 Mail server workload 
SB SPECwebBank Online banking 
SE SPECwebEcommerce Online store selling computers 
SS SPECwebSupport Vendor support website 
MX Mixed Heterogeneous workload 

Table 4. Benchmarks used to evaluate LPU. 
 

RUBiS is an auction site prototype which is similar 
to eBay [ 17 ]. It evaluates the performance of an e-
commerce server simulating the auction operations such 
as selling, browsing and bidding. Each virtual machine 
has Apache, Mysql, PHP, and RUBiS client, and the 
database is initialized using the sample database provided 
by RUBiS. Each virtual machine is tested by 20 clients 
with 60 minutes running time. TPC-C is a benchmark to 
model the operations on real-time transactions. We us 
TPCC-UVA [18] on Postgres database with 2 warehouses, 
10 clients, and 60 minutes measure time. 

SPECmail2009 [19] measures the ability of a system 
to act as an enterprise mail server using the Internet 
standard protocols SMTP and IMAP4. We install Postfix  
as the SMTP service and Dovecot as the IMAP service. 
SPECmail2009 is configured to use 20 clients and 30 
minutes measure time. SPECweb2009 [20] provides the 
capabilities of measuring both SSL and non-SSL 
request/response performance of a web server. One 
workload generator emulates the arrivals and activities of 
10 clients to each virtual web server under test. Each 
virtual server is installed with Apache and PHP support. 
The secondary server works as a backend application and 
database server to communicate with each virtual server. 
The SPECwebEcommerce is designed to simulate a web 
server that sells computer systems which allows end user 
to search, browse, customize, and purchase product. The 
SPECwebSupport simulate the workload of a vendor’s 
support web site. 10 clients are setup to test each virtual 
server for both SPECwebEcommerce and SPECweb-
Support. The duration of each test is 30 minutes. 

The Mixed benchmarks setup 5 virtual machines 
running RUBiS, TPC-C, SPECmail2009, SPECwebBank, 
and SPECwebEcommerce concurrently. It is used to 
evaluate LPU’s effectiveness under heterogeneous 
workloads. We stop all 5 virtual machines after running 
for about 40 minutes. 

For the purpose of performance comparison, we have 
implemented two baseline buffer cache algorithms. The 
first baseline system is the traditional LRU cache that 
manages the buffer cache using the least recently used 
algorithm. The second baseline system adds data de-
duplication mechanism in the LRU buffer cache (De-
Dup). In this De-Dup buffer cache system, only one of 
identical data blocks is cached in the buffer cache. 
Duplications are eliminated leaving only pointers to the 
cached identical block. Upon a write to one of the 
identical blocks, a copy is made in the buffer cache.  

We run 5 virtual machines to generate a variety of 
I/O workloads following the benchmark specs. In 
addition to I/O rates, space efficiency and computational 
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overheads of LPU are also measured as compared with 
the LRU baseline and the De-Dup baseline. 

4.2 Numerical Results and Evaluations 

4.2.1 Performance Evaluations and Comparisons 
Our first experiment is to measure the cache hit 

ratios of the three buffer cache systems: LRU cache, De-
Dup cache, and LPU cache. During our experiments, we 
observed substantial improvements in terms of cache hit 
ratios. For example, when all the virtual machines are 
running SPECweb-Ecommerce benchmark with buffer 
cache size of 256MB, we measured the cache hit ratios to 
be 37%, 49%, and 57% for LRU, De-Dup, and LPU 
caches, respectively. LPU shows 54% and 16% 
performance improvements over LRU cache and De-Dup 
cache, respectively. Similar performance improvements 
have been observed for other benchmarks. When we run 
mixed workloads on 5 virtual machines with the same 
cache size (256MB), the measured hit ratios are 49%, 
49%, and 80% for LRU, De-Dup, and LPU caches, 
respectively, indicating 63% improvement of LPU over 
LRU and De-Dup caches.   

The primary reason why LPU cache shows such 
great hit ratio improvement over the De-Dup cache in this 
case is that when mixed workloads are running on the 
virtual machines, De-Dup is not able to find many 
identical cached data blocks. On the other hand, LPU can 
find many similar cached data blocks and is able to 
exploit such content locality much better than De-Dup 
cache by using delta compression and decompression to 
keep small deltas and reference blocks in the buffer cache. 

Comparing hit ratios of LPU cache with those of 
LRU and De-Dup caches is not a fair performance 
comparison because LPU needs online compression and 
decompression. In other words, even though LPU has 
higher hit ratios than the other two baseline caches, it 
may not show better I/O performance because of the 
extra computation overheads. In order to provide a fair 
performance comparison, we concentrated our 
experiments on the ultimate I/O performance in terms of 
I/O rates of the benchmarks.  

