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Abstract

Distributed snapshots are an important building block
for distributed systems, and, among other applications, are
useful for constructing efficient checkpointing protocols. In
addition to the imposed overhead of the existing distrib-
uted snapshot protocols, those protocols are not trivially
applicable (if at all) in many of today’s distributed sys-
tems, e.g., grid, mobile, and sensors systems. After pre-
senting the shortages and the inapplicability of the most
popular existing distributed snapshot protocols, this paper
discusses improvement directions for the protocols. In ad-
dition, it presents a new and an important improvement for
the most popular distributed snapshot protocol, which was
presented by Chandy and Lamport in 1985. Although the
proposed improvement is simple and easy to implement, it
has significant benefits in reducing the software and hard-
ware overheads of distributed snapshots. Then, the paper
presents proofs for the safety and progress of the new pro-
tocol. Lastly, it presents a performance analysis of the pro-
tocol using stochastic models.

1. Introduction

Computer systems are improving rapidly as showed by
the many new technologies and computing environments
that have appeared recently. In the last two decades, we
have observed many new computer systems running on
those new computing environments. Grid computing, mo-
bile computing and wireless computing are only few exam-
ples of such new environments. Without doubt, new tech-
nologies are needed to meet the requirements of those en-
vironments for building efficient and dependable computer
systems. On the other hand, those new systems are more
conservative than traditional systems on hardware and soft-
ware overheads, such as high performance and resources
consumptions. We believe that many distributed proto-
cols, originally designed for traditional distributed systems,
cannot be applied efficiently (if at all) in the new sys-

tems [4, 14]. Several researchers have tried to re-design
many existing distributed protocols for the new computing
environments; however, those re-designed protocols may
not be efficient and may run only in few particular environ-
ments with specific assumptions. Therefore, the challenge
here is to design new protocols or improve existing proto-
cols to meet the dependability and efficiency requirements
of the new environments.

In this paper we focus on distributed snapshots, which
is a basic problem in distributed systems [6]. Distributed
snapshots provide a traditional technique for ensuring per-
sistence and fault tolerance in distributed systems. In ad-
dition, distributed snapshots are key building blocks for im-
plementing checkpoint/restart (C/R) protocols [9] and many
other properties in distributed systems. Checkpointing is the
act of saving an application’s state to stable storage during
its execution, while restart is the act of restarting the appli-
cation from a checkpointed state.

Traditionally, there are two well-known distributed snap-
shot protocols. In the first protocol, Sync-and-Stop (denoted
by SaS) [2, 16], a distributed snapshot is taken after all the
processes have been synchronized and have stopped their
execution. The second protocol is the Chandy and Lam-
port’s (denoted by CL) distributed snapshot protocol [6],
which does not stop the execution of the application. It was
shown in [2] that these two protocols are the most efficient
among a set of distributed checkpointing protocols in two
different traditional systems. In addition to the efficiency
of CL comparing with SaS [2], considering the real world,
the applicability of the CL protocol is more common than
the SaS protocol. CL is implemented in many distributed
systems such as Starfish [3] and Condor [1].

Since the last two decades, many researchers tried to im-
prove the SaS and CL protocols. Elnozahy et al. [10] pre-
sented an improvement on the SaS protocol. They proposed
a protocol that does not stop the execution of the appli-
cation. Instead, it piggybacks timestamps on the applica-
tion messages to construct distributed snapshots. On the
other hand, Mattern [15] and Schulz et al. [19] eliminated
the FIFO restrictions in the CL protocol. They proposed
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a non-FIFO CL protocol by piggybacking control informa-
tion onto the application messages. Actually, it was proven
by [7] that in non-FIFO systems any distributed snapshot
protocol is either inhibitory (i.e., suspending the application
execution, in particular suspending the sending of applica-
tion messages while waiting for a control message from an-
other process), or it relies upon piggybacking control infor-
mation onto the application messages. Therefore, we be-
lieve, as was shown in [2], that the original CL protocol for
FIFO systems is the most efficient protocol among a large
set of distributed checkpointing protocols. However, as we
show later, this protocol still needs to be improved to meet
the efficiency requirement in many new environments.

