International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

Toward an Understanding of the Processing Delay
of Peer-to-Peer Relay Nodes

Kuan-Ta Chen and Jing-Kai Lou
Institute of Information Science, Academia Sinica
ktchen@iis.sinica.edu.tw, kaeaura@iis.sinica.edu.tw

Abstract—Peer-to-peer relaying is commonly used in real-
time applications to cope with NAT and firewall restrictions
and provide better quality network paths. As relaying is not
natively supported by the Internet, it is usually implemented at
the application layer. Also, in a modern operating system, the
processor is shared, so the receive-process-forward process for
each relay packet may take a considerable amount of time if the
host is busy handling some other tasks. Thus, if we happen to
select a loaded relay node, the relaying may introduce significant
delays to the packet transmission time and even degrade the
application performance.

In this work, based on an extensive set of Internet traces, we
pursue an understanding of the processing delays incurred at
relay nodes and their impact on the application performance.
Our contribution is three-fold: 1) we propese a methodelogy
for measuring the processing delays at any relay node on the
Internet; 2) we characterize the workload patterns of a variety
of Internet relay nodes; and 3) we show that, serious VoIP quality
degradation may occur due to relay processing, thus we have to
monitor the processing delays of a relay node continuously to
prevent the application performance from being degraded.

Index Terms—E-Model, Internet Measurement, Peer-to-Peer
Systems, QoS, VolIP

I. INTRODUCTION

Voice communication over IP is becoming one of the most
profitable Internet businesses. It has been shown that VoIP
users are willing to pay for value-added services, such as
intercommunication with a PSTN phone (dialing to a PSTN
phone and vice versa), voice mails, and call forwarding.
Although one of the major players, Skype [25], was not the
first company to provide VoIP service, but it did pioneer the
delivery of such services to an unprecedented wide range of
end-users. From a technical point of view, we believe that three
factors are responsible for Skype’s popularity: the user-friendly
interface, the high quality audio codecs, and the sophisticated
peer-to-peer network infrastructure.

Skype is well-known, or perhaps notorious, for its capability
to “steal” computation and communication resources from
a computer with a Skype instance running. This is because
Skype employs a technique called peer-to-peer relaying, where
the network communications between two call parties can be
made through a third intermediate node, commonly called a
relay node. Peer-to-peer relaying brings the following advan-
tages to VoIP applications: 1) the voice quality can often be

This work was supported in part by Taiwan Information Security Center
(TWISC), National Science Council of the Republic of China under the grants
NSC 96-2219-E-001-001, NSC 96-2219-E-011-008, and NSC 96-2628-E-001-
027-MY3.

1-4244-2398-9/08/$20.00 ©2008 IEEE

410

improved by detouring traffic via a better quality network path,
which can be achieved by using a relay node [21]; 2) a relay
node can help establish connections if both call parties are
behind NATs or firewalls [1, 6, 22]; and 3) relaying enables
data aggregation, which reduces network bandwidth usage
when more than two parties are involved in a conference call.
For these reasons, peer-to-peer relaying is widely employed
by VoIP services, such as Skype and Google Talk [7], as
well as by video streaming services, such as AnySee [13] and
PPLive [10].

Even though peer-to-peer relaying is beneficial to real-time
applications in many aspects, we argue that its dark side might
be easily overlooked. As relaying is not natively supported
by the Internet, it is currently implemented by deploying
an overlay network at the application layer. In this way, a
packet “forwarded” by a relay node is actually a brand new
IP packet that the node “clones” from the packet to be relayed.
Also, since relay applications are usually run at a normal
priority, their execution could be deferred due to high-priority
tasks, such as system threads, device I/O request handlers,
or foreground jobs. Thus, the time needed for a relay node
to receive, process, and regenerate a relay packet could be
unpredictably long because it depends on the workload of
the node. For these reasons, the extra delays incurred at a
relay node could be considerable and even detrimental to the
application’s performance.

In this paper, based on an extensive Internet measurement,
we consider whether peer-to-peer relaying leads to substantial
or even detrimental extra delays. Our analysis is divided into
three parts. First, we describe how we collect the processing
delays of relayed packets from a large set of relay nodes on the
Internet. Second, we analyze and characterize the processing
delays of the relay nodes, and show that the delays are closely
related to the host’s activity. Third, we investigate whether the
relay process degrades the quality of VoIP calls and whether
such degradation is a general or occasional phenomenon. To
the best of our knowledge, this paper is the first large-scale
study to measure the processing delays introduced by peer-to-
peer relaying and their impact on an application’s performance.
Our contribution is three-fold:

1) We propose a methodology that can measure the pro-
cessing delays at any relay node on the Internet, without
modifying the existing network and system infrastruc-
ture.

2) We collect the relay processing delays from a large set of
Internet nodes distributed all over the world. In addition,

DSN 2008: Chen & Lou

Authorized licensed use limited to: UNIVERSIDADE ESTADUAL DE MARINGA. Downloaded on October 26, 2009 at 17:23 from IEEE Xplore. Restrictions apply.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

we analyze the sampled processing delays to gain an
understanding of the workload pattern of Internet nodes,
the effect of packet size on relay processing, and the
instability of processing delays.

3) We show that the processing delays incurred at relay
nodes may significantly degrade VoIP quality based on
ITU-T E-model [12] and the delays at relay nodes are
generally unstable.

We consider this paper as a first step in focusing on the
extra processing delays introduced by peer-to-peer relaying.
From our results, we suggest that all real-time peer-to-peer
systems keep track of the workload on relay nodes to prevent
unexpected performance degradation.

The remainder of this paper is organized as follows. Sec-
tion II describes related works. We then propose our process-
ing delay inference methodology in Section III. In Section IV,
we describe the trace collection methodology and discuss the
quality of our collected traces. In Section V, we analyze a
number of characteristics of the collected relay processing
delays, such as typical workload patterns and stability. In
Section VI, we evaluate the impact of the processing delays
of relay nodes on VoIP quality. Finally, in Section VII, we
present our conclusions.

II. RELATED WORK

To the best of our knowledge, this paper is the first to
study the processing delays of peer-to-peer relay nodes and
their impact on the application performance. Thus, there are
no earlier studies directly related to our work. In [14], Liu
and Zimmermann mentioned that the average processing delay
at each overlay node of AudioPeer [29], a commercial voice
chat system, was approximately 30 ms. However, they did not
report how the measurement was conducted and how large and
representative the data set was. One closely related research is
probably that on peer-to-peer relay node selection. A number
of studies [3-5, 11, 15, 21, 27] have been devoted to selecting
relay nodes from a set of candidates to obtain a good quality
network path. However, the selection criteria are mainly based
on the network latency and loss rate, and do not consider
the processing delays introduced by relay nodes. Our work
complements these network-quality-based relay node selection
studies by emphasizing that relay processing delays should
also be considered when selecting the best relay node.