Figure 4 shows the I/O rate of the three buffer cache 
systems while running RUBiS benchmark. The cache size 
ranges from 64MB to 1GB. The size of the delta cache of 
LPU is fixed at min{16MB, total_cache_size/8}. It can be 
seen from Figure 4 that LPU performs much better than 
LRU. For the cache size of 512MB, LPU cache triples the 
performance of LRU cache, i.e. LPU performs 3 times as 
good as the LRU cache. This substantial performance 
improvement clearly indicates the effectiveness of the 
new cache algorithm. Compared to the De-Dup cache, 
LPU shows about 20% performance improvement for the 
same cache size. To understand the performance 
improvement better, we analyzed the I/O activities and 
found that a reference block has 3 associated blocks on 
average. Therefore, the effective virtual cache size is 
doubled if 1/3 of the cache blocks are reference blocks. 
This space saving goes higher as more virtual machines 
are added because of the increase of data redundancy.  

Performance results of TPCC-UVA benchmark are 
shown in Figure 5 in terms of I/O rates. Because of large 
working set of the TPC-C benchmark, we observed that 

the performance difference among the three buffer cache 
systems increases as the cache size increases. The 
performance improvements of LPU over LRU and De-
Dup caches are about 100% and 15%, respectively, for 
cache size of 1GB.  We noticed that TPCC-UVA shows 
less performance improvement than RUBiS because of its 
high write I/O rate.  The read to write ratio of TPCC-
UVA is about 1:1 while that of RUBiS is about 3:1. 
Write requests affect LPU’s performance negatively 
because of the following reasons. A write to a reference 
block is redirected to the reference’s delta block. In the 
worst case, a reference block can occupy twice as much 
as the original block implying less effective use of cache 
space. Such writes may also cause other blocks to be 
evicted to make room for the additional delta block for 
the reference block. Another reason is that when the write 
request is to an associate block, LPU needs to do delta-
coding test to see if the change is too large. Such test 
involves reading old data and calculating new delta. The 
new data might become an independent block if the new 
delta is larger than 768B. This process is relatively 
expensive compared with LRU.  

 

 
   Figure 4. I/O rate of RUBiS.          Figure 5. I/O rate of TPCC-UVA.   
 

  
Figure 6. I/O rate of SPECmail.     Figure 7. I/O rate of SPECwebBank. 
 

  
  Figure 8. SPECwebEcommerce.       Figure 9. SPECwebSupport. 
 

The SPECMail and SPECWeb performances are 
shown in Figures 6 to 9. While LPU cache performs 
constantly better than the other two, we noticed that the 
performance gains of these four benchmarks are not as 
high as the benchmarks discussed previously. To 
understand the reason of such performance differences, 
we recorded and analyzed the I/O sequence of each 
benchmark. The results reveals that LPU performs better 
for RUBiS and TPCC-UVA because 70% of the blocks 
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are accessed at least 2 times, while over 60% of the 
blocks of SPECmail, SPECwebBank, SPECwebEcom-
merce, and SPECwebSupport are accessed only once. 
The increased virtual cache size is not able to contribute 
to the hit ratio with such low repetitive access patterns.  

From the performance results shown in Figures 4 to 
9, we noticed that our LPU cache improves the 
performance of De-Dup cache by 10% to 20%.  Our next 
experiment is to run the Mixed workloads and measured 
results are shown in Figure 10. In this case, the buffer 
cache contains data blocks from different applications 
and different data sets. It is interesting to observe in 
Figure 10 that the new LPU cache almost doubled the 
performance of both LRU cache and De-Dup cache for 
cache sizes of 128MB and 256MB. For small cache size 
of 64MB, the effective virtual cache size of LPU is much 
less than the working set of the benchmark resulting in 
limited performance gain. On the other hand, large cache 
of 1GB is able to hold most of data blocks making all 
three cache algorithms perform well. It is important to 
note the advantage of LPU cache in effectively managing 
the buffer cache with limited cache size that may not be 
large enough with respect to the working set of running 
applications. With ever increasing demands for larger 
data set of many applications, effective buffer cache 
designs that better exploit data locality under hardware 
constraints  are clearly desirable. As a future work, we 
are currently looking at minimizing CPU overhead of 
LPU so that it performs better than traditional caches 
over a wide range of cache sizes and workload mixes. 
One possible solution is to offload some of the 
computations to the embedded CPU on a HBA card. 

 

 
Figure 10. I/O rate of Mixed workloads. 

 

 
Figure 11. Application performance and CPU utilization of RUBiS. 

 

 
Figure 12. Application performance and CPU utilization of TPCC-UVA. 