In this paper, we describe the SaS and CL protocols.
We outline the main disadvantages of these protocols in the
traditional distributed environment and show how and why
these protocols cannot be applied easily (if at all) in some
new environments like grid and wireless ad-hoc networks.
Furthermore, we present a new and important improvement
for the CL protocol. This improvement aims at reducing the
number of log accesses by the CL protocol. Regardless of
any distributed system, a log access imposes both software
and hardware overheads. Due to log accesses, the system
performance is degraded, therefore the software overhead
could be intolerable in high-performance systems. Since
log accesses require saving data to a persistent memory (ei-
ther internal or external memory), hardware resources are
consumed. For example, in wireless network systems, the
power consumption and memory usage due to log accesses
is considered very costly. To the best of our knowledge, we
are the first to consider the log accesses issue in the CL pro-
tocol. Therefore, our scheme is a new and novel scheme
that reduces dramatically the number of log accesses in CL.

2. System Model and Definitions

We consider a distributed system consisting of n
processes, denoted by P1, P2, · · · , Pn, connected by a net-
work (a process Pq may be denoted by q). Processes com-
municate via asynchronous reliable message passing. Each
process Pi is modeled as an automaton with a predefined
initial state ei and a deterministic transition function from
its current state to the next state based on the current state
and the occurring event. The normal possible events are
computation, send, and receive. In addition, we
define two more possible events: log and checkpoint.
The log event consists of saving a message in a persistent
memory (e.g., secondary storage), and the checkpoint
event consists of additionally saving the local state in sec-
ondary storage. The local history of a process is a sequence
of such events. An execution is a collection of local histo-
ries, one for each process.

By default, we assume that the network delivers mes-

sages reliably, in FIFO order [6]. We mention explicitly If
FIFO is not supported. For each receive event in an ex-
ecution, there is a corresponding send event; and for each
send event, there is, at most, one receive event. If the
execution is infinite, for each send event there is exactly
one corresponding receive event. For a message m in
the execution, Send(m) denotes the send event of m, and
Recv(m) denotes the receive event of m.

Events in an execution are related by the happened be-
fore relation [13]; this relation is defined as the transitive
closure of the process order and the relation between the
send and receive events of the same message. Each
checkpoint taken by a process is assigned a unique sequence
number. The ith checkpoint of process p is denoted by Cp,i.

When a failure occurs in a distributed system, it maybe
recovered from a cut of checkpoints (i.e., a set of check-
points consisting of one checkpoint from each process).
However, not all cuts of checkpoints are consistent, i.e., cor-
respond to a state that could have been reached in the exe-
cution. A consistent cut is called a recovery line.

Definition 2.1: Given an execution E and a cut of check-
points S ∈ E, the partial execution of E corresponding
to S, denoted by E|S , is the collection of local histories of
each process p ∈ E up to the checkpoint event in S.

Definition 2.2: Given an execution E and a cut of check-
points S ∈ E, S is a recovery line if for every message m,
if Recv(m) ∈ E|S , then Send(m) ∈ E|S .

P1

P2

P3

Inconsistent cutConsistent cut

X
Failure

X
Failure

m1

m2

m3

m4 S1

S2

Figure 1. An example of distributed execution

For example, let E be an execution as presented in Fig-
ure 1. If a failure occurs in process P1 after m3 is sent, the
execution cannot be recovered from the latest cut of check-
points S1, since it is not a recovery line. The reason is that
Recv(m3) ∈ E|S1 , but Send(m3) �∈ E|S1 . m3 is called an
orphan message relative to S1. Thus, the execution needs
to rollback to the latest recovery line, which is S2. Notice
here that Send(m4) ∈ E|S2 , but Recv(m4) �∈ E|S2 . m4 is
called an in-transit message relative to S2. In this exam-
ple, m4 should be logged in order to be retransmitted by the
recovery mechanism.

Definition 2.3: Given an execution E and a recovery line
R, R is called a distributed snapshot if every in-transit mes-
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sage in E relative to R is logged and can be retransmitted
for further recovery from R.

Messages generated by the application are called data
(or application) messages, and the messages generated by
the distributed snapshot protocol are called control mes-
sages.

Definition 2.4: The checkpoint overhead, denoted by op, is
the increase in the execution time of a process p because of
a single checkpoint. Consequently, the distributed snapshot
overhead, denoted by O, is the maximum value of op for all
the processes. Namely, O = max1≤p≤n{op}.