III. PROCESSING DELAY INFERENCE

In this section, we propose a methodology for measuring
the processing delays induced by relaying packets at an
intermediate node. The processing delay is defined as the
time an intermediate node takes to send a data packet to its
destination on behalf of a source host. Delays can be due to
a variety of operations, such as receiving a packet from the
source host, passing it to the relay application (mostly in user
mode) for processing, and forwarding the packet to the target
host.

The processing delay at a relay node is generally unmea-
surable unless we place a sniffer to monitor the incoming
and outgoing traffic of the node. Note that even the relay

1-4244-2398-9/08/$20.00 ©2008 |IEEE

411

application cannot measure the processing delays of relayed
packets directly because it has no information about when
a packet arrives at or departs from the system. To measure
processing delays exactly, an application must exploit a kernel-
mode packet filter, such as BPF [17], or raise its thread priority
to a high value so that it will always be served immediately.
However, either approach is inadequate for a large-scale de-
ployment, as they incur additional resource overhead and may
disturb the execution of the user’s own tasks.

Our methodology is designed to measure the processing
delays experienced by relayed packets at a relay node without
any modification to the existing network infrastructure and
peer-to-peer software. In the following, we first define the
terms used throughout this paper. We then explain the basic
rationale behind our inference methodology, and elucidate the
IPID filtering scheme for improving the estimation accuracy.
Finally we evaluate both the basic and improved methods
through an experiment.

A. Term Definition

In this paper, we assume a two-hop relaying scenario in
which every packet from a source host transits an intermediate
node before reaching the destination host.

o Source/destination: A pair of hosts that communicate

with each other through an intermediate host.

o Relay node (relay host): The intermediate host receives
packets from the source and forwards them to the desti-
nation. The relay node might change the content of the
relayed packet slightly depending on the application’s
context.

« Source packet: A data packet sent from the source host
to the relay node.

« Relay packet: The data packet sent from the relay node
to the destination, which is a copy (verbatim or with slight
changes) of the source packet.

o Ack packet: When a source packet is delivered to the
relay node by TCP, the relay node will acknowledge the
packet by sending a TCP acknowledgement packet back
to the source host. We call this an ack packet.

o Processing delay (PD): The time lapse from the instant
a source packet arrives at a relay node and the instant its
corresponding relay packet leaves the node.

« Data delivery time (DDT): The time lapse from the in-
stant a source packet leaves the source host to the instant
its corresponding relay packet reaches the destination.

o Ack response time (ART): The time lapse from the
instant a source packet leaves the source host to the
instant its corresponding ack packet is received by the
source host.

B. The Basic Method

Our method is based on the following assumptions, which
are generally observable across current peer-to-peer implemen-
tations:

1) The relay node forwards a relay packet to the destination

as soon as it receives a source packet, i.e., no intentional
delays are introduced in relay packet forwarding.

DSN 2008: Chen & Lou

Authorized licensed use limited to: UNIVERSIDADE ESTADUAL DE MARINGA. Downloaded on October 26, 2009 at 17:23 from IEEE Xplore. Restrictions apply.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

Source Packet

Relay Packet

Ack Packet

Sender / Receiver
N

¥

Relay Node
’

A A

Traffic Monitor

Fig. 1. Experiment setup for measuring ack packet generation delays and
evaluating the accuracy of processing delay estimation.

2) The source transmits packets to the relay node by TCP;
therefore, the relay node will respond with TCP ack
packets upon the receipt of every packet (or every two
packets if the delayed ack option is enabled [18]).

3) The TCP implementation (which generates ack packets)
is running at a high priority, while the relay application
is running at a relatively Jow priority. We require that ack
packets are elicited with an approximate constant delay
so that they can be taken as a reference for “relaying
without processing delay.”

Our basic concept is that, on the arrival of a TCP source
packet, the relay node will respond with two packets: 1) an
TCP ack packet sent back to the source, and 2) a relay packet
forwarded to the destination. These packets are generated by
different parts of the relay node system. An ack packet is
generated by the TCP implementation, which is part of modern
operating systems and normally runs at a high scheduling
priority. On the other hand, a relay packet is generated by
the relay application, such as Skype and PPLive, which is
developed by a third-party vendor and runs at a normal
scheduling priority. As a result, an ack packet can always
be elicited promptly, while it usually takes some time to
generate a relay packet because the relay application can only
get its quantum when high-priority threads have completed
their tasks'. In this way, a relay packet’s additional processing
delay can be computed as the time difference between the time
instant the relay packet and the instant its corresponding ack
packet left the relay node.

However, this technique requires us to monitor the incoming
and outgoing traffic of the relay node, which is not practical
for large-scale measurements. To overcome this restriction, we
tactically place the source and the destination hosts at the same
location, which ensures that the ack packet and relay packet
traverse the same network path to the target. By so doing, we
can estimate the processing delay as the difference between the
instant an ack packet arrives at the sender and the instant the
corresponding relay packet reaches the destination host. This
strategy renders large-scale measurements feasible because we
only need to monitor the traffic of the source and destination
hosts.

1) Constancy of ACK Generation Delay: Our method only
works if the TCP implementation generates ack packets with
a constant delay. To verify this assumption, we conduct
experiments on the network topology depicted in Fig. 1. In the

IThis statement is somewhat simplified. Even if high-priority tasks have
not been completed, the scheduler will regularly give lower-priority tasks a
chance to be executed in order to avoid starvation.

1-4244-2398-9/08/$20.00 ©2008 IEEE

412

Ack response time (ms)
0.15 0.20

1 2 5 10 20 50
Data delivery time (ms)

Fig. 2. The scatter plot of data delivery time and ack response time.

experiment, all the computers are commodity PCs equipped
with Pentium III, 1 GB RAM, and Windows XP, but the
traffic monitor is a SUSE Linux running t cpdump. During the
experiments, the source keeps sending 200-byte data packets
at a 30 pkt/sec frequency to the relay node, which then
forwards the packets to their destination. To emulate a heavy
workload on the relay node, 10 different movie clips are
played simultaneously, which generates a considerable CPU
workload (for video decoding and playout) and I/O workload
(for reading audio/video data from the disk).

