

A New Buffer Cache Design Exploiting both Temporal and Content Localities

Jin Ren and Qing Yang
Dept of Electrical, Computer, and Biomedical Engineering

University of Rhode Island, Kingston, RI
Email: {rjin, qyang}@ele.uri.edu

Abstract: This paper presents a Least Popularly Used buffer
cache algorithm to exploit both temporal locality and content
locality of I/O requests. Popular data blocks are selected as
reference blocks that are not only accessed frequently but also
identical or similar in content to other blocks that are being
accessed. Fast delta compression and decompression are used
to satisfy as many I/O requests as possible using the popular
reference blocks together with small deltas inside the buffer
cache. The popularity of a reference block is calculated based
on the statistical analysis of data contents and access frequency.
A prototype LPU has been implemented as a new cache layer
for Kernel Virtual Machine (KVM) on Linux system.
Experimental results show LPU is effective for a variety of
workloads with the maximum speed up of over 300% compared
with LRU.

1 Introduction
While the capacity of disk drives grows rapidly, their

electromechanical parts have held down the improvement
of their performance. Buffer cache plays a critical role in
modern operating systems bridging the gap between disk
drive and main memory. Most existing storage cache
algorithms, such as Least Recently Used (LRU), are
based on the analysis of the sequence of disk addresses of
I/O requests. Content locality has not been one of the
major considerations to traditional cache designs.

Content locality refers to the fact that many data
blocks in disk storage share similar or even same content.
Such content locality has been well known by the storage
community and has been exploited in the design of
backup storage and data replications. Content
Addressable Storage (CAS) [1,2] and data de-duplication
[3 , 4] are two examples of such data storage system
designs. CAS is the technique that stores and retrieves
information based on its content, not its location. Data
de-duplication techniques try to find identical blocks
during data backups or replications so that only one copy
is stored or transferred to save storage space or network
bandwidth [5]. Research in both academia [6,7,8,9,10]
and industry [4] has shown the effectiveness of such
designs indicating the existence of strong content locality
in data storage.

The recent advancement of machine virtualization
[11] has made content locality even stronger. In such a
virtual machine environment, each guest virtual machine
is allocated a virtual disk image for guest OS, application
codes, and data. As a result, many data blocks in such
data storage share similar or same content. Liguori and
Hensbergen have found high redundancy (79%-96%) of
virtual disk images among different installations of
Fedora 9 with Office, SDK, and Web [12]. For better
resource consolidation, lower power consumption, easy
management, and strong process isolation, data center

servers in future cloud computing will have tens and even
hundreds of virtual machines to provide service to
thousands of computers and mobile devices [13] resulting
in much more data redundancy than that running single
OS. This increasing data redundancy in virtual machines
has been successfully exploited recently by Difference
Engine [8] and Satori [10] to reduce memory
consumption by means of page coalescing.

The objective of this paper is to exploit the ever
increasing content locality in buffer cache design to
minimize disk I/O operations that are still the main
bottleneck in computer systems. The idea is to
dynamically identify the most popular data blocks that
not only have the most access frequency and recency but
also contain the information contents that are shared or
resembled by other blocks being accessed. Such popular
blocks are called reference blocks because their content
may be exactly the same as or similar to other active
blocks with very small differences. By keeping such
popular reference blocks and small deltas from other
active blocks, most disk I/O operations are served by
combining a reference block with the corresponding delta
inside the buffer cache as opposed to going to the slow
disk. A new cache replacement algorithm, Least
Popularly Used (LPU), is developed based on the
statistical analysis of frequency spectrum of both I/O
addresses and I/O contents. LPU increases hit ratio of
buffer cache greatly for the same cache size because of
the strong content locality.

A prototype LPU has been implemented on Linux
platform as a new application level cache for Kernel
Virtual Machine (KVM) [14]. A special metadata
structure has been developed to effectively keep track of
popular reference blocks. The popularity of a reference
block is determined based on two orthogonal parameters,
reference frequency and content signatures. Using the
prototype, we have carried out extensive experiments to
measure the performance of LPU as compared to LRU
cache and data de-duplication. Experimental results have
shown superb advantages of LPU over existing buffer
cache algorithms.

We define block popularity and present the
replacement algorithm in the next section. Section 3
presents the implementation of LPU on KVM.
Experimental settings are discussed in Section 4,
followed by related work in Section 5. Section 6
concludes the paper.

2 Overview of LPU Design
The key to LPU is how to find blocks that are both

accessed frequently and resembled by as many other
blocks as possible. This section presents the algorithm to
calculate popularity and the design of LPU.

2010 International Conference on Distributed Computing Systems

1063-6927/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDCS.2010.26

273

2010 International Conference on Distributed Computing Systems

1063-6927/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDCS.2010.26

273

2.1 Popularity
In order to allow the buffer cache to be managed

based on popularity, we need to determine and keep track
of both access frequency and content signature of a
cached block. For this purpose, each cache block is
divided into S sub-blocks. A sub-signature is calculated
for each of the S sub-blocks. A special two dimensional
array, called Heatmap, is maintained in our LPU buffer
cache design. The Heatmap has S rows and Vs columns,
where Vs is the total number of possible signature values
for a sub-block. For example, if the sub-signature is 8 bits,
Vs = 256. Each entry in the Heatmap keeps a popularity
value that is defined as the number of accesses of the sub-
block matching the corresponding signature value. As an
example, consider Figure 1 that shows the 8×256
Heatmap. In this example, each data block is divided into
8 sub-blocks and has 8 corresponding signature values.
When a block is accessed with sub-block signatures being
55, 00, and so on as shown in Figure 1, the popularity
value corresponding to column number 55 of the 1st row
is incremented. Similarly, column number 0 of second
row is also incremented. In this way, Heatmap keeps
popularity values of all sub-signatures of sub-blocks.

Figure 1.Sub-signatures and the Heatmap.