Definition 2.5: The checkpoint latency, denoted by lp, is
the duration required to take a single checkpoint in a process
p. Consequently, the distributed snapshot latency, denoted
by L, is the maximum value of lp for all the processes.
Namely, L = max1≤p≤n{lp}.

3. Existing Distributed Snapshot Protocols

3.1. The Sync-and-Stop (SaS) Protocol

The SaS protocol produces distributed snapshots. One
process, called the coordinator, invokes a barrier synchro-
nization among the processes to take a distributed snapshot.
The protocol works as follows. The coordinator broad-
casts a special message, called INIT, to the other processes.
Upon receiving INIT, each process stops running its tar-
get program and sends the READY message to the coor-
dinator after making sure that its sent data messages have
been received. When the coordinator collects the READY
messages, it broadcasts the DO message and takes a local
checkpoint. Upon receiving the DO message, each process
takes a checkpoint and sends back the DONE message to
the coordinator. When the coordinator collects the DONE
messages from all the processes, it broadcasts the COMMIT
message to resume the application.

The main advantage of the SaS protocol is that it does not
assume FIFO in the network channels. Although there are
many systems and environments that do not support FIFO
in the network channels, there are few distributed snap-
shot protocols that do not assume FIFO. For example, as
was mentioned in [4], in the wireless mobile environment,
FIFO does not necessarily hold. Moreover, many systems
and applications in grid environment may not assume FIFO
for efficiency and performance issues. On the other hand,
the SaS protocol has some significant disadvantages. The
first disadvantage is that it suspends the application execu-
tion during a distributed snapshot. Such suspension could
be intolerable for some applications, especially in high-
performance applications. In addition, as in the wireless

mobile environment, many applications cannot even sus-
pend the execution at all. The second disadvantage is the
requirement that each process should be able to verify if
every data message sent before receiving the INIT message
is received or not. Although there are many systems that
can support this verification [16], there are many systems
that cannot (as it is very costly). For example, in systems
that work on radio broadcast transmission, a process can-
not verify that a message it sends is received. In addition, it
could be very costly and difficult to verify the message ar-
rival by the sender in the wireless mobile environment [11].
Similarly, in the Grid and WAN environments, this property
is not cheap to implement.

We believe that the improvement presented by Elnozahy
et al. [10] gets rid of the main disadvantages of SaS. By
this improvement, each distributed snapshot is identified by
a monotonically increasing Consistent Checkpoint Number
(CCN). Every application message is tagged with the CCN
of its sender, enabling the new protocol to run in the pres-
ence of message re-ordering or loss.

3.2. The Chandy-Lamport (CL) Protocol

The CL protocol is considered a coordinated checkpoint-
ing protocol in which processes need to coordinate with
each other to form a snapshot. Unlike the SaS protocol,
the CL protocol does not suspend the application execution
while taking a snapshot. The coordinator process in CL
(which could be any process) initiates a distributed snap-
shot by broadcasting marker messages and then taking lo-
cal checkpoints. When process p receives the marker from
channel c and it has not taken a checkpoint yet, it broadcasts
the marker, takes a checkpoint, and records the state of c as
being empty. Otherwise, p records the state of the channel
c as the sequence of messages received along c after it has
taken a checkpoint and before it has received the marker.

We describe here the CL protocol in more detail using
a pseudo code. We start by defining two data structures to
help the reader understand the protocol’s description: (1)
MARKER - this is the marker message used to coordinate
a distributed snapshot and (2) Sp - A n-vector of integers.
An entry Sp[u] indicates the state of process u as known
by process p. We consider two different states for every
process. The states are Normal and Saving. Intuitively, a
process is in the Saving state during the creation of the dis-
tributed snapshots and in the Normal state otherwise. In the
CL protocol, we say that process p is in the Saving state be-
tween the time it receives the first MARKER message until it
receives the MARKER back message from all the processes.