Because the source/destination nodes and the relay node are
at the same Ethernet LAN, the network delay between them
is negligible. Fig. 2 plots the relationship between the data
delivery time (DDT) and the ack response time (ART) of each
source packet (note that the x-axis is with a log-scale). The
leftmost dense area indicates that a linear relationship between
DDT and ART exists when no other threads are competing
with the relay application for computation cycles. However,
when the relay node is busy handling other tasks, the DDT
increases by orders of magnitude (spread between 0 and 500
ms), while the ART is always less than 0.3 ms. The reason
for such a small ART is that the TCP/IP stack gives a high
priority to serving incoming TCP packets and generates ack
packets at the first opportunity [26]. In contrast, the execution
of a relay application can be deferred for a long time because
the processor serves high-priority jobs, such as kernel-related
threads, device 1/O requests, and the foreground tasks, first.

C. Sample Filtering based on IPID

Although we can calculate the processing delay of a relayed
packet by simply subtracting the DDT from the ART in a
LAN-scenario like Fig. 1, the result will be less accurate if
the relay node is on the Internet because of network delays.
The problem is that, in the Internet scenario, both DDT and
ART are subject to network dynamics and network delays
independently. Thus, the result of subtracting DDT from ART
will be affected by the network delays of the relay packet and
ack packet, and deviate from the true processing delays at the
relay node.

We cope with network variabilities by filtering out packets
that lead to inaccurate processing delay estimates based on the
IPID field. We call this the IPID filtering method. Since the
IPID field is strictly increasing for IP packets generated by
a computer, we use the information to determine the release
order of packets from the relay node. The rationale of our IPID
filtering method is as follows: “If a set of packets sent by a
node are reordered in the network, then at least one of them

DSN 2008: Chen & Lou

Authorized licensed use limited to: UNIVERSIDADE ESTADUAL DE MARINGA. Downloaded on October 26, 2009 at 17:23 from IEEE Xplore. Restrictions apply.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

must have experienced unusual network delays and should be
filtered out.”

As we do not have direct access to every relay node on
the Internet, the following rules are employed to determine
the packet ordering at the node. 1) For packets from the
source host, we detect whether they arrive at the relay node
sequentially by analyzing the IPIDs of their corresponding ack
packets. A smaller IPID in an ack packet indicates that its
corresponding source packet arrived at the relay node earlier,
and vice versa. 2) For packets from the relay node, we detect
the sequence they departed the relay node by their IPIDs.

Fig. 3 illustrates three possible packet-reordering scenarios.
Note that this is not an exhaustive listing of possible reordering
cases. For example, a relay packet for a source packet x may
exchange its order with an ack packet for a source packet v,
which forms another category of reordering. Any occurrence
of packet sequence rearrangement indicates that at least one
packet is experiencing unusual network delays. Suppose a
source packet ¢ that departed from the source host at time
ts,q elicits an ack packet with IPID id,.x ; and a relay packet
with IPID id,. ;, which arrive at their destinations at time ¢4 ;
and t,; respectively. We detect packets with unusual network
delays as follows:

1) For all source packets, we obtain a sequence {ts, idgck }
sorted by t;. We then apply the longest increasing sub-
sequence (LIS) algorithm [24] to the {id,.r} sequence,
1Dk, and obtain its longest increasing subsequence L.
The set {L} denotes the IPIDs of the packets that keep
order with each other in the network. Thus, we remove
the packets with IPIDs in the set {ID,.x — L}, because
they are the packets with unusual delays that lead to
inaccurate processing delay estimates.

2) We combine {idgck, tack} and {id,,t.} as a sequence,
and sort them by the first element. Then, we apply the
LIS algorithm to the sequence formed by the second
element, Dy, and obtain the longest increasing
subsequence L. Once again, the packets with IPIDs
in the set {IPIDgck, — L} are those that experience
unusual network delays and should be removed.

After removing packets with inconsistent network delays
(i.e., compared to the remaining packets), the estimated pro-
cessing delays will be all greater than zero, as the DDT must
be longer than the ART for a source packet. Also, the error of a
processing delay estimate will be bounded by the interarrival
times of the packets surrounding pairs comprised of an ack
packet and a relay packet.

D. Accuracy Evaluation

We verify the effectiveness of the proposed processing delay
inference methods with a series of experiments. The network
setup of the experiments is identical to that described in
Section III-B1 and shown in Fig. 1. However, this experiment
described here is much more realistic because it takes account
of network delay variability and packet reordering. We use
a trace-driven approach to emulate the network dynamics.
The network delay of each packet is sequentially assigned
a measured ART from the set of Internet traces described

1-4244-2398-9/08/$20.00 ©2008 IEEE

413

Sender

Relay Node

Receiver :

Soq
16 packey 1

Source packet 2

| asen

————___Relay packet 2

Ack packet2 — P =T
fe— _— [Relay pack oy
Ack packet1 — — f' 1,; .
|
P
> >

Source packet 3
‘\\.
Ackpacket3__ - —

. Relay packet 4
——

Z@se)

e

Ack packetd _— ~— ——
Relg,

| /ay”@Ckel 3\ =

|

\kpacke\ 5 ///_V;::;,A;,_VR:'?U’ acket 5
e K backerg o

sent e, :se;t; <5
e

gosen

Fig. 3.

© ‘ i | ‘
© |

Some common network reordering scenarios

70

4
.
<
&
=
2

Average absolute error (ms)
3
S
%
?

Maximum absolute error (ms)

30 40 50

2

20
P

Basic method

‘ Basic method |
—— IPID filtering

| =—— IPID fitering |

\\/

T T T T T T

0 100 200 300 400 500 600 700
(b) Real processing delay (ms)

o ‘
T

T T T T
0 100 200 300 400 500 600 700
(a) Real processing delay (ms)

Fig. 4 The average and maximum absolute errors of processing delay
estimates vs. the real processing delays.

in Section IV. This introduces a great deal of randomness
into the network delay of each packet, thus simply subtracting
ART from DDT might even derive a negative processing delay
estimate.

We run the experiment for 500 flows, each of which lasts for
10 minutes. We first evaluate the performance of both methods
by the average and maximum of the absolute estimation errors,
which are computed by |Real PD — Estimated PD|. Fig. 4
shows the absolute errors of the estimated processing delays
versus the real delays. We observe that the average absolute
errors are only 4 ms and 3 ms for the basic method and the
IPID filtering method respectively, so the difference between
the two methods is not significant. However, the benefit of the
IPID filtering is significant in terms of the maximum absolute
errors, e.g., the error reduces by 20 ms with IPID filtering,
while the real processing delays are around 200 ms.