To illustrate how Heatmap is organized and

maintained as I/O requests are issued, consider a simple
example where each cache block is divided into 2 sub-
blocks and each sub-signature has only four possible
values, i.e. Vs = 4. The Heatmap of this example is
shown in Table 1 for a sequence of I/O requests accessing
data blocks at addresses LBA1, LBA2, LBA3, and LBA4,
respectively. Assume that all possible contents of sub-
blocks are A, B, C, and D and their corresponding
signatures are a, b, c, and d, respectively. The Heatmap in
this case contains 2 rows corresponding to 2 sub-blocks
of each data block and 4 columns corresponding to 4
possible signature values. As shown in this table, all
entries of the Heatmap are initialized to {(0, 0, 0, 0), (0, 0,
0, 0)}. Whenever a block is accessed, the popularities of
corresponding sub-signatures in the Heatmap are
incremented. For instance, the first block has logical
block address (LBA) of LBA1 with content (A, B) and
signatures (a, b). As a result of the I/O request, two
popularity values in the Heatmap are incremented
corresponding to the two sub-signatures, and the
Heatmap becomes {(1, 0, 0, 0), (0, 1, 0, 0)} as shown in
Table 1. After 4 requests, the Heatmap becomes {(2, 1, 1,
0), (0, 1, 0, 3)}.

In our current design, the size of a cache block is
fixed at 4 KB. Each 4KB block is divided into 8 512-
bytes sub-blocks resulting in 8 sub-signatures to represent
the content of a block. Unlike many existing content
addressable storage systems, each sub-signature is 1 byte

representing the sum of 4 bytes in a sub-block at offsets 0,
16, 32, and 64, respectively, instead of the hash value of
the sub-block. In this way, the computation overhead is
substantially reduced. What is more important is that our
objective is to find the similarity rather than identical
blocks. Hashing is efficient to detect identical blocks, but
it also lowers the chance of finding similarity because a
single byte change results in a totally different hash value.
Therefore, additional computation of hashing does not
help in finding more similarities. On the other hand, LPU
calculates the sha1 value of the whole block to determine
identical blocks.

I/O
sequence

Content Signature Heatmap[0]
a b c d

Heatmap[1]
a b c d

 Initialized 0 0 0 0 0 0 0 0
LBA1 A B a b 1 0 0 0 0 1 0 0
LBA2 C D c d 1 0 1 0 0 1 0 1
LBA3 A D a d 2 0 1 0 0 1 0 2
LBA4 B D b d 2 1 1 0 0 1 0 3

Table 1. The buildup of heatmap. Each block has 2 sub-blocks
represented by 2 sub-signatures each having 4 possible values Vs=4.

With 4KB blocks, 512B sub-blocks, and 8 bits sub-
signature for each sub-block, we have Heatmap with 8
rows corresponding to 8 sub-blocks and 256 columns to
hold all possible signatures that a sub-block can have.
Each time a block is read or written, its 8 1-byte sub-
signatures are retrieved and the 8 popularity values of
corresponding entries in the Heatmap are increased by
one. This frequency spectrum of content is the key
difference between LPU and other cache algorithms. It is
able to capture both the temporal locality and the content
locality. If a block of the same address is accessed twice,
the increase of corresponding popularity value in the
Heatmap reflects the temporal locality. On the other hand,
if two similar blocks with different addresses are
accessed once each, the Heatmap can catch the content
locality since the popularity values are incremented at
entries that have matched signatures.

In order to capture the content locality dynamically at
runtime, LPU scans cached blocks after certain number
of I/O requests. This number of I/O requests defines a
scanning window. Within the scanning window, LPU
examines the popularity values in the Heatmap and
chooses most popular blocks as reference blocks. A
reference block should contain the most frequently
accessed sub-blocks so that many frequently accessed
blocks share same contents with it. Our objective is to
select a reference block in such a way to maximize the
number of remaining blocks that have small differences
from the reference block. In this way, more I/O requests
can be served by combining the reference block with
small deltas.

LBAs Block Popularity LRU Reference
 A B C D A D B D
LBA1 A B 2+1 = 3 A B A B A B _ B A B
LBA2 C D 1+3 = 4 C D C D C D C _ C _
LBA3 A D 2+3 = 5 A D _ D A _ A D A _
LBA4 B D 1+3 = 4 B D B D B _ B _ B D
 Cache space 4 3.5 3 2.5 3

Table 2. Selection of a reference block. The popularities of all blocks
are calculated according to the Heatmap of Table 1.

Table 2 shows the calculation of popularity values
and the cache space consumption using different choices
of reference block for the example of Table 1. The

55
00
...
...
...
...
...
...

Signature 00 ... 55 ... FF

Popularity i++

Signature 00 FF

Popularity j++

Heatmap[0][256]

Heatmap[1][256]

Signature 00 FF

Popularity

Heatmap[7][256]

8
su

b-
si

gn
at

ur
es

 fo
r a

 b
lo

ck

274274

popularity value of a data block is the sum of all its sub-
block popularity values in the Heatmap. As shown in the
table, the most popular block here is the data block at
address LBA3 with content (A, D) and its popularity value
is 5. Therefore, block (A, D) should be chosen as the
reference block. Once the reference block is selected,
LPU uses delta-coding to eliminate data redundancy. The
result shows that using the most popular block (A, D) as
the reference, cache space usage is minimum, about 2.5
cache blocks assuming perfect delta encoding. Without
considering content locality, a simple LRU would need 4
cache blocks to keep the same hit ratio. The saved space
can be used by LPU to cache more data. Figure 2 shows
the data layout after selecting block (A, D) as the
reference block.

2.2 Cache Management
LPU divides cache into 3 parts as shown in Figure 2:

virtual block list, data blocks, and delta blocks. The
virtual block list, referred to as LPU queue, stores all the
information of cached disk blocks with each entry
containing the address, the signature, the pointer to the
reference block, and the pointer to delta blocks for the
corresponding cached block. However, data is not stored
in the LPU queue allowing a large number of virtual
blocks to be managed as an LRU queue. The data pointer
of a virtual block is NULL if the disk block represented
by this virtual block has been evicted. The delta blocks
are managed in 64-bytes small blocks. A virtual block
can have one or more delta blocks due to (i) this virtual
block refers to a reference block; (ii) this virtual block is
a reference block and has been written since it was
selected as a reference. As long as there are sufficient
delta blocks, a virtual block can always keep its delta
block even its data block is evicted. Our current
implementation assumes a fixed portion of LPU cache for
delta blocks and making the size of deltas adaptive to
workloads is our future research work.

A virtual block can be one of three different types:
reference block, associate block, or independent block.
An associate block is a virtual block that is associated
with a reference block together with a delta that is the
difference between the content of the associate block and
the reference block. An independent block is a virtual
block that has no associated reference block in the cache.