Figure 2 presents the pseudo code of the CL protocol.
We describe the CL protocol by observing the the behavior
of process p upon receiving a message from another process
q. The message could be either the marker or data.
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CL recv(msg, q)
1: recv(msg, q)
2: if (msg.Type == MARKER)
3: if (Sp[p] == Normal) {p didn’t see the MARKER}
4: ∀u, 1 ≤ u ≤ N ,

send(MARKER, u); Sp[u] = Saving; checkpoint()
5: Sp[q] = Normal {receiving the MARKER back}
6: if (∀u, u �= p, Sp[u] == Normal), Sp[p] = Normal
7: else {This is a data message}
8: if ((Sp[p] == Saving) and (Sp[q] == Saving)), Log(msg)

Figure 2. p’s behavior according to CL

As presented in Figure 2, in the CL protocol, when a
process p receives the MARKER message, it switches to the
Saving state, takes a local checkpoint, and forwards the
MARKER message to its neighbors. Notice here that p iden-
tifies and logs every in-transit message. p identifies an in-
transit message as an incoming message from a process q
such that p has sent the marker to q, but has not received it
back yet. Since we assume FIFO, such a message should be
an in-transit message.

The main advantage of the CL protocol is the ability to
take distributed snapshots “on-the-fly” without piggyback-
ing control information onto data messages. In fact, this is a
very important property for high-performance systems and
many other systems. The price of not suspending the appli-
cation execution in CL, however, is the obligation to iden-
tify and log the in-transit messages. Of course, in-transit
messages can be logged in the internal memory (which is a
persistent memory) during the snapshot. Then, they should
be moved to secondary storage at the end of a distributed
snapshot. Therefore, secondary storage will be accessed
several times for checkpointing and logs. Moreover, in sys-
tems with limited internal memory, logs should be directed
to secondary storage. Obviously, the log events could con-
tribute significantly to the parameters O and L in the CL
protocol. In some applications, especially those with a high
rate of communication and big messages, the overhead of
logging in-transit messages could be unacceptable.

4. The Modified Chandy-Lamport Protocol

In sections 3.1 and 3.2 we presented the main disadvan-
tages of SaS and CL protocols, respectively. Although there
are already some works to cope with these disadvantages,
yet we don’t have efficient distributed snapshot protocols
that cope with all of these advantages. The open question
remains if there is an optimal protocol that can be obtained
at all. Our direction here, therefore, is to improve the exist-
ing protocols to cope with some of these disadvantages and
try to converge to optimal protocol.

In Section 3.2, we identified that the main disadvantage

of the CL protocol, that have not addressed yet, is the pos-
sible large number of accesses to a persistent memory (e.g.
secondary storage) in order to log any in-transit message.
Actually, accessing secondary storage is one of the main
contributions to the checkpointing overhead [2, 17]. Re-
gardless of where a message is logged, to secondary storage
or the main memory, the large number of logs just increase
the overhead dramatically. We present here a modified
version of the CL protocol, called the Modified Chandy-
Lamport (MCL) protocol, where we try to reduce the num-
ber of in-transit messages. In Section 5, we show that this
reduction could be as big as 90% in some applications.

Suppose that M is a data message from process p to an-
other process q. The reason that M may be considered as an
in-transit message relative to a distributed snapshot S is that
q takes a checkpoint (belonging to S) before it receives M ,
but p has sent M before taking its checkpoint. Figure 3(a)
shows how M could be an in-transit message relative to S.
We assume here that the latency of S is t. Therefore, if we
succeed in delaying the checkpoint of q after receiving M ,
M will not be an in-transit message and the latency of S re-
mains t. As presented in Figure 3(b), the challenge here is
to delay the checkpoints in each process as long as possible
without increasing O (the overhead) and L (the latency).

p

q

The snapshot latency

M

t

checkpoint

Log M

(a) M should be logged
p

q

The snapshot latency

M

t

(b) M is not logged

Figure 3. A scenario where we can avoid a log

Indeed, in our new MCL protocol, we have the same
value of L, but fortunately with less overhead (O). Fig-
ure 4 shows the pseudo code of a process behavior upon
receiving a message according to the new MCL protocol.
As presented in Section 3.2, we use the same data struc-
tures used in describing the CL protocol for describing the
MCL protocol. In the CL protocol, a process can be in one
of two states: Normal or Saving. In the MCL protocol,
however, we define one more state, called Ready. This new
state indicates that a process is ready to take a checkpoint
after receiving the marker, but did not take it yet.