IV. LARGE-SCALE MEASUREMENT

In this section, we describe how we measure the processing
delays of relayed packets for a large set of Internet relay
hosts, after which we begin with a description of our trace
collection procedures and a summary of the traces. We then
discuss the anomalous behavior patterns identified and their
causes. The section concludes with an accuracy assessment

DSN 2008: Chen & Lou

Authorized licensed use limited to: UNIVERSIDADE ESTADUAL DE MARINGA. Downloaded on October 26, 2009 at 17:23 from IEEE Xplore. Restrictions apply.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

of the estimated processing delays derived from the Internet
measurements.

A. Trace Collection Methodology

Our trace collection platform is based on Skype for several
reasons.

o Skype is enormously popular and it has a very large
installation base. There can be 50 million users online and
200 thousand super nodes in use at any one time [8]. As
these super nodes are capable of relaying voice calls for
regular nodes, we take them our measurement subjects.
The large number of super nodes form a virtually unlim-
ited candidate list of relay nodes for our measurement.

« Skype is robust in terms of establishing network connec-
tions because, if a caller host cannot reach the callee host
or vice versa, Skype will find a super node to bridge the
voice transmission for the two parties.

o When a relay node currently in use becomes unavailable
to the caller or callee, Skype can always find an alternate
relay node to replace the original one. Because of these
capabilities, we can force Skype to pick an alternate super
node for relaying a VoIP call whenever necessary, without
worrying about running out of candidate relay nodes.

The trace collection mechanism comprises three commodity
PCs deployed as shown in Fig. 5. One serves as the VoIP
caller, one serves as the callee, and the third is a monitor that
collects information about the traffic of both call parties. The
collection procedures are as follows:

1) When the measurement program is initialized, we block
the caller from directly reaching the callee with a firewall
program ipfw.

2) The caller initiates a VoIP call to the callee (via the
callee’s Skype name). Because of the firewall setting,
the caller will be connected to the callee host via one
of its super nodes.

3) If a VoIP call is established, we know that Skype has
found a super node to relay voice packets between the
caller and the callee.

Occasionally, after a few retries, a VoIP call cannot
be established because the caller fails to find a usable
relay node from the candidate list. In this case, our
daemon will restart the Skype program and re-attempt to
establish a VoIP call. The Skype program will retrieve
a new list of super nodes from the central server at the
startup, so further VoIP calls should be successful.
Also, we sometimes find that voice packets from the
caller to callee and vice versa are relayed through
different super nodes. In this case, we simply drop the
call, block both relay nodes, and re-dial.

4) To simulate a conversation, a WAV file comprised of all
the English recordings in the Open Speech Repository?
is played continuously for both parties during a call.

5) After a call has lasted 10 minutes, we block the current
relay node at the caller by ipfw and terminate the call.
We then wait for 30 seconds before re-iterating the loop
from Step 2.

1-4244-2398-9/08/$20.00 ©2008 IEEE

414

Sender
o G
P N

=== Firewall + = = «
L ~
.
Traffic Monitor ~ ~ Q‘
N

% Receiver

Fig. 5. Network setup for measuring processing delays at any relay node on
the Internet.

Internet

Relay Node

Fig. 6. Geographical locations of observed relay nodes in our trace.

We ran the trace collection procedures over a two-month
period during April 9th and April 20th in 2007 and collected
1,115 calls, which are summarized in Table I. The observed
relay nodes are spread over the world, as shown in Fig. 6. On
average, each call lasted 10 minutes and had an average packet
rate of 32 pkt/sec. The overall average ack response time was
203 ms, while the average data delivery time was 212 ms.
The difference between the ART and the DDT shows that,
on average, forwarding a relay packet takes 9 ms longer than
generating a TCP ack packet at a relay node. This observation
strongly supports our conjecture that the processing delays at
relay nodes are not negligible and are therefore worthy of our
attention.

B. PD Estimation Results

We apply the IPID filtering method to the collected traces
and compute the processing delays at each relay node. A sum-
mary of the processing delay estimates is given in Table II. On
average, each call contains 15, 739 processing delay estimates,
which corresponds to 26 samples per second. To gain a general
idea of the processing delay estimates, the average processing
delay is 5 ms, and the maximum processing delay is 239 ms,
which leads to a large maximum-to-mean ratio of 48.

C. PD Estimation Accuracy Assessment

Even though we evaluated the accuracy of our processing
delay inference scheme in Section III-D, we now provide
further accuracy checks of the estimated processing delays
of Internet relay nodes. We focus on large processing delay
estimates, as they have more impact on the application perfor-
mance.

o Out of 21,418,790 samples that we collected, 88% led
to positive PD estimates. This statistic manifests that a
DDT longer than an ART is not just a coincidence, but
a consequence of the delay incurred at the relay node.

o The standard deviation of PD estimates is 7 ms on
average, which is not large compared to the high PDs,
say 20 ms or even 50 ms, we focus on.

2nttp://www.voiptroubleshooter.com/open_speech/

DSN 2008: Chen & Lou

Authorized licensed use limited to: UNIVERSIDADE ESTADUAL DE MARINGA. Downloaded on October 26, 2009 at 17:23 from IEEE Xplore. Restrictions apply.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

TABLE I
SUMMARY OF COLLECTED TRACES
Calls Time # Pkts/call ART DDT
1,115 | 10 min | 19,210 pkts [203 ms | 212 ms
TABLE II

SUMMARY OF ESTIMATED PROCESSING DELAYS

Samp.
15,739 per call

Samp. dens.
26 samp. / sec

PD (Avg / Max / SD)
5ms /239 ms/ 7 ms

« If the PD estimates are accurate, they should be highly
correlated with the IPID differences between each pair
comprised of an ack packet and a relay packet, assuming
that the IPIDs increase at a steady rate on a host. We find
that the correlation between PDs and IPID differences
has a mean of 0.62 and a standard deviation of 0.16
on average. In addition, the large PD samples should
be associated with large IPID differences for accurate
estimation. We find that among the top 5% of PD
estimates, on average, 48% are associated with the top
5% of IPID differences.

o If the PD estimates are accurate, they should be uncor-
related with the ack response times. We find that the
correlation between PDs and ack response times is merely
—0.01 on average, which indicates the large PD estimates
are not simply due to shorter ack response times.

o The IPID filtering method may fail to detect unusual
network delays if there is a low density of packets
surrounding a PD sample. To verify this possibility, we
define the maximum allowed delay time of a PD estimate,
where packet reordering cannot be detected by IPID
filtering, as a “PD error range.” We find that the top 5%
of PD estimates associate with the top 65% of PD error
ranges, and the top 20% of PD estimates associate with
the top 56% of PD error ranges. Also, the correlation
coefficient between the PD estimates and PD error ranges
is only 0.08 on average. These observations strongly
suggest that PD estimates, especially large ones, are not
a consequence of low-density surrounding packets.