When a disk block is accessed the first time and
brought in the cache, a virtual block and a data block are
allocated to cache it. Before this virtual block is selected
as a reference block or associate block, it is an
independent block so that data is read from or written to
its data block. Its signature is updated upon every write
request. Once it is selected as a reference block or
associate block, one or more delta blocks are allocated for
this virtual block. A write request to a virtual block that is
an associate block needs to read its reference block first,
calculate the difference using delta-coding, and write the
difference to the delta block. Read request to an associate
block combines its delta and the reference block to obtain
its data. As a result, a reference block is always ahead of
its associate blocks in the LPU queue because accesses to
its associate blocks also need to access the reference
block. Similarly, write requests to a reference block need

update its delta blocks. But the signature of the block
does not change since its data is being referred. Read
requests to the changed reference block needs combine
with its delta block.

Figure 2. The data layout of LPU buffer cache.

To manage cached data blocks described above, we

need to consider 3 kinds of replacements. The first is
virtual block replacement when there is no available
virtual block. LPU searches from the end of the LPU
queue and replaces the first non-reference block. This
kind of replacement rarely happens because the number
of virtual blocks is large. The second is data block
replacement. LPU searches from the end of LPU queue
and replaces the first data block. The data block of a
reference block also can be evicted indicating that the
reference block and its associate blocks have not been
accessed for a long time. The third is delta replacement
which leads to virtual block replacement. LPU searches
from the end of the LPU queue, replaces the first block
that has delta and is not a reference. Both the data block
and the delta block are released. To save delta block
space, a block disconnects the link to its reference if this
block has been changed a lot. The criterion in current
implementation is whether the delta is larger than 768
bytes which will be discussed later. Once the link is
disconnected, all read and write requests go to its data
block directly.

3 Implementation
We have implemented LPU on Linux platform with

about 5,000 lines of code. LRU and data de-duplication
are also implemented for the purpose of performance
comparison with LPU.

Figure 3. LPU cache is implemented as a software module inside KVM.

3.1 System architecture
Our LPU is designed as a cache layer within KVM.

As shown in Figure 3, it works at application level
providing a block level cache to guest operating systems
making use of the virtual disk driver of KVM. The I/O
function of KVM depends on QEMU [15] that is able to
emulate many virtual devices including virtual disk drive.
In the guest operating system, the kernel driver for the
virtual disk receives I/O requests and sends them to the

275275

QEMU host kernel driver in the host operating system.
The QEMU host kernel driver passes these I/Os to
QEMU application module to perform actual disk I/O.
Upon completion of an I/O, the QEMU application
module informs QEMU host kernel module, and then the
driver in guest operating system, and finally data is
returned to the guest operating system. LPU provides
disk operation APIs such as open/close, read/write to be
called by the QEMU application module. Caching is done
within the LPU module and is transparent to QEMU.
Working in the application module of KVM also enables
LPU to collect more information of I/O requests such as
filename and virtual machine id which are not available
at kernel block level.

The I/O requests captured by LPU are identified as
virtual blocks and managed by the LPU queue. The LPU
queue is scanned after every 50,000 I/O requests to select
reference blocks based on their popularities. Popularity
value alone is not sufficient for determining reference
blocks because some highly popular blocks are very
similar to each other. For example, “00” is observed to be
the most frequently used signature. If the signature of the
first block is “00 00 00 00 00 00 00 00”, the signature of
the second one is likely to be “80 00 00 00 00 00 00 00”.
For good performance, the second block should refer to
the first block instead of being selected as a reference
block. Therefore, LPU picks up 20,000 warm blocks in
the LPU queue and groups them to ensure reference
blocks are sufficiently different from each other so that
we can have as many associate blocks as possible. For
this purpose, the signature of a candidate reference block
is compared with the reference blocks that have been
selected. The candidate reference block is discarded if 7
or more sub-block signatures match those of any one of
other reference blocks. Our experimental evaluation
shows this method works very effectively in selecting
reference blocks. The associate-to-reference delta
compression ratio with this selection method ranges from
20:1 to 30:1 on average.

3.2 Caching in KVM
To emulate a virtual IDE drive, QEMU monitors the

IDE command port, for example 0x170-0x177, to get
IDE commands sent by the guest virtual machine. The
read and write IDE commands are handled by registered
callback functions and are finally translated into read and
write requests to the virtual disk image file in the host
machine. The entire processing of an I/O request is at
application level which makes it possible to develop a
cache layer in QEMU. However QEMU does not provide
storage cache because data sharing in application level is
not as straight forward as in kernel level. Several issues
arise to share data and exchange message between virtual
machines and the LPU cache.

The first issue is how to share data between virtual
machines. LPU uses mapping files to build a shared
buffer for all virtual machines. Each virtual machine
opens the same temporary file, e.g. “/tmp/vmshare”, and
call mmap() function to establish a mapping between its
memory address and the temporary file. The shared data
stores both cache block and the mutex to protect the
consistency of shared data. Since each process in Linux

has its own memory space so data cannot be transferred
by passing the pointer from one virtual machine to
another. The buffer Id replaces the use of pointer in most
cases especially for organizing queue data structure.

The second issue is asynchronous I/O. QEMU uses
both synchronous I/O and asynchronous I/O to read and
write data. We need to implement all I/O interfaces to
replace the corresponding system calls. Table 3 lists the
APIs provided by LPU. For synchronous I/Os, QEMU
calls open_share() to get the handle of target file. Read
and write requests are sent to read_share() and
write_share(), respectively, and the results are returned at
the end of the calls. Asynchronous I/O aio_read_share()
and aio_write_share() return immediately without
finishing the request. The request is queued to a separate
aio thread to be processed later. The caller process can
either query the status using aio_error_share() or wait for
the completion signal. We need to emulate the signal of
what kernel driver does after finishing a request. The aio
thread setups the signal mask to be the same as QEMU
and sends out SIGUSR2 on which QEMU is waiting.

API name Description
open_share Open file
close_share Close file handle
read_share Synchronous read data
write_share Synchronous write data
aio_read_share Asynchronous read data
aio_write_share Asynchronous write data
aio_error_share Asynchronous query status
aio_return_share Asynchronous complete request
aio_cancel_share Asynchronous cancel request

Table 3. I/O APIs provided by LPU

The third issue is context switching. This issue
occurs when flushing evicted block and accessing
reference blocks. For example, virtual machine A needs
to replace block_b in the cache, and block_b belongs to
file_b which is opened by virtual machine B. Though the
handle of the file_b is stored in the cache table, virtual
machine A cannot use that handle to write block_b back
because file handle is not allowed to be shared between
processes. So virtual machine A has to open file_b itself
to write file_b back. To reduce the unnecessary file
open/close operations, LPU maintains a small temporary
buffer for blocks that are loaded and evicted by different
processes. When the temporary buffer is full, the current
process opens related files to flush all temporary blocks.