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00  © 2006



MCL recv(M , q)
1: recv(M , q)
2: if (M .Type == MARKER)
3: Sp[q] = Saving /* Assume that q’s state is Saving */
4: if (Sp[p] == Normal) /* p didn’t see the MARKER yet */
5: ∀u, 1 ≤ u ≤ N and u �= p, send(MARKER, u)
6: ∀u, 1 ≤ u ≤ N and u �= q, Sp[u] = Ready
7: else /* p is not in the Normal state */
8: if (∀u, u �= p, Sp[u] == Saving)
9: if (Sp[p] == Ready), checkpoint()
10: ∀u, 1 ≤ u ≤ N , Sp[u] = Normal /* Terminate the snapshot */
11:else /* The message is a data message */
12: if ((Sp[p] == Ready) and (Sp[q] == Saving))
13: Sp[p] = Saving; checkpoint() /* Take a checkpoint before delivering M */
14: if ((Sp[p] == Saving) and (Sp[q] == Ready)), Log(M )

Figure 4. The behavior of process p according to the MCL protocol

In MCL, once process p receives (or initiates) the marker,
it switches from the Normal state to the Ready state. Then,
p broadcasts the marker to all the other processes and as-
sumes that they are in the Ready state. As presented in
Line 3 of Figure 4, when process p receives the marker from
process q, p recodes q’s state as Saving. This is because p
does not know if q is still in the Ready state or not. Process
p switches to the Normal state after receiving the marker
from all the other processes (from Line 8 to Line 10 of Fig-
ure 4). Of course, if p has not taken the checkpoint yet, it
does so.

As presented in Line 12 of Figure 4, if process p is in the
Ready state and receives a message from q which is in the
Saving state, then p switches to the Saving state. Again,
p does not know if q has taken the checkpoint or not, so
it takes the checkpoint before delivering M to ensure that
M will not be an orphan message. Similarly, if p is in the
Ready state and wants to send a message M to process q
such that q is in the Ready state (according to p’s knowl-
edge), then p switches to the Saving state before sending
M . This is because p does know when exactly q switches
to the Saving state. Note that the only place where process
p logs a data message M , that is sent from process q, is
when p is in the Saving state and q is in the Ready state
(Line 14 of Figure 4).

4.1. Protocol Properties

Now we prove the safety and the progress of the MCL
protocol. For safety, we show that the protocol produces
distributed snapshots. Showing the progress of the proto-
col is straightforward. Note that every process broadcasts
the marker right after receiving it. Therefore, the marker
message is propagated to all the processes as fast as possi-
ble. Furthermore, once a process p receives the marker from
all the other processes, it terminates the current distributed

snapshot.

Lemma 4.1: For any two processes p and q and for an inte-
ger i, if p sends a message M to q after sending the marker,
then q will take the checkpoint Cq,i before delivering M .

Proof: By the MCL protocol, every checkpoint Cp,i ∈ S
is created only after p has seen the marker (p switches to the
Saving state only from the Ready state). We assume that
p has already seen the marker and sends it to all the other
processes. By the MCL protocol, if p is in the Ready state,
regardless of q’s state and before p sends M , p takes Cp,i

and switches to the Saving state. Due to FIFO, q should
receive the marker before receiving M . Then, once q re-
ceives M , it takes a checkpoint before delivering the mes-
sage (Line 12 of Figure 4). Therefore, by the MCL protocol,
M cannot be an orphan message.

Lemma 4.2: Every in-transit message is logged by the
MCL protocol.

Proof: By the MCL protocol, message M between p and
q is an in-transit message only if p sends M before receiving
the marker (p is in the Normal state) and q receives M after
takeing the checkpoint (q is in the Saving state).

By Line 2 (in Figure 4), once process q receives the
marker at the first time, it broadcasts the marker and de-
termines that the state of all the other processes (apart from
the process who sent the marker) are in the Ready state.
Therefore, by Line 14 (in Figure 4), if process q receives
message M after being in the Saving state and before re-
ceiving the marker from process p, process q logs the mes-
sage M . Notice here that due to FIFO, q knows that M is
in-transit message, therefore, the MCL protocol logs every
in-transit message.
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Theorem 4.3: The MCL protocol produces distributed
snapshots.

Proof: By the discussion on the progress of the protocol,
we showed that for every marker M , each process takes a
local checkpoint. By Lemma 4.1, there are no orphan mes-
sages relative to any cut of checkpoints that are created due
to M . In addition, by Lemma 4.2, every in-transit message
relative to the cut is logged. Therefore, this cut is a distrib-
uted snapshot.