Figure 11(a) shows throughput comparisons from 
application view point.  LPU shows 20% higher 
throughput than LRU, and 5% higher than De-Dup when 
cache size is 256MB or larger. Figure 12(a) shows the 
transaction rate measured using TPCC-UVA benchmark. 
When cache size is 256MB or larger, LPU is able to 
finish about 50% and 20% more transactions per minute 
than LRU and De-Dup, respectively. Figures 11(b) and 
12(b) also show the corresponding CPU utilizations. The 
CPU utilization of LPU increases faster not only because 
of the computation overhead, but also because more 
instructions can be executed within the same time period 
because of reduced disk activities.  

4.2.2 Coalescing Efficiency 
The efficiency of a content based cache algorithm can 

be evaluated by looking at the number of blocks that are 
found to be similar. Figure 13 shows the ratio of 
reference blocks, associate blocks, and independent 
blocks for different benchmarks with cache size of 
256MB.  The figure shows that LPU can coalesce 30%-
150% more blocks than De-Dup cache. For TPCC-UVA, 
SPECwebBank, SPECwebEcommerce, and SPECweb-
Support, over 50% of the total blocks are coalesced by 
LPU. And the average delta size is less than 10MB.  

More virtual machines have more data redundancy. 
Figure 14 shows the performance change as the number 
of virtual machines is increased running the RUBiS 
benchmark. It is clear from this figure that the advantages 
of LPU over LRU and De-Dup get larger as more virtual 
machines are spawned.  

 

 
Figure 13. Comparison of the number of Coalesced blocks. 

 

 
Figure14. I/O rate and #of machines.  Figure15. Delta coding and similarity. 

4.2.3 Overhead Evaluation 
Virtual block list is the additional data structure 

required to implement LPU and hence all virtual blocks 
are the addition storage overhead. Each virtual block 
stores the addresses and signatures requiring total of 60 
bytes. Therefore, 1GB cache needs 15MB virtual blocks 
if the cache block is 4KB giving rise to the space 
overhead of about 1.5%. All other metadata including the 
Heatmap is less than 100KB. Increasing the size of cache 
block can reduce the space overhead of metadata at the 
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cost of increasing computation cost for compressions and 
decompressions.  

The additional computation overhead of LPU 
includes on-the-fly delta decompression and scanning 
overhead of each scanning window (after every 50,000 
I/O requests). The on-the-fly delta decompression time 
was measured in our experiments to be less than 60 
microseconds for each I/O access to an associate block.  
The computation cost of scanning after each scanning 
window is measured and shown in Figure 15. As shown 
in Figure 15, the time to do delta coding for two 4KB 
blocks is inversely proportional to the similarity between 
the source and the reference. It takes about 400 
microseconds to compress if the similarity is 7. Among 
the 20,000 warm blocks, we can normally find 2,000 
blocks as new reference blocks and about 2,000 other 
additional blocks can find reference blocks with 
similarity greater than or equal to 7. Therefore, the time 
to do delta coding in each scan is less than 1 second. One 
aspect of our future work is to use embedded system or 
GPU to offload the computation overhead from CPU. 

5 Related Work 

5.1 Buffer Cache 
Most of existing caching algorithms focus on 

exploring the temporal locality. FBR [ 21] factors out 
locality out of frequency by not increasing the reference 
count for the cache blocks within a section that starts 
from the head of LRU queue. The length of the section 
needs to be tuned for different workloads. O’Neil et.al 
proposed LRU-K [ 22 ] which is able to discriminate 
frequently referenced and infrequently referenced pages 
by tracking the times of the last K references to popular 
database pages. Specifically, the authors discussed LRU-
2 for K = 2 which takes the last two references into 
account. LRU-2 is able to remove cold blocks quickly but 
less effective for workload without strong frequency. 2Q 
[23] introduces one FIFO queue A1in, and two LRU lists: 
A1out and Am. A missed block is placed in A1in, and its 
address is stored in A1out if it is replaced. If this block is 
referenced again and its address is found in A1out, it is 
promoted to Am where frequently accessed blocks are 
stored. By tuning the size of A1in and A1out, 2Q can 
achieve similar performance as LRU-2 with constant 
overhead. LRFU [24] calculates Combined Recency and 
Frequency (CRF) for each block which covers the 
spectrum between LRU and LFU. LRFU needs to adjust 
the value of λ for different applications. 

MQ [25] was proposed to improve the performance 
of second level cache.  Multiple LRU queues: Q0, …, Qm-
1, and a history queue Qout are used to keep warm blocks 
in high level LRU queue. MQ is effective to catch the 
frequently accessed blocks that have long distance 
between two accesses. ARC [26] dynamically balances 
recency and frequency by maintaining two LRU lists, L1 
and L2. L1 stores pages that have been seen only once to 
capture recency, and L2 stores pages that have been seen 
at least twice to capture frequency. ARC is adaptive 
because the target size p of T1 which is the top part of L1 
is adaptive to workload. LIRS [27] provides the ability to 
deal with both strong and weak locality. Cache blocks are 

replaced according to their recent Inter-Reference 
Recency (IRR). Cache is divided into High Inter-
Reference Recency (HIR) blocks and Low Inter-reference 
Recency (LIR) blocks. LIRS replace HIR blocks and a 
block in HIR gets promoted to LIR if its IRR is smaller 
than the maximum recency of all LIR blocks. 