We use the above tests to confirm the estimation accuracy of
the processing delays in our large-scale measurement. Having
verified the validity of the estimated processing delays, we
further analyze the characteristics of processing delays at relay
nodes and their impact on VoIP quality in subsequent sections.

V. PROCESSING DELAY CHARACTERIZATION

In this section, we analyze the relay node processing delays
obtained from the Internet measurement (Section IV). We
begin with a classification of the observed processing delays,
and the possible causes of each type of delay, and then
analyze the effect of packet size on processing delays. Finally,
we characterize the stability of the processing delays and
investigate the relationship between delay stability and host
activity.

A. Classification of Processing Delays

Since processing delays at a relay node are closely related
to the workload on the node, we can consider a pattern of

1-4244-2398-9/08/$20.00 ©2008 IEEE

415

/ |

Density
0.00 002 0.04 0.06 0.08 0.10 0.12
—
Density
0000 0001 0.002 0.003 0.004

0 5 10 15 20
(a) Mean processing delay (ms)

0 100 200 300 400 500

(b) Maximum processing delay (ms) () Maximum / mean processing delay

Fig. 7. The distributions of (a) average processing delays (b) maximum
processing delays (c) the ratio of the maximum processing delay versus the
average processing delay in a call.

processing delays as an indication of the workload structure.
We find that the processing delay patterns can be classified
into five categories, as shown in Fig. 14. The categories and
the possible causes of each type of delay are as follows:

« Typical: This type of processing delay is the most com-
mon. The variation of PDs is small and their magnitude
is rarely higher than 20 ms, which implies that the relay
node is lightly-loaded and the computer is not in use.

o Variable: PDs are stable most of time, but they occa-
sionally exhibit very different behavior. For example, the
PDs of Call 561 are relatively high during the 250450
ms period, which is likely due to a person using the
computer, or an application with a time-varying workload
is running.

o Level-Shifted: The levels of PDs are increased or de-
creased by a significant magnitude, say, larger than 10
ms. This indicates that a heavily loaded task starts or
stops running on the relay node during the call.

o Periodic: Bursts of high PDs occur at regular intervals,
possibly because of the behavior of an application. For
example, the one-minute interval in the processing delays
of Call 214 is likely caused by an email notification
program with a one-minute check interval.

o Loaded: The level of PDs remains large, say 100 ms
or higher. This implies that the relay node is under
a heavy workload generated by computation- or 1/O-
intensive applications.

Fig. 7(a) and Fig. 7(b) plot the distributions of the average
and maximum PDs of each call. It can be seen that the average
PDs are generally shorter than 20 ms. The maximum PDs,
however, have a much broader range, which spreads over 0
to 500 ms with a mean around 100 ms. We use the ratio
between the maximum and average PDs to quantify the degree
of maximum PD variation in a call, and plot its distribution
in Fig. 7(c). The median of the ratios is 30, while its 90%
percentile is around 200. The high variability of the ratios
indicates that the variation of PDs can be extremely large,
even within a 10-minute period.

B. Stability Analysis

We now turn to the stability of processing delays, which is
closely related to the workload structure of a relay node. We
begin our analysis with a definition of the metric busy level,
which is designed to capture the level of the workload on the
relay node. The busy level (BL) is defined as the 95% quantile
of processing delays within a window of 10 seconds.

DSN 2008: Chen & Lou

Authorized licensed use limited to: UNIVERSIDADE ESTADUAL DE MARINGA. Downloaded on October 26, 2009 at 17:23 from IEEE Xplore. Restrictions apply.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

TABLE III
SUMMARY OF BUSY LEVELS OF STABLE AND UNSTABLE RELAY NODES
Stable RN | Unstable RN | Ratio
BL Min 5 ms 6 ms 1.26
BL Mean 6 ms 17 ms 2.75
BL Max 8 ms 120 ms | 14.17
BL SD 1 ms 16 ms | 24.72

We choose the 95% quantile, rather than a more intuitive
50% quantile, because even on a heavily loaded machine, the
processing delays incurred by relay packets are not always
large due to the thread scheduling mechanism. More specif-
ically, when a relay load is lightly loaded, a source packet
is always serviced by the relay application as soon as it
arrives at the node. In contrast, a source packet sometimes
has to wait a long time before it is serviced on a heavily
loaded node. The processing delay of a packet depends on
the exact time it arrives at the relay node. If a source packet
arrives at a node just before the relay application’s execution
time, it will receive almost no processing delay no matter
how heavy the workload is. Otherwise, the packet will be
postponed by a load-dependent period before being processed.
For these reasons, the busy levels are defined bias toward high
processing delays in order to obtain the true workload.

After computing the busy levels for each second in a call,
we detect change points where BLs differ significantly. Rather
than employ a mathematical definition of change points [9,
28], we identify a BL change from an operational point of view
as follows. The time ¢ is deemed a change point if the BLs of
two consecutive seconds, ¢ and ¢t + 1, have a difference larger
than 10 ms. Based on the detected change points, we classify
each relay node into two categories: stable and unstable. A
relay node is considered stable if its PD series contains no
change points, and unstable otherwise. In our traces, 75% of
relay nodes are classified as stable and 25% as unstable.

The stability of relay nodes can also seen an indicator of the
activity of the relay host. In other words, if the busy levels of
a relay node change significantly during a call, it is likely that
the computer is in use for that period. We verify the correctness
of the inferred stability of relay nodes based on the intuition
that a host is more likely to be active during working hours.
To do so, we compute the local time of each call by mapping
a relay node’s IP address to its geographical address and time
zone. The ratios of all hosts and unstable hosts for each hour of
a day are plotted in Fig. 8. We observe that, while the numbers
of observed relay nodes are roughly constant, the numbers
of unstable nodes are significantly higher from 8AM to 4PM
in each node’s local time. These results strongly support the
contention that the measured processing delays reflect the
true workload on relay nodes and can indicate whether the
computer is currently being used by a person or running a
workload-varying application.