The last but not the least issue is the impact of Linux
buffer cache. File system cache and buffer cache make it
difficult to evaluate LPU accurately compared with other
cache algorithms. To deal with this issue, we first limit
the size of allocated RAM for each virtual machine to
192MB to meet the minimum requirement for all
benchmarks so that little free RAM is left for Linux
buffer cache that makes use of all available free RAM.
Secondly, LPU bypasses the host system cache by
specifying O_DIRECT flag while opening files and
aligns the buffer to 512 bytes for read and write request.
Therefore, we can evaluate LPU as a second level storage
cache without any underlying cache.

276276

3.3 Scanning and Coalescing
Each time when the LPU queue is scanned to select

reference block, 20,000 warm blocks are picked up and
divided into two groups: the reference blocks and the
remaining warm blocks as the candidate for associate
blocks. For each candidate associate block, LPU tries to
find the most similar reference block. To make the search
fast, an array, reference_index[8][256], is used to store
pointers to reference blocks with matching sub-signature.
For example, the pointers to the reference blocks which
have the first sub-signature of “10” are stored in
reference_index[0][10]. Each candidate associate block
finds the maximum similarity between its signature and
any of reference blocks using reference_index[8][256].

Two threshold values are used to connect an
associate block with a reference block: similarity
threshold and delta threshold. When the maximal
similarity between a candidate associate block and a
reference block exceeds the similarity threshold, zdelta
compression [16] is performed for the candidate associate
block. Then we examine the length of the delta result. If
it is less than or equal to a delta threshold, the candidate
associate block is selected to be associated with the
reference block. Otherwise, it is false positive and the
candidate associate block remains as an independent bock.
The similarity threshold determines whether a candidate
associate block needs to do delta-coding and the delta
threshold determines how many eligible associate blocks
can be found. The smaller the similarity threshold is, the
more delta encodings are needed increasing the
computation overhead. The smaller the delta threshold is,
on the other hand, the less number of associate blocks can
be found giving rise to more false positive. We use 7 for
similarity threshold and 768 bytes as delta threshold in
our current implementation based on our empirical
observations. The average number of false positive is
controlled to below 50 for each scan.

LPU does not allow cascading references, which
increases the coding complexity and degrades
performance. If an associate block is selected as a
reference, it will be replaced using its reference block
instead.

4 Experiments and Evaluations

4.1 Experiment Settings
Two server machines are used to characterize LPU’s

performance. The primary server, which hosts virtual
machines, is a Dell PowerEdge T410 with 1.8GHz Xeon
CPU, 2GB RAM, and 160G Dell SATA drive. A Dell
Precision 690 with 1.6GHz Xeon CPU, 2GB RAM, and
400G Seagate SATA drive is the secondary server to
generate client requests for benchmarks. The two servers
are connected using a gigabit Ethernet switch. The host
OS and virtual guest OS are both Ubuntu 8.10 server
edition while the host OS has GUI needed to run KVM.

To be able to evaluate the performance of LPU, we
need real world I/O workloads that have meaningful
contents as well as access patterns similar to real
applications. We have selected 7 standard benchmarks in
our performance evaluation experiments as shown in
Table 4. Each of the first 6 benchmarks runs with the

same configuration on 5 virtual machines, and the Mixed
workload runs 5 different benchmarks concurrently.

Abbrev. Name Description
RU RUBiS e-Commerce web server workload
TP TPCC-UVA Database server workload
SM SPECmail2009 Mail server workload
SB SPECwebBank Online banking
SE SPECwebEcommerce Online store selling computers
SS SPECwebSupport Vendor support website
MX Mixed Heterogeneous workload

Table 4. Benchmarks used to evaluate LPU.

RUBiS is an auction site prototype which is similar
to eBay [17]. It evaluates the performance of an e-
commerce server simulating the auction operations such
as selling, browsing and bidding. Each virtual machine
has Apache, Mysql, PHP, and RUBiS client, and the
database is initialized using the sample database provided
by RUBiS. Each virtual machine is tested by 20 clients
with 60 minutes running time. TPC-C is a benchmark to
model the operations on real-time transactions. We us
TPCC-UVA [18] on Postgres database with 2 warehouses,
10 clients, and 60 minutes measure time.

SPECmail2009 [19] measures the ability of a system
to act as an enterprise mail server using the Internet
standard protocols SMTP and IMAP4. We install Postfix
as the SMTP service and Dovecot as the IMAP service.
SPECmail2009 is configured to use 20 clients and 30
minutes measure time. SPECweb2009 [20] provides the
capabilities of measuring both SSL and non-SSL
request/response performance of a web server. One
workload generator emulates the arrivals and activities of
10 clients to each virtual web server under test. Each
virtual server is installed with Apache and PHP support.
The secondary server works as a backend application and
database server to communicate with each virtual server.
The SPECwebEcommerce is designed to simulate a web
server that sells computer systems which allows end user
to search, browse, customize, and purchase product. The
SPECwebSupport simulate the workload of a vendor’s
support web site. 10 clients are setup to test each virtual
server for both SPECwebEcommerce and SPECweb-
Support. The duration of each test is 30 minutes.

The Mixed benchmarks setup 5 virtual machines
running RUBiS, TPC-C, SPECmail2009, SPECwebBank,
and SPECwebEcommerce concurrently. It is used to
evaluate LPU’s effectiveness under heterogeneous
workloads. We stop all 5 virtual machines after running
for about 40 minutes.

For the purpose of performance comparison, we have
implemented two baseline buffer cache algorithms. The
first baseline system is the traditional LRU cache that
manages the buffer cache using the least recently used
algorithm. The second baseline system adds data de-
duplication mechanism in the LRU buffer cache (De-
Dup). In this De-Dup buffer cache system, only one of
identical data blocks is cached in the buffer cache.
Duplications are eliminated leaving only pointers to the
cached identical block. Upon a write to one of the
identical blocks, a copy is made in the buffer cache.

We run 5 virtual machines to generate a variety of
I/O workloads following the benchmark specs. In
addition to I/O rates, space efficiency and computational

277277

overheads of LPU are also measured as compared with
the LRU baseline and the De-Dup baseline.