GCLOCK [28] is a generalized version of CLOCK 
which associates a counter with each page to carry its 
weight. CAR [29] maintains two lists which are similar to 
ARC and make CLOCK adaptive to different workloads. 
CLOCK-Pro [ 30 ] uses the reuse distance instead of 
recency which is similar to LIRS while keeping the 
overhead low. CLOCK-Pro has shown its effectiveness 
and been adopted by Linux kernel. Jiang et al proposed 
DULO [31] to filter random requests and pass sequential 
requests to disk considering both temporal and spatial 
locality.  

These cache algorithms are all based on tracking and 
analyzing the addresses of I/O requests. LPU’s approach 
is orthogonal to existing buffer cache algorithms. It is a 
new method to analyze I/O requests that can be used on 
any of the algorithms described above. 

5.2 Content Redundancy Reduction 
LPU was inspired by the research studies and 

applications which aim to reduce the redundancy in 
storage systems. REBL [32] leverages delta-encoding to 
eliminate redundancy within large collections of files at 
block level. Venti [1] is a network storage systems which 
divides files into fixed-sized blocks and uses SHA1 value 
as identifier to coalesce duplicated blocks to reduce the 
consumption of disk storage space. Rsync [ 33 ] 
accelerates file synchronization by sending only 
difference between two files. Suel et al. enhanced the 
performance of Rsync by a two-phases protocol which 
includes map construction phase and delta compression 
phase [34]. TAPER [35] is another hierarchical protocol 
with each phase operates over decreasing data granularity 
for efficient data replication. Different from Rsync, LBFS 
[5] is able to find difference among multiple files using 
content-defined chunks. CBBC [3] maintains a single 
copy of duplicated blocks as well as eliminates silent 
writes. Spring and Wetherall proposed a technique to 
identify repetitive information of network traffic such as 
web proxy caching [36]. Yang et al leverage content 
similarity for write requests to reduce storage space for 
recovery [37][38][39]. Delta encoding has been used to 
extend the redundancy reduction research to similar data 
blocks, not only for identical blocks [40][41].  

Liguori and Hensbergen [12] built a service-oriented 
file system on Venti to reduce the duplicated data 
between multiple virtual machine disk images. 
Foundation [6] works under multiple virtual machines to 
lower the size requirement for archiving snapshots of 
virtual disk images with inexpensive hardware. 
Waldspurger described that VMware ESX Server 
developed a content-based page sharing technique for 
identical memory pages [7]. Difference Engine [8] 
successfully enlarges memory space and improves 
memory performance through in-core memory 
compression by leveraging page patching. Memory 
Buddies [9] detects and collocates similar virtual 

280280



 

machines on the same physical host to increase the 
potential of sharing identical pages. Satori [10] monitors 
identical blocks at block driver level, and passes sharing 
hint to modified guest operating system. A sharing 
entitlement mechanism encourages guest virtual 
machines to share memory with others. Clements et al 
proposed DEDE [42] to avoid cross-host communication 
when eliminating duplication in VMFS cluster file 
system.  

LPU differs from these existing works in the new 
solution to select reference blocks and a new buffer cache 
management algorithm to optimize both the space usage 
and the performance of buffer cache. Several interesting 
works on data de-duplication have been reported 
[43,44,45] after our paper submission to improve I/O 
performance. These results further showed potential 
benefits of exploiting content locality of I/O operations.  

6 Conclusions 
 

In this paper, we have presented a novel buffer cache 
design that exploits both temporal locality and content 
locality of disk operations. A new least popularly used 
(LPU) replacement algorithm has been developed that 
manages the buffer cache based on the popularity of a 
data block. A data block is considered to be popular if it 
is not only accessed frequently but also contains contents 
that are same to or resembled by other accessed blocks. A 
set of most popular blocks in the cache are selected to be 
reference blocks that can serve a large number of I/O 
requests by combining with small deltas. A prototype 
LPU buffer cache has been designed and implemented on 
KVM virtual machine environment of Linux OS.  
Extensive experiments have been carried out using the 
prototype LPU cache to measure its performance as 
compared to traditional LRU cache. Experimental results 
have shown that for some workloads LPU improves 
cache performance greatly while for other workloads it 
has limited performance gain.  

We are currently working on efficient ways of 
calculating signatures to catch data redundancy among 
data blocks even after bit-wise shift happens, which, we 
believe, will allow LPU to improve cache performance 
even further. Our future research also includes offloading 
some of the necessary computations of LPU to HBAs or 
other types of embedded boards. 
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