5. Performance Analysis

In this section we present a model-based performance
analysis to show the amount of overhead that is saved due
to the new protocol for distributed snapshot comparing with
the old protocols. The plan of performance analysis is as
follows: first, we select a specific message-passing pro-
gram; then we define different distributed executions of the
program with different distributed snapshot protocols; next,
we build a stochastic model for each execution; and lastly,
we simulate those executions and present the results.

The message-passing program that we consider here is a
parallel version of the Jacobi method for solving a system of
linear equations. The program has one main loop. In every
iteration of the loop, a process performs three steps: sends
messages to the left and right neighbors, receives messages
from the left and right neighbors, and performs a local com-
putation. Please note that the left and right neighbors do not
exist for P1 and Pn, respectively.

Using Stochastic Activity Networks (SANs) [18], we
have modeled four different executions of the Jacobi pro-
gram. The first execution is just the Jacobi program without
any distributed snapshot protocol (denoted by Basic). The
second execution is the Jacobi program with the SaS pro-
tocol (denoted by SaS). The third execution is the Jacobi
program with the CL protocol (denoted by CL). The forth
execution is the Jacobi program with the MCL protocol (de-
noted by MCL).

SANs are a convenient and high-level language for cap-
turing the stochastic behavior of a system. Möbius [8]
is a tool dedicated to creating and simulating (or solving)
SAN-based models. A SAN has the following components:
places (denoted by circles), which contain tokens; tokens,
which indicate the “value” or “state” of a place; activities
(denoted by vertical ovals), which change the number of
tokens in places; input arcs, which connect places to tran-
sitions; output arcs, which connect transitions to places;
input gates (denoted by triangles pointing left), which are
used to define complex enabling predicates and comple-
tion functions; output gates (denoted by triangles pointing
to the right), which are used to define complex completion

functions; and instantaneous activities (denoted by verti-
cal lines), which are used to specify zero-timed events. An
activity is enabled if for every connected input gate, the en-
abling predicate contained in it is true, and for each input
arc, there is at least one token in the connected place. When
an activity completes, one token is added to each place con-
nected by an output arc, and functions contained in con-
nected output gates and input gates are executed. The output
gate and input gate functions are usually expressed using
pseudo-C code. The times between enabling and firing of
activities can be distributed according to a variety of prob-
ability distributions, and the parameters of the distribution
can be a function of the state.

In the following sections we present the SAN models of
all the executions apart from the SaS execution. Although
we consider SaS in our results for the comparing reason, our
new MCL protocol improves CL but not SaS.

5.1. The Basic Execution

The left side of Figure 5 shows the composed model
for Basic. The model consists only of one atomic SAN
submodel, which is basicReplica. basicReplica is repli-
cated NUM PROC times to form a message-passing ap-
plication with NUM PROC processes. The right side of
Figure 5 shows the SAN representation of the basicReplica
submodel. The SAN model models the behavior of a single
process, including assignment of a process identifier, execu-
tion of the main loop of Jacobi, and failures in the process.
The activity setID act fires at the beginning of each process
execution to set an ID to the place myRank. The shared
place numProc is initialized with NUM PROC, and every
time a new process is started, numProc is reduced by one
until it becomes zero.

Component model

Figure 5. The SAN model for Basic

A process starts the main loop only after all the other
processes are ready. The shared place setAll indicates that
all the processes have assigned their IDs. The local place
mainLoop traces the number of iterations of the main loop
in the Jacobi program. This place is initialized to 0 and in-
cremented by one for each completed iteration. A process
starts a new iteration by sending messages to its left and
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right neighbors using the send act activity. Then, it waits to
receive messages from those neighbors using the recv act
activity. The place processQ is a shared array. Each index i
in this array represents process i, and the entry processQ [i]
represents the number of queued messages for process i.
The activity compute act represents the local computation
by a process. When a failure occurs, the activity failure act
is fired and puts a token in the local place failure. Since
there is no checkpoint/restart in this model, after a failure
occurs, the simulation of Basic stops immediately. The ac-
tivity failure act fires using an exponential distribution with
a rate that differs for different studies.