We summarize the busy levels of stable and unstable relay
nodes in Table III. The table also lists the ratios of the BL
statistics of unstable and stable relay nodes. The results show
that the busy levels of unstable relay nodes are not only
significantly higher than those of stable nodes (the ratio of
BL maximums is 14), but are also much more variable (the

1-4244-2398-9/08/$20.00 ©2008 IEEE

416

12

Ratio of relay hosts (%)
6

| All relay nodes

| | — unstable relay nodes |

° —

T T T T T

0 5 10 15 20 24
Local hour

Fig. 8. The average ratios of all relay nodes and unstable relay nodes for
each hour of a day, where the ratios are relative to the number of all relay
nodes and unstable relay nodes respectively.

ratio of BL standard deviations is 24).

VI. IMPACT OF PROCESSING DELAY ON VOIP QUALITY

Currently, peer-to-peer relaying technology is adopted by
VoIP applications for the following reasons: 1) relaying can
help bypass the connection restriction of NATs and firewalls
because communication availability is an important consider-
ation for widely used VoIP services; 2) VoIP requires a high
degree of real-timeliness and interactivity, and relaying can
help reduce network latency; 3) the bandwidth requirement
of VoIP communication is not high, e.g., 32 Kbps, which
is not a high bandwidth overhead to a relay node. In many
cases, if we choose a relay node carefully, we are likely to
find a relayed path that yields better network quality than the
native Internet routing path. Thus, a number of studies have
been devoted to finding a good relay node that yields a better
quality path in terms of network latency or the packet loss
rate [2-5, 11, 15, 21, 27]. However, without considering the
workload on the relay nodes, the processing of relay packets
may introduce significant delays to the relayed data stream
and therefore degrade the application performance.

Having shown that the processing delays at a relay node
are not always negligible, we now consider the impact of
relay processing delays on VoIP quality. Via trace-driven
simulations, we show that such delays may have a negative
impact on VoIP quality. We also perform a characterization of
busy periods on relay nodes and show that the busy status of
relay nodes is generally quite unstable.

A. Methodology

We use trace-driven simulations to assess the impact of
processing delays on VoIP quality. To measure the effect of
processing delays under various network conditions, in each
run, we combine a network delay trace and a processing delay
trace to simulate a VoIP call with and without packet relaying.
We use ack response times extracted from the collected
calls as the input of network delays. As each of our 1,115
traces provides a series of network delays and a series of
processing delays separately, our simulation comprises a total
of 1,243,225 runs. The simulation time of each run is set to
250 sec and the packet rate is set to 33 pkt/sec.

DSN 2008: Chen & Lou

Authorized licensed use limited to: UNIVERSIDADE ESTADUAL DE MARINGA. Downloaded on October 26, 2009 at 17:23 from IEEE Xplore. Restrictions apply.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

During each simulation run, we compute the end-to-end
delay and packet loss rate based on a given pair of network
delay and processing delay traces. The end-to-end delay is
decided by the playout buffer size, which also determines the
end-to-end loss rate because a packet is considered lost if it
cannot meet the playout schedule. There are two common
schemes for adjusting the playout buffer size, namely static
and adaptive, both of which are included in our simulations.
For the static buffer strategy, we use a fixed 60-ms buffer after
Skype’s setting [23]. Our adaptive buffer is computed by the
following equation:

pi = di+4xuv;, ¢))
di = axdi+(1-a)xn;, 2)
vi = Bxvii+(1-a)|di—ni, 3)

where p; is the buffer size for packet i + 1, n; is the network
delay of packet i, and a = 8 = 1-0.998002 according to [20].

We use the ITU-T E-model [12] to quantify the voice quality
of each simulated call. Essentially, the E-model transforms a
set of transmission impairments into a psychological satisfac-
tion level. The main computation equation of the E-model is

R=R,—I;,—I4j—I.+ A,

where R, represents the fundamental signal-to-noise ratio, I
represents the impairments occurring simultaneously with the
voice signal, I; represents the impairments related to delays,
and I, represents the impairments related to information loss.
The advantage factor A is used for compensation when there
are other advantages of access available to the user. Since the
computation of R, and I, is codec-dependent, for simplicity,
we assume the voice codec is the widely deployed G.711. The
output of the E-model is the R-score, which represents the
overall voice quality via a 100-pt scale. In our settings, the
R-score reaches a maximum of 93.2 without any end-to-end
delay or loss. Generally an R-score higher than 80 implies
a satisfactory VoIP quality, while an R-score lower than 70
implies a quality that many users find unacceptable [19].
Following Table 1 in [19], we use a reduction of 10-points
in the R-score to denote a significant degradation in VoIP
conversation quality.

B. Performance Degradation

1) Transmission Delay and Loss: For each pair of network
delay and relay processing delay traces, we assess the quality
degradation by evaluating the network performance separately,
i.e., end-to-end delay and loss, as well as voice quality, with
and without relay processing. First, we consider the network
performance degradation shown in Fig. 9. From the figure,
we observe that the average delay increase caused by relay
processing is not large because the playout buffer absorbs
the variability introduced by processing delays. However, a
fraction of calls still experience significant end-to-end delay
increases, say, greater than 50 ms. The reason for the larger
delay increase in the adaptive buffer scheme is that the buffer
size is proportional to the mean deviation of network delays
(Eqn. 3); thus, it becomes larger in the face of highly spiky
processing delays. Moreover, the adaptive buffer does not seem

1-4244-2398-9/08/$20.00 ©2008 IEEE

417

1.0
1.0

0.8
0.8

CDF
0.4 0.6
CDF
0.4 0.6

0.2
0.2

Static buffer

| | Static buffer
| - Adaptive buffer

| Adaptive buffer

0.0
0.0

50 100 0.02 0.1 05 1 2
(b) Packet loss rate increase (%)

1 5 10 20
(a) Avarage delay increase (ms)

Fig. 9. The distributions of (a) average increase of end-to-end delays, (b)
increase of packet loss rate in each call.

1.0
1.0

CDF
0.4 06 08
: 06 08

Static buffer |
- Adaptive buffer‘ |

0.2
0.2

Static buffer

|| |

Adaptive buffer
T

-10 0 10 20
(a) Avarage R-score decrease

0.4

0.0
0.0

T T T T T
30 40 50 0 20 40 60 80
(b) Maximum R-score decrease

Fig. 10. The distributions of (a) average R-score increase, (b) maximum
R-score increase in each call.

resilient enough to absorb highly variable processing delays,
as it leads to both longer delays and higher packet loss rates
than the static buffer scheme. In addition, the static buffer
always absorbs delay deviations shorter than 60 ms such that
only 1% of calls have an end-to-end loss rate higher than 1%,
compared to 10% of calls under the adaptive buffer strategy.