4.2 Numerical Results and Evaluations

4.2.1 Performance Evaluations and Comparisons
Our first experiment is to measure the cache hit

ratios of the three buffer cache systems: LRU cache, De-
Dup cache, and LPU cache. During our experiments, we
observed substantial improvements in terms of cache hit
ratios. For example, when all the virtual machines are
running SPECweb-Ecommerce benchmark with buffer
cache size of 256MB, we measured the cache hit ratios to
be 37%, 49%, and 57% for LRU, De-Dup, and LPU
caches, respectively. LPU shows 54% and 16%
performance improvements over LRU cache and De-Dup
cache, respectively. Similar performance improvements
have been observed for other benchmarks. When we run
mixed workloads on 5 virtual machines with the same
cache size (256MB), the measured hit ratios are 49%,
49%, and 80% for LRU, De-Dup, and LPU caches,
respectively, indicating 63% improvement of LPU over
LRU and De-Dup caches.

The primary reason why LPU cache shows such
great hit ratio improvement over the De-Dup cache in this
case is that when mixed workloads are running on the
virtual machines, De-Dup is not able to find many
identical cached data blocks. On the other hand, LPU can
find many similar cached data blocks and is able to
exploit such content locality much better than De-Dup
cache by using delta compression and decompression to
keep small deltas and reference blocks in the buffer cache.

Comparing hit ratios of LPU cache with those of
LRU and De-Dup caches is not a fair performance
comparison because LPU needs online compression and
decompression. In other words, even though LPU has
higher hit ratios than the other two baseline caches, it
may not show better I/O performance because of the
extra computation overheads. In order to provide a fair
performance comparison, we concentrated our
experiments on the ultimate I/O performance in terms of
I/O rates of the benchmarks.

Figure 4 shows the I/O rate of the three buffer cache
systems while running RUBiS benchmark. The cache size
ranges from 64MB to 1GB. The size of the delta cache of
LPU is fixed at min{16MB, total_cache_size/8}. It can be
seen from Figure 4 that LPU performs much better than
LRU. For the cache size of 512MB, LPU cache triples the
performance of LRU cache, i.e. LPU performs 3 times as
good as the LRU cache. This substantial performance
improvement clearly indicates the effectiveness of the
new cache algorithm. Compared to the De-Dup cache,
LPU shows about 20% performance improvement for the
same cache size. To understand the performance
improvement better, we analyzed the I/O activities and
found that a reference block has 3 associated blocks on
average. Therefore, the effective virtual cache size is
doubled if 1/3 of the cache blocks are reference blocks.
This space saving goes higher as more virtual machines
are added because of the increase of data redundancy.

Performance results of TPCC-UVA benchmark are
shown in Figure 5 in terms of I/O rates. Because of large
working set of the TPC-C benchmark, we observed that

the performance difference among the three buffer cache
systems increases as the cache size increases. The
performance improvements of LPU over LRU and De-
Dup caches are about 100% and 15%, respectively, for
cache size of 1GB. We noticed that TPCC-UVA shows
less performance improvement than RUBiS because of its
high write I/O rate. The read to write ratio of TPCC-
UVA is about 1:1 while that of RUBiS is about 3:1.
Write requests affect LPU’s performance negatively
because of the following reasons. A write to a reference
block is redirected to the reference’s delta block. In the
worst case, a reference block can occupy twice as much
as the original block implying less effective use of cache
space. Such writes may also cause other blocks to be
evicted to make room for the additional delta block for
the reference block. Another reason is that when the write
request is to an associate block, LPU needs to do delta-
coding test to see if the change is too large. Such test
involves reading old data and calculating new delta. The
new data might become an independent block if the new
delta is larger than 768B. This process is relatively
expensive compared with LRU.

 Figure 4. I/O rate of RUBiS. Figure 5. I/O rate of TPCC-UVA.

Figure 6. I/O rate of SPECmail. Figure 7. I/O rate of SPECwebBank.

 Figure 8. SPECwebEcommerce. Figure 9. SPECwebSupport.

The SPECMail and SPECWeb performances are
shown in Figures 6 to 9. While LPU cache performs
constantly better than the other two, we noticed that the
performance gains of these four benchmarks are not as
high as the benchmarks discussed previously. To
understand the reason of such performance differences,
we recorded and analyzed the I/O sequence of each
benchmark. The results reveals that LPU performs better
for RUBiS and TPCC-UVA because 70% of the blocks

0

500

1000

1500

2000

64 128 256 512 1024

IO
PS

Cache Size (MB)

LRU
De-Dup
LPU

0

100

200

300

400

500

64 128 256 512 1024

IO
PS

Cache Size (MB)

LRU
De-Dup
LPU

0

50

100

150

200

250

64 128 256 512 1024

IO
PS

Cache Size (MB)

LRU
De-Dup
LPU

0

100

200

300

400

64 128 256 512 1024

IO
PS

Cache Size (MB)

LRU
De-Dup
LPU

0

50

100

150

200

250

64 128 256 512 1024

IO
PS

Cache Size (MB)

LRU
De-Dup
LPU

0

100

200

300

400

500

64 128 256 512 1024

IO
PS

Cache Size (MB)

LRU
De-Dup
LPU

278278

are accessed at least 2 times, while over 60% of the
blocks of SPECmail, SPECwebBank, SPECwebEcom-
merce, and SPECwebSupport are accessed only once.
The increased virtual cache size is not able to contribute
to the hit ratio with such low repetitive access patterns.

From the performance results shown in Figures 4 to
9, we noticed that our LPU cache improves the
performance of De-Dup cache by 10% to 20%. Our next
experiment is to run the Mixed workloads and measured
results are shown in Figure 10. In this case, the buffer
cache contains data blocks from different applications
and different data sets. It is interesting to observe in
Figure 10 that the new LPU cache almost doubled the
performance of both LRU cache and De-Dup cache for
cache sizes of 128MB and 256MB. For small cache size
of 64MB, the effective virtual cache size of LPU is much
less than the working set of the benchmark resulting in
limited performance gain. On the other hand, large cache
of 1GB is able to hold most of data blocks making all
three cache algorithms perform well. It is important to
note the advantage of LPU cache in effectively managing
the buffer cache with limited cache size that may not be
large enough with respect to the working set of running
applications. With ever increasing demands for larger
data set of many applications, effective buffer cache
designs that better exploit data locality under hardware
constraints are clearly desirable. As a future work, we
are currently looking at minimizing CPU overhead of
LPU so that it performs better than traditional caches
over a wide range of cache sizes and workload mixes.
One possible solution is to offload some of the
computations to the embedded CPU on a HBA card.

Figure 10. I/O rate of Mixed workloads.

Figure 11. Application performance and CPU utilization of RUBiS.