5.2. The CL Execution

Figure 6 shows the SAN representation of basicReplica
of the CL execution. The composed model looks exactly
like the model in Figure 5. The SAN model in Figure 6
models the behavior of a single process. It assigns an iden-
tifier for each process and then executes the main loop of
the Jacobi program. The execution starts with assigning an
identifier for each process and execution of the main loop
of Jacobi. Each process sets its identifier and executes the
main loop exactly as described in Section 5.1, but with con-
sideration of the CL checkpointing protocol. The activity
chkptInit act initiates a distributed snapshot in a particular
process. This activity fires periodically using a determinis-
tic time distribution function. Once the activity has fired,
the activity broadcastMarker act fires in the same process
to broadcast the marker. Then, the activity chkpt act indi-
cates the actual local checkpoint. On the other hand, the
activity recvMarker act is fired in each process to receive
the marker. The places L Sp and G Sp represent the Sp

data structure. After a failure occurs, as indicated by place
failure, the activity recovery act fires after some delay in-
dicating the fault detection delay. recovery act recovers
the faulty process by rolling back its execution to the latest
checkpoint. Unlike the Basic execution, if a failure occurs,
a recovery starts after the failure detection.

5.3. The MCL Execution

The SAN model of the MCL execution is similar to the
SAN model of the CL execution presented in Figure 6.
The main difference is the actions taken in the input gate
chkpt IG, when a new token has arrived. By MCL, upon
a new token, checkpoint is not enabled as in CL, but the
process enters the Ready state instead. Checkpoints are
enabled only when the process receives back all the to-
kens from its children, or receives a message from another
process which is in the Saving state. These conditions are
checked in the output gates recvMarker OG and recv OG.

5.4. Results

We used the Möbius tool [8] to design the SANs, define
performance, measure distributed snapshots, design studies
on the models, simulate the models, and obtain values for
the measures defined on various studies. Mainly, the Jacobi
program runs the main loop that includes communication
with neighbors and computation. To measure the overhead
of the four different models, we defined a performance mea-
sure that counts the completed iterations of the loop. In
this simulation, we set the execution time to 1000 seconds
and counted the completed iterations within this time. In
addition, we set the following parameters: NP : this para-
meter indicates the number of running processes, CI : this
parameter indicates the periodic time of initializing a new
snapshot in the execution (checkpoint interval), CO : this
parameter indicates the latency of taking a local checkpoint
(the parameter is assigned to 2 seconds), LD : this parame-
ter indicates the time of a log event to complete (this over-
head is used by the SAN activity compute act), TR: this
parameter indicates the network delay, DR: this parameter
indicates the rate at which a failure is detected (we assigned
the value to 10), FR: indicates the failure rate that occurs
in every process (this rate is used by the failure act activity
with an exponential distributed function), and RO : indi-
cates the time of recovery (we assigned this parameter as
3.5 seconds).

For every execution, we ran the simulation 1000 times
and the results presented here had a 95% confidence inter-
val. Mainly, in these studies, we observed the number of
completed iterations. For every execution we recorded the
average number of iterations, denoted by ANI , which is the
sum of the completed iterations in every process divided by
the number of processes. In addition, for the executions that
may have message logging, we recorded the total number of
log events.

Figure 7 shows ANI versus different number of
processes (NP) in all the four executions. First of all, as
we see in Figure 7(a), the MCL execution achieves almost
the same ANI values as the Basic execution in the failure-
free case. In this figure, we can see that while SaS and CL
have 6% and 4% more ANI than Basic, respectively, MCL
has only 2% ANI over the Basic execution. On the other
hand, as presented in Figure 7(b), MCL achieves the maxi-
mum ANI with FR = 0.0001. This figure shows that our
new protocol MCL is better than the CL protocol. In ad-
dition, MCL continues to gain the maximum ANI number
with higher failure rate.

Figure 8(a) shows ANI versus different values of failure
rate (FR). ANI in all the executions drops linearly with a
linear increase of the failure rate. The number of processes
is important here since we assume a failure rate of Poisson
distribution. As presented in Figure 8(a), we can see that
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Figure 6. The SAN model for the CL execution
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Figure 7. ANI of all the executions VS. NP

the MCL execution achieves the largest ANI .