2) VoIP Quality: With respect to VoIP quality degradation,
we can see from Fig. 10(a) that the average R-score decrease
caused by relay processing is generally small; most calls
have an average R-score decrease smaller than 10. A few
calls with adaptive buffering do have better voice quality, i.e.,
an increased R-score. Our analysis shows that this counter-
intuitive behavior is due to a lower packet loss rate. The lower
rate is a consequence of a larger playout buffer, which in
turn is caused by a higher degree of delay variation due to
relay processing. At the same time, the adaptive buffer scheme
also leads to poor conversation quality, as about 20% of calls
have an average R-score decrease of more than 10, which we
consider a significant degradation in quality.

The performance degradation is much more obvious if
we check the distribution of maximum R-score decreases in
Fig. 10(b). The adaptive buffer scheme still performs much
worse than the static buffer scheme. However, both schemes
are subject to significant quality degradation due to relay
processing; 40% and 58% of calls experienced considerable
quality degradation for the static and adaptive buffer strategies
respectively.

3) Original Quality vs Degradation: We note that the
impact of processing delay is not equivalent for all calls.
According to the E-model, a better quality call is more prone
to performance degradation [12, 16]. We verify this effect by

DSN 2008: Chen & Lou

Authorized licensed use limited to: UNIVERSIDADE ESTADUAL DE MARINGA. Downloaded on October 26, 2009 at 17:23 from IEEE Xplore. Restrictions apply.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

100
1

- Static buffer |
- - Adaptive buffer |

40 60 80
-

Degraded R-score
\
=

20
[

T T T
0 20 40 60 80 100
Original R-score

Fig. 11. The relationship between the original R-scores and the averaged
degraded R-scores.

mapping the original R-score of each call to its degraded R-
score, as shown in Fig. 11. Generally speaking, calls with a
high R-score incur more quality degradation than those with
a low R-score. We observe that the adaptive buffer scheme
causes more degradation than the static buffer scheme for
calls with an original R-score higher than 40. The reason
is that a call with an initial high R-score is associated with
short network delays; in this case, the adaptive buffer size
tends to be decided by the spiky relay processing delays. On
the other hand, the static buffer scheme is not susceptive to
delay variations, so the quality degradation remains relatively
constant.

4) Summary: Here, we formally define that a call is “de-
graded” if it experiences an R-score decrease greater than
10 points. Among the simulated calls, we find that the static
buffer scheme causes 31% of the calls to be degraded, while
the adaptive buffer scheme causes 54% to be degraded. In
addition, for the two schemes, the average degradation time
ratio within a call is 10% and 18% respectively.

C. Impact of Busy Levels

Having evaluated the overall VoIP quality degradation
caused by relay processing delays, we now examine the
relationship between workload levels and the degree of voice
quality degradation. Recall that we defined the busy level to
quantify the workload at a relay node in Section V-B. For each
call, we first divide the busy levels and R-score decreases into
10 groups by their ranks. Then, we plot the average R-score
decreases for a variety of busy levels, as shown in Fig. 12.

The figure clearly shows that higher busy levels lead to more
serious quality degradation. On average, the R-score decreases
are higher than 10 points when the busy level of the relay
node is higher than 20 ms. This result implies that we should
avoid a relay node with a busy level higher than 20 ms, as
transmitting VoIP packets through this node would lead to
significant quality degradation.

D. Busy Period Characterization

Based on the analysis results, we define that a relay node is
busy when its busy level is higher than 20 ms. In our traces,
23% of relay nodes were even in a busy state during a 10-
minute call. We also define a busy period of a relay node as
a continuous time span during which the node is busy.

1-4244-2398-9/08/$20.00 ©2008 IEEE

418

| ~— Static buffer ‘
Adaptive buffer |

|
/

~ 4 |

Average R-score decrease
40
o W

5 10 20 50 100
Busy level (ms)

Fig. 12. The relationship between busy levels and the corresponding average
R-score decreases. The dashed lines are the 95% confidence bands of the
averages.

o o
o o
o | = |
|
© ©
] c
w w
Q a
o o
< <
oS =]
o N
=] B |
|
e =4
et T T T = R e s
1 5 20 100 500 1 5 20 100

(a) Busy period length (sec) (b) Busy period interarrival time (sec)

Fig. 13. The distributions of (a) busy period length, (b) busy period
interarrival time in a call.

To understand the patterns of busy periods on relay nodes,
we extract all the busy periods in each call and plot the
distributions of their length and interarrival times in Fig. 13.
We find that a busy period lasts for 18 seconds on average,
where 65% of busy periods are shorter than 10 seconds. Also,
the interarrival time of busy periods is 25 seconds on average.
These statistics suggest that the busy status of relay nodes is
quite unstable because the nodes tend to switch between busy
and non-busy states frequently.

VII. CONCLUSION

In this paper, we consider a hidden aspect of peer-to-
peer relaying—the processing delays at relay nodes. Existing
related works mostly focus on how to improve current peer-
to-peer systems by data relaying, but seldom discuss its
adverse effects. Through the trace collection in Section IV, the
statistical analysis in Section V, and the network simulations
in Section VI, we show that relaying is a double-edged sword
in that it could be also detrimental to VoIP quality if an
inappropriate relay node is used. The degradation cannot be
avoided completely as a lightly-loaded relay node may start
running a load-intensive application at anytime. Thus, we have
to monitor the processing delays of a relay node continuously,
as we usually do for network conditions, to prevent the
application performance from being degraded. We hope this
study will motivate future peer-to-peer systems to focus on this
negative aspect of the application-layer relaying technique.

DSN 2008: Chen & Lou

Authorized licensed use limited to: UNIVERSIDADE ESTADUAL DE MARINGA. Downloaded on October 26, 2009 at 17:23 from IEEE Xplore. Restrictions apply.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

Typical (Call 228) ~ Typical (Call 979)

RD (ms)

0 100 200 300 400 500 0 100 200 300 400 500

Time (sec) Time (sec)
Variable (Call 561) Variable (Call 724)
8 g
& 8
T | 28 l
g9+ 4 |
‘ T 8 |
g i ..’], ‘ | o E ‘
i o bilud WAL TR Y
y " =T T ——
0 100 200 300 400 500 0 100 200 300 400 500
Time (sec) Time (sec)
Level-Shifted (Call 471) Level-Shifted (Call 475)
bbb, | 2tk brbofatd
. |
"
2 e
-9 P
£ £e
a8 { a
4 J | [4
o | { | |
L h |] ® -
o i L e
T T —— T ——r T T ==
0 100 200 300 400 500 0 100 200 300 400 500
Time (sec) Time (sec)
Periodic (Call 214) N N 2 Periodic (anIW)
[8
8 | 2
| &
8- 8-
| &
Eg- Eg]
& g ||
A
b i 8 | i | ‘
o | i onomaniomenn | |0 LD
T ¢ i LA 3 T T L . L L, B, 'SR
0 100 200 300 400 500 0 100 200 300 400 500
Time (sec) Time (sec)
i i.qaﬂed (Call 381) o Eqardiedi(fall 727)
§ 2]
g .
g
8-
£ 28
2 -
84 ‘ | |
l 't : 3
* gl
i Ll‘ Mbi‘]HHL“ “l« i ° b
T T T A T T =t T T T
0 100 200 300 400 500 0 100 200 300 400 500

Time (sec) Time (sec)

Fig. 14. A classification of common processing delay patterns. We list five
categories: typical, variable, level-shifted, periodic, and loaded.