Figure 12. Application performance and CPU utilization of TPCC-UVA.

Figure 11(a) shows throughput comparisons from
application view point. LPU shows 20% higher
throughput than LRU, and 5% higher than De-Dup when
cache size is 256MB or larger. Figure 12(a) shows the
transaction rate measured using TPCC-UVA benchmark.
When cache size is 256MB or larger, LPU is able to
finish about 50% and 20% more transactions per minute
than LRU and De-Dup, respectively. Figures 11(b) and
12(b) also show the corresponding CPU utilizations. The
CPU utilization of LPU increases faster not only because
of the computation overhead, but also because more
instructions can be executed within the same time period
because of reduced disk activities.

4.2.2 Coalescing Efficiency
The efficiency of a content based cache algorithm can

be evaluated by looking at the number of blocks that are
found to be similar. Figure 13 shows the ratio of
reference blocks, associate blocks, and independent
blocks for different benchmarks with cache size of
256MB. The figure shows that LPU can coalesce 30%-
150% more blocks than De-Dup cache. For TPCC-UVA,
SPECwebBank, SPECwebEcommerce, and SPECweb-
Support, over 50% of the total blocks are coalesced by
LPU. And the average delta size is less than 10MB.

More virtual machines have more data redundancy.
Figure 14 shows the performance change as the number
of virtual machines is increased running the RUBiS
benchmark. It is clear from this figure that the advantages
of LPU over LRU and De-Dup get larger as more virtual
machines are spawned.

Figure 13. Comparison of the number of Coalesced blocks.

Figure14. I/O rate and #of machines. Figure15. Delta coding and similarity.

4.2.3 Overhead Evaluation
Virtual block list is the additional data structure

required to implement LPU and hence all virtual blocks
are the addition storage overhead. Each virtual block
stores the addresses and signatures requiring total of 60
bytes. Therefore, 1GB cache needs 15MB virtual blocks
if the cache block is 4KB giving rise to the space
overhead of about 1.5%. All other metadata including the
Heatmap is less than 100KB. Increasing the size of cache
block can reduce the space overhead of metadata at the

0

500

1000

64 128 256 512 1024

IO
PS

Cache Size (MB)

LRU
De-Dup
LPU

0

20

40

60

80

100

64 128 256 512 1024

Re
qu

es
t/

s

Cache Size (MB)

LRU
De-Dup
LPU

(a)

0

20

40

60

80

100

64 128 256 512 1024

CP
U

 U
ti

liz
at

io
n%

Cache Size (MB)

LRU
De-Dup
LPU

(b)

0

50

100

150

200

64 128 256 512 1024

Tr
an

sa
ct

io
ns

/m
in

Cache Size (MB)

LRU
De-Dup
LPU

(a)

0

20

40

60

80

100

64 128 256 512 1024

CP
U

 U
ti

liz
at

io
n%

Cache Size (MB)

LRU
De-Dup
LPU

(b)

0

200000

400000

RU
-D

eD
up

RU
-L

PU

TP
-D

eD
up

TP
-L

PU

SM
-D

eD
up

SM
-L

PU

SB
-D

eD
up

SB
-L

PU

SE
-D

eD
up

SE
-L

PU

SS
-D

eD
up

SS
-L

PU

M
X-

D
eD

up

M
X-

LP
U

N
um

be
r

of
 B

lo
ck

s

Reference Associate Independent

Cache Size=256MB

0

200

400

600

800

1 2 4 6

IO
PS

LRU
De-Dup
LPU

#of Virtual Machins

0

2000

4000

6000

0

500

1000

0 1 2 3 4 5 6 7 8 D
el

ta
 le

ng
th

 (b
yt

es
)

Ti
m

e
(u

s)

Similarity
Compression time
Decomprssion time
Delta length

279279

cost of increasing computation cost for compressions and
decompressions.

The additional computation overhead of LPU
includes on-the-fly delta decompression and scanning
overhead of each scanning window (after every 50,000
I/O requests). The on-the-fly delta decompression time
was measured in our experiments to be less than 60
microseconds for each I/O access to an associate block.
The computation cost of scanning after each scanning
window is measured and shown in Figure 15. As shown
in Figure 15, the time to do delta coding for two 4KB
blocks is inversely proportional to the similarity between
the source and the reference. It takes about 400
microseconds to compress if the similarity is 7. Among
the 20,000 warm blocks, we can normally find 2,000
blocks as new reference blocks and about 2,000 other
additional blocks can find reference blocks with
similarity greater than or equal to 7. Therefore, the time
to do delta coding in each scan is less than 1 second. One
aspect of our future work is to use embedded system or
GPU to offload the computation overhead from CPU.

5 Related Work

5.1 Buffer Cache
Most of existing caching algorithms focus on

exploring the temporal locality. FBR [21] factors out
locality out of frequency by not increasing the reference
count for the cache blocks within a section that starts
from the head of LRU queue. The length of the section
needs to be tuned for different workloads. O’Neil et.al
proposed LRU-K [22] which is able to discriminate
frequently referenced and infrequently referenced pages
by tracking the times of the last K references to popular
database pages. Specifically, the authors discussed LRU-
2 for K = 2 which takes the last two references into
account. LRU-2 is able to remove cold blocks quickly but
less effective for workload without strong frequency. 2Q
[23] introduces one FIFO queue A1in, and two LRU lists:
A1out and Am. A missed block is placed in A1in, and its
address is stored in A1out if it is replaced. If this block is
referenced again and its address is found in A1out, it is
promoted to Am where frequently accessed blocks are
stored. By tuning the size of A1in and A1out, 2Q can
achieve similar performance as LRU-2 with constant
overhead. LRFU [24] calculates Combined Recency and
Frequency (CRF) for each block which covers the
spectrum between LRU and LFU. LRFU needs to adjust
the value of λ for different applications.

MQ [25] was proposed to improve the performance
of second level cache. Multiple LRU queues: Q0, …, Qm-
1, and a history queue Qout are used to keep warm blocks
in high level LRU queue. MQ is effective to catch the
frequently accessed blocks that have long distance
between two accesses. ARC [26] dynamically balances
recency and frequency by maintaining two LRU lists, L1
and L2. L1 stores pages that have been seen only once to
capture recency, and L2 stores pages that have been seen
at least twice to capture frequency. ARC is adaptive
because the target size p of T1 which is the top part of L1
is adaptive to workload. LIRS [27] provides the ability to
deal with both strong and weak locality. Cache blocks are

replaced according to their recent Inter-Reference
Recency (IRR). Cache is divided into High Inter-
Reference Recency (HIR) blocks and Low Inter-reference
Recency (LIR) blocks. LIRS replace HIR blocks and a
block in HIR gets promoted to LIR if its IRR is smaller
than the maximum recency of all LIR blocks.