Figure 8(b) presents ANI of the executions versus dif-
ferent values of CI . First of all, we can see that the MCL
execution achieve greater ANI than SaS and CL. In ad-
dition, as was determined in [2], we can see that the CL
protocol achieves more ANI than the SaS protocol in any
value of CI . Figure 8(b) shows that in case of failures, each
execution has a different optimum CI value in which the ex-
ecution achieves its maximum ANI . As was shown by [2],

this claim is true for any execution with checkpoint events.
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vals

Figure 9(a) and Figure 9(b) shows how many log events
CL and MCL have, versus NP and FR, respectively. There
is no doubt that the MCL protocol reduces the number of log
events, but what we see here is a dramatic reduction (more
than 95%). Although I simulated a message-passing pro-
gram in which a process only communicates with its neigh-
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bors, the CL protocol had a large number of log events. So,
the question here is how many log events does the CL pro-
tocol have in applications in which every process commu-
nicates with all the others?
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Figure 9. The number of logs vs. NP and FR

6. Related Work

A great deal of work has been done on distributed snap-
shots, for example [6, 12]. Those papers presented sum-
maries of different checkpointing protocols. In addition,
a considerable body of work is available on C/R for tra-
ditional distributed systems, e.g., [9, 16]. As pointed out
in [9], the C/R protocols for traditional distributed systems
are classified into three classes: coordinated checkpointing,
uncoordinated checkpointing, and communication-induced
checkpointing. For the C/R protocols for distributed sys-
tems, this major classification still holds; most of the proto-
cols are of the communication-induced checkpointing type.
Those papers presented summaries of different checkpoint-
ing protocols.

After extensive analysis work on the distributed C/R pro-
tocols and systems, it has been discovered that the main
parameters that contribute to the C/R overhead are con-
trol messages, rollback propagation, and induced check-
points [2, 5]. Therefore, it was concluded in [2], that the
distributed snapshot protocols (which belong to the coordi-
nated checkpointing class) impose less overhead than many

of other C/R protocols. This is simply because distributed
snapshot protocols do not have induced checkpointing and
the rollback propagation is the shortest. However, as men-
tioned above, the distributed snapshot protocols (SaS and
CL) have many restrictions that limit their use in different
distributed systems.

Some work has been done to improve the SaS and CL
protocols. Plank [16] has introduced a new distributed snap-
shot protocol, called the Network Sweeping (NS) protocol.
This protocol is an improvement on the CL with less control
messages. In fully connected processes, the CL protocol has
O(n2) control messages (markers) in every snapshot. Us-
ing the property of wormhole routing to “sweep” the fully
connected systems, the NS protocol has only O(l(n)) con-
trol messages, where l(n) is the number of physical com-
munication links in the system. Moreover, Vaidya [20] has
improved the CL protocol by ensuring that the processes do
not take the checkpoints at the same time in order to avoid
any extra delay due to concurrent access to the same sec-
ondary storage. Notice here that these two improvements
on the CL are different from the MCL improvement. The
MCL protocol reduces the access to the secondary storage
due to message logging by more than 95%.

Agbaria and Sanders [4] have presented a new version of
the CL protocol that runs on the mobile environment with-
out the FIFO assumptions. This protocol, however, behaves
exactly like CL and has the same number of message log-
ging as CL. In this paper, in addition to reducing the num-
ber message logging by MCL, I introduced the SaC proto-
col that can run on a mobile environment (does not require
FIFO) and has a negligible amount of message logging.

7. Conclusions

In a previous work [2], it was shown that the distrib-
uted snapshot protocols are the most efficient protocols in
distributed systems among a set of known checkpointing
protocols for distributed systems. With the belief that dis-
tributed snapshot protocols are very important in different
distributed systems (not only the traditional distributed sys-
tems) and concentrating on the improvement of the distrib-
uted snapshots, we continue to seek improvements for dis-
tributed snapshot protocols. In this paper, we came up with
new distributed snapshot protocol, called MCL, that have
better performance than the previous protocols and can be
applied in more distributed environments.

To the best of our knowledge, the new MCL protocol is
the first protocol that reduces the number of accesses to the
secondary storage due to message logging. The MCL pro-
tocol is efficient and its improvement could be very crucial
for many systems such as high-performance and limited-
resources systems. In addition to presenting this new pro-
tocol, we present proofs of correctness and progress of the

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00  © 2006



protocols.
To show the effectiveness and the low overhead of the

new protocol, we compared the new protocol with well-
known distributed snapshot protocols (SaS and CL). Using
stochastic models, we were able to model different distrib-
uted executions, each with a different distributed snapshot
protocol. We simulated those different models to obtain the
expected results that show the low overhead of the new pro-
tocol as compared to the other protocols.
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