REFERENCES

[1] S. Baset and H. Schulzrinne, “An analysis of the Skype peer-to-
peer internet telephony protocol,” in INFOCOM. 1EEE, 2006.

[2] K.-T. Chen, C.-Y. Huang, P. Huang, and C.-L. Lei, “Quantifying
Skype user satisfaction,” in Proceedings of ACM SIGCOMM
2006, Pisa Itlay, Sep 2006.

[3] C.-M. Cheng, Y.-S. Huan, H. T. Kung, and C.-H. Wu, “Path
probing relay routing for achieving high end-to-end per-
formance,” in Global Telecommunications Conference, 2004.
GLOBECOM °04. IEEE, vol. 3, 2004, pp. 1359-1365.

[4] T. Fei, S. Tao, L. Gao, and R. Guérin, “How to select a good
alternate path in large peer-to-peer systems?” in INFOCOM.
IEEE, 2006.

[5] T. Fei, S. Tao, L. Gao, R. Guérin, and Z.-L. Zhang, “Light-
weight overlay path selection in a peer-to-peer environment,”
in INFOCOM. 1EEE, 2006.

1-4244-2398-9/08/$20.00 ©2008 IEEE

419

[6] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-peer communi-
cation across network address translators,” in USENIX Annual
Technical Conference, 2005, pp. 179-192.

[7] Google, Inc., http://www.google.com/talk/.

[8] S. Guha and N. Daswani, “An experimental study of the
Skype peer-to-peer VoIP system,” Cornell University, Tech.
Rep., Dec. 16 2005.

[9] F. Gustafsson, Adaptive Filtering and Change Detection. John
Wiley & Sons, September 2000.

[10] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross, “A Mea-
surement Study of a Large-Scale P2P IPTV System,” in IPTV
Workshop, International World Wide Web Conference, 2006.

[11] X. Hei and H. Song, “Stochastic relay routing in peer-to-peer
networks,” in Proceedings 41st IEEE International Conference
on Communications, 2006.

[12] ITU-T Recommandation, “G. 107. The E-Model, a Computa-
tional Model for Use in Transmission Planning,” International
Telecommunication Union, CHGenf, 2002.

[13] X. Liao, H. Jin, Y. Liu, L. M.Ni, and D. Deng, “Anysee: Peer-
to-peer live streaming,” in INFOCOM. 1EEE, 2006.

[14] L. Liu and R. Zimmermann, “Adaptive low-latency peer-to-peer
streaming and its application,” Multimedia Systems, vol. 11,
no. 6, pp. 497-512, 2006.

[15] Y. Liu, Y. Gu, H. Zhang, W. Gong, and D. Towsley, “Application
level relay for high-bandwidth data transport,” in The First
Workshop on Networks for Grid Applications (GridNets), San
Jose, October 2004.

[16] A. Markopoulou, F. A. Tobagi, and M. J.Karam, “Assessment
of volP quality over internet backbones,” in Proceedings of
INFOCOM, 2002.

[17] S. McCanne and V. Jacobson, “The BSD packet filter: A new
architecture for user-level packet capture,” in Proceedings of
USENIX’93, 1993, pp. 259-270.

[18] J. Nagle, “Congestion control in IP/TCP internetworks,” Com-
puter Communication Review, vol. 14, no. 4, pp. 11-17, Oct.
1984.

[19] M. Narbutt, A. Kelly, L. Murphy, and P. Perry, “Adaptive voIP
playout scheduling: Assessing user satisfaction,” IEEE Internet
Computing, vol. 9, no. 4, pp. 28-34, 2005.

[20] R. Ramjee, J. F. Kurose, D. F.Towsley, and H. Schulzrinne,
“Adaptive playout mechanisms for packetized audio applica-
tions in wide-area networks,” in INFOCOM, 1994, pp. 680—688.

[21] S. Ren, L. Guo, and X. Zhang, “ASAP: an AS-aware peer-relay
protocol for high quality voIP,” in Proceedings of ICDCS, 2006,
pp. 70-79.

[22] J. Rosenberg, R. Mahy, and C. Huitema, “Traversal Using
Relay NAT (TURN),” draft-rosenberg-midcom-turn-05 (work in
progress), July, 2004.

[23] B. Sat and B. W. Wah, “Playout scheduling and loss-
concealments in voip for optimizing conversational voice com-
munication quality,” in Proceedings of Multimedia’07. New
York, NY, USA: ACM, 2007, pp. 137-146.

[24] C. Schensted, “Longest increasing and decreasing subse-
quences,” Canad. J. Math., vol. 13, pp. 179-191, 1961.

[25] Skype Limited, http://www.skype.com.

[26] D. A. Solomon and M. Russinovich, Inside Microsoft Windows
2000. Microsoft Press Redmond, WA, USA, 2000.

[27] H. Zhang, L. Tang., and J. Li, “Impact of Overlay Routing on
End-to-End Delay,” in Proceedings of ICCCN, 2006, pp. 435—
440.

[28] Y. Zhang and N. G. Duffield, “On the constancy of internet path
properties,” in Proceedings of Internet Measurement Workshop,
V. Paxson, Ed. San Francisco, California, USA: ACM, Nov
2001, pp. 197-211.

[29] R. Zimmermann, B. Seo, L. Liu, R. Hampole, and B. Nash,
“Audiopeer: A collaborative distributed audio chat system,”
Distributed Multimedia Systems, San Jose, CA, 2004.

DSN 2008: Chen & Lou

Authorized licensed use limited to: UNIVERSIDADE ESTADUAL DE MARINGA. Downloaded on October 26, 2009 at 17:23 from IEEE Xplore. Restrictions apply.