GCLOCK [28] is a generalized version of CLOCK
which associates a counter with each page to carry its
weight. CAR [29] maintains two lists which are similar to
ARC and make CLOCK adaptive to different workloads.
CLOCK-Pro [30] uses the reuse distance instead of
recency which is similar to LIRS while keeping the
overhead low. CLOCK-Pro has shown its effectiveness
and been adopted by Linux kernel. Jiang et al proposed
DULO [31] to filter random requests and pass sequential
requests to disk considering both temporal and spatial
locality.

These cache algorithms are all based on tracking and
analyzing the addresses of I/O requests. LPU’s approach
is orthogonal to existing buffer cache algorithms. It is a
new method to analyze I/O requests that can be used on
any of the algorithms described above.

5.2 Content Redundancy Reduction
LPU was inspired by the research studies and

applications which aim to reduce the redundancy in
storage systems. REBL [32] leverages delta-encoding to
eliminate redundancy within large collections of files at
block level. Venti [1] is a network storage systems which
divides files into fixed-sized blocks and uses SHA1 value
as identifier to coalesce duplicated blocks to reduce the
consumption of disk storage space. Rsync [33]
accelerates file synchronization by sending only
difference between two files. Suel et al. enhanced the
performance of Rsync by a two-phases protocol which
includes map construction phase and delta compression
phase [34]. TAPER [35] is another hierarchical protocol
with each phase operates over decreasing data granularity
for efficient data replication. Different from Rsync, LBFS
[5] is able to find difference among multiple files using
content-defined chunks. CBBC [3] maintains a single
copy of duplicated blocks as well as eliminates silent
writes. Spring and Wetherall proposed a technique to
identify repetitive information of network traffic such as
web proxy caching [36]. Yang et al leverage content
similarity for write requests to reduce storage space for
recovery [37][38][39]. Delta encoding has been used to
extend the redundancy reduction research to similar data
blocks, not only for identical blocks [40][41].

Liguori and Hensbergen [12] built a service-oriented
file system on Venti to reduce the duplicated data
between multiple virtual machine disk images.
Foundation [6] works under multiple virtual machines to
lower the size requirement for archiving snapshots of
virtual disk images with inexpensive hardware.
Waldspurger described that VMware ESX Server
developed a content-based page sharing technique for
identical memory pages [7]. Difference Engine [8]
successfully enlarges memory space and improves
memory performance through in-core memory
compression by leveraging page patching. Memory
Buddies [9] detects and collocates similar virtual

280280

machines on the same physical host to increase the
potential of sharing identical pages. Satori [10] monitors
identical blocks at block driver level, and passes sharing
hint to modified guest operating system. A sharing
entitlement mechanism encourages guest virtual
machines to share memory with others. Clements et al
proposed DEDE [42] to avoid cross-host communication
when eliminating duplication in VMFS cluster file
system.

LPU differs from these existing works in the new
solution to select reference blocks and a new buffer cache
management algorithm to optimize both the space usage
and the performance of buffer cache. Several interesting
works on data de-duplication have been reported
[43,44,45] after our paper submission to improve I/O
performance. These results further showed potential
benefits of exploiting content locality of I/O operations.

6 Conclusions

In this paper, we have presented a novel buffer cache
design that exploits both temporal locality and content
locality of disk operations. A new least popularly used
(LPU) replacement algorithm has been developed that
manages the buffer cache based on the popularity of a
data block. A data block is considered to be popular if it
is not only accessed frequently but also contains contents
that are same to or resembled by other accessed blocks. A
set of most popular blocks in the cache are selected to be
reference blocks that can serve a large number of I/O
requests by combining with small deltas. A prototype
LPU buffer cache has been designed and implemented on
KVM virtual machine environment of Linux OS.
Extensive experiments have been carried out using the
prototype LPU cache to measure its performance as
compared to traditional LRU cache. Experimental results
have shown that for some workloads LPU improves
cache performance greatly while for other workloads it
has limited performance gain.

We are currently working on efficient ways of
calculating signatures to catch data redundancy among
data blocks even after bit-wise shift happens, which, we
believe, will allow LPU to improve cache performance
even further. Our future research also includes offloading
some of the necessary computations of LPU to HBAs or
other types of embedded boards.

 Acknowledgements
This research is supported in part by National

Science Foundation under Grants CCF-0811333, CPS-
0931820 and Natural Science Foundation of China under
grant NSFC-60736013. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation. The
authors are grateful to anonymous referees for their
comments that improve the quality of the paper.

References
[1] S. Quinlan, and S. Dorward, “Venti: a new approach to

archival storage,” In Proc. of FAST’02, 2002.
[2] P. Nath, B. Urgaonkar, and A. Sivasubramaniam,

“Evaluating the Usefulness of Content Addressable
Storage for High-Performance Data Intensive
Applications,” In Proc. of HPDC’08, 2008.

[3] C. B. Morrey III and D. Grunwald, “Content-based block
caching,” In Proc. of MSST’06, May 2006.

[4] B. Zhu, K. Li, and H. Patterson, "Avoiding the disk
bottleneck in the data domain deduplication file system,"
In Proc. of FAST'08, 2008.

[5] A Muthitacharoen, B. Chen, and D. Mazieres, “A low-
bandwidth network file system,” In Proc. of SOSP’01,
2001, pp 174–187.

[6] S. Rhea, R. Cox, and A. Pesterev, “Fast, inexpensive
content-addressed storage in foundation,” In Proc. of the
USENIX Annual Technical Conference, 2008.

[7] C. A. Waldspurger, “Memory resource management in
VMware ESX server,” In Proc. of the 5th OSDI, 2002.

[8] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G.
Varghese, G. M. Voelker, and A. Vahdat, “Difference
engine: Harnessing memory redundancy in virtual
machines,” In Proc. of OSDI 2008, Dec. 2008.

[9] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E.
Cecchet, and M. Corner, “Memory Buddies: Exploiting
Page Sharing for Smart Colocation in Virtualized Data
Centers,” In Proc. of VEE’09, 2009.

[10] G. Milos, D. G. Murray, S. Hand, and M. A. Fetterman,
“Satori: Enlightened page sharing,” In Proc. of USENIX
Technical Conference, 2009.

[11] M. Rosenblum, “The Reincarnation of Virtual Machines,”
ACM Queue, Vol 2, Issue 5, July 2004.

[12] A. Liguori and E. V. Hensbergen, “Experiences with
content addressable storage and virtual disks,” In Proc. of
WIOV ’08, Dec. 2008.

[13] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A.
Konwinsi, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “Above the Clouds: A Berkeley View of
Cloud Computing,” http://bishop.camp.clarkson.edu/Cloud
_Computing_Papers/berkely-abovetheclouds.pdf, 2009.

[14] Kernel Virtual Machine, http://www.linux-kvm.org
[15]F. Bellard, “QEMU, a fast and portable dynamic translator,”

In Proc. of the USENIX Ann Tech Conf, 2005.
[16] D. Trendafilov, N. Memon, and T. Suel, “zdelta: a simple

delta compression tool,” Technical Report TR-CIS-2002-
02, Polytechnic University, June 2002.

[17] E. Cecchet, J. Marguerite, and W. Zwaenepoel,
“Performance and scalability of EJB applications,” In
Proceedings of the 17th ACMConference on Object-
oriented programming, systems, languages, and
applications, 2002.

[18] J. Piernas, T. Cortes and J. M. García, “tpcc-uva: A free,
open-source implementation of the TPC-C Benchmark,”
http://www.infor.uva.es/~diego/tpcc-uva.html, 2005.

[19] SPEC OSG Mailserver Subcommittee, “SPECmail-2009
Benchmark Architecture White Paper,” http://www.spec.
org/mail2009/docs/designdocument. pdf, December 2008.

[20] SPEC OSG Web Subcommittee, “SPECweb2009
Introduction and Setup Overview,” http://www.spec.org/
web2009/docs/SPECweb2009_Setup.pdf, October 2009.

[21] J. Robinson and M. Devarakonda, “Data Cache
Management Using Frequency-Based Replacement,” In
SIGMETRICS-90, 1990.

281281

[22] E. O’Neil, P. O’Neil, and G. Weikum, “The LRU-K Page

Replacement Algorithm For Database Disk Buffering,” In
Proc. of SIGMOD-93, 1993.

[23] T. Johnson and D. Shasha, “2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm,”
In VLDB-94, 1994.

[24] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho
and C. S. Kim, “On the Existence of a Spectrum of
Policies that Subsumes the Least Recently Used (LRU)
and Least Frequently Used (LFU) Policies,” Proc. of ACM
SIGMETRICS, May 1999, pp. 134-143.

[25] Y. Zhou, Z. Chen and K. Li. “Second-Level Buffer Cache
Management,” IEEE Transactions on Parallel and
Distributed Systems, Vol. 15, No. 7, July, 2004.

[26] N. Megiddo, D. Modha, “ARC: A Self-Tuning, Low
Overhead Replacement Cache,” Proc. of FAST ’03, March
2003, pp. 115-130.

[27] S. Jiang and X. Zhang, “LIRS: An Efficient Low
Interreference Recency Set Replacement Policy to Improve
Buffer Cache Performance,” Proc. of SIGMETRICS ’02,
June 2002.

[28] V. F. Nicola, A. Dan, and D.M. Dias, “Analysis of the
Generalized Clock Buffer Replacement Scheme for
Database Transaction Processing,” Proc. of 1992
ACMSIGMETRICS Conference, June 1992, pp. 35-46.

[29] S. Bansal and D.Modha, “CAR: Clock with Adaptive
Replacement,” Proc. of 3rd FAST, March, 2004.

[30] S. Jiang, F. Chen and X. Zhang, “CLOCK-Pro: An
Effective Improvement of the CLOCK Replacement,”
Proc. of USENIX Annual Technical Conference, 2005.

[31] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang, “DULO:
an effective buffer cache management scheme to exploit
both temporal and spatial locality,” In Proc. of FAST’05,
2005.

[32] P. Kulkarni, F. Douglis, J. Lavoie, and J. M. Tracey,
“Redundancy elimination within large collections of files,”
In Proc. of the USENIX Annual Technical Conference,
2004.

[33] A. Tridgell, Efficient Algorithms for Sorting and
Synchronization, PhD thesis, Australian National
University, 1999.

[34] T. Suel , P. Noel, and D. Trendafilov, “Improved File
Synchronization Techniques for Maintaining Large
Replicated Collections over Slow Networks,” In Proc. of
the 20th Int’l Conf. on Data Eng, 2004.

[35] N. Jain, M. Dahlin, and R. Tewari, “Taper: Tiered
approach for eliminating redundancy in replicas,” In Proc
of FAST’05, 2005.

[36] N. T. Spring and D. Wetherall, “A protocol independent
technique for eliminating redundant network traffic,” In
Proceedings of ACM SIGCOMM, August 2000.

[37] Q. Yang, W. Xiao, and J. Ren, "TRAP-Array: A Disk
Array Architecture Providing Timely Recovery to Any
Point-in-time," In Proc. of ISCA'06, 2006.

[38] Qing Yang, Weijun Xiao, and Jin Ren "PRINS:
Optimizing Performance of Reliable Internet Storages," In
Proc. of ICDCS'06. 2006.

[39] Weijun Xiao and Qing Yang, “Can We Really Recover
Data If Storage Subsystem Fails?” In Proc. of ICDCS’08,
2008.

[40] F. Douglis and A. Iyengar, “Application-specific delta-
encoding via resemblance detection,” In Proc. of USENIX
Technical Conference, June 2003.

[41] Z. Ouyang, N. Memon, T. Suel, and D. Trendafilov,

“Cluster-based delta compression of a collection of files,”
In International Conference on WISE, December 2002.

[42] A. T. Clements, I. Ahmad, M. Vilayannur, and J Li,
“Decentralized Deduplication in SAN Cluster File
Systems,” In Proc. of the USENIX Annual Technical
Conference, 2009.

[43] C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale, S. Rago,
G. Całkowski, C. Dubnicki, and A. Bohra “HydraFS: a
High-Throughput File System for the HYDRAstor
Content-Addressable Storage System,” In Proc. of
FAST’10, 2010.

[44] E. Kruus, C. Ungureanu, and C. Dubnicki, “Bimodal
Content Defined Chunking for Backup Stream,” In Proc.
of FAST’10, 2010.

[45] R. Koller and R. Rangaswami, “I/O Deduplication:
Utilizing Content Similarity to Improve I/O Performance,”
In Proc of FAST’10, 2010.

282282

