
MeshMan: A Management Framework for Wireless Mesh

Networks

Vivek Aseeja and Rong Zheng

Department of Computer Science, University of Houston

Email: {vivekian,rzheng}@cs.uh.edu

Abstract— As wireless mesh networks become more popular,
there exists a need to provide centralized management solutions,
which facilitate network administrators to control, troubleshoot
and collect statistics from their networks. Managing wireless
mesh networks poses unique challenges due to limited bandwidth
resources and dynamic channel quality. A robust management
solution should function despite network layer failure. In this
paper, we propose MeshMan, a network layer agnostic, low over-
head solution to network management to cope with unreliable
wireless channels, link and network level dynamics in wireless
mesh networks. It combines the concepts of source routing with
hierarchical addressing, and provides a native efficient query
interface. A prototype of MeshMan has been implemented as
a user space daemon on Linux and evaluated using a 12-node
wireless mesh network testbed. Experimental studies demonstrate
that MeshMan has comparable or better performance than the
Simple Network Management Protocol (SNMP) in management
overhead and response times when the network is stable while
having much better performance in presence network dynamics.

I. INTRODUCTION

Wireless Mesh Networks are multihop static wireless net-

works where each node can connect to every other node via

multiple hops. They have become popular due to their low

cost and ability to provide last mile connectivity. They hold

great potentials to provide a communication infrastructure in

areas where it is not financially viable to layout a wired in-

frastructure such as developing countries or rural communities

[1]. Wireless mesh networks are also used to share broadband

Internet access and provide low cost Internet and local access

to wireless users in housing communities. As wireless mesh

networks become more ubiquitous, it is imperative to provide

a management solution, which can be utilized by network ad-

ministrators to easily operate and trouble-shoot these networks.

Moreover, the research community can benefit from such a

solution that would allow them to remotely collect data and

statistics from experimental mesh testbeds.

A straightforward solution to managing wireless mesh net-

works would be to extend the Simple Network Management

Protocol (SNMP) [4]. SNMP is a widely used application
layer protocol, which is designed to work over heterogeneous
link layer technologies where network bandwidth and storage

space are relatively abundant. For instance, the size of poll

messages for one metric to a single interface using SNMP

GET request can be up to 1 KB. A wireless mesh network

on the other hand is typically operated by a single service

provider and uses a common link layer protocol (e.g., IEEE

802.11). Mesh routers are generally embedded devices with

limited storage capacities. Running SNMP in mesh networks

can be both heavyweight in bandwidth consumption [4], [5]

and ineffectual if the network layer has not been configured

properly as SNMP relies on a functioning network layer to

reach nodes that are more than one hop away [6]. It has

been reported in [20] that routing flaps and instability exist in

mesh network deployments. We have also observed temporary

unavailability of nodes due to misconfiguration and/or slow

convergence of routing table in our own mesh testbed. In the

case of network-level disconnection of a physically connected

network, node state information such as routing table entries

becomes unavailable when it is most needed (for trouble

shooting purposes). Therefore, the following design constraints

necessitate an alternative solution:

• Robustness to network layer failure: The solution needs

to be independent of network layer functionalities for

the purpose of diagnosing and correcting network layer

faults.

• Self-reconfigurability: Failure of nodes and addition of

new nodes should be handled gracefully.

Motivated by the afore-mentioned design constraints, we pro-

pose MeshMan, a network layer agnostic, light-weight solution

to network management to cope with unreliable wireless

channels and network dynamics in wireless mesh networks.

MeshMan does not rely on IP or a functioning network layer.

In MeshMan, each mesh router is identified by a mesh ID,

which is automatically configured in a hierarchical fashion.

Such mesh IDs are stored at a central location, the mesh man-
ager, and serve as routing directives for queries generated from

the mesh manager to mesh routers. Unicast queries are routed

using source routes encoded in the mesh ID and delivered over

link layer, which eliminates the dependency on mesh routing

protocols in use. Broadcast queries are flooded in the network

for maximal resilience to packet losses. In events of missing

or mismatched information at the mesh manager, MeshMan

provides ARP-style resolution over multiple hops for map-

pings between MAC addresses and mesh IDs as fail-safe. A

lightweight query-response mechanism has been designed in

place of SNMP with simplified encoding rules. In MeshMan,

addressing and routing are decoupled from the query-response

mechanism. Therefore, one can easily extend and integrate

it with conventional network management solutions such as

SNMP across heterogeneous networks. Alternatively, mesh

226978-1-4244-3487-9/09/$25.00 c© 2009 IEEE

manager can serve as a gateway to translate SNMP queries

to native queries.

A prototype of MeshMan has been developed as a col-

lection of user space daemons. Evaluations are carried out

on a 12-node indoor wireless mesh testbed. We ported our

implementation to the OpenWRT Linux distribution [12] on

the embedded Wireless Router Application Platform (WRAP)

board. The optimal link state routing protocol (OLSR) [8]

is used as the default mesh network routing protocol for

baseline comparison. We compare the query response time,

query loss ratio and recovery time upon node join and leave

across various schemes. Our experimental studies demonstrate

that MeshMan has comparable or better performance in both

management overhead, response times than SNMP; and is

shown to be resilient to network dynamics.

The rest of the paper is organized as follows. In Section

II, an overview of existing network management systems is

presented. We highlight the key design considerations and

features that distinguish MeshMan from related work. The

design of MeshMan is described in Section 3 with the imple-

mentation details in Section 4. We present the testbed setup

and experiment results in Section 5. Finally, we conclude the

paper in Section 6.

II. BACKGROUND AND RELATED WORK

Networks are formed using disparate hardware and software

components that interact together to provide end-to-end data

transport. As networks grow in size and complexity, the

probability of failure in network components increase. As a

result, there is a great need for network management solutions,

which are a combination of various tools, protocols, and

techniques to help a network administrator to manage various

devices [7]. A network management system generally consists

of several components:

• Managing entity: an application which is running in a

centralized network management station for controlling

the collection, processing, analysis and presentation of

the network management information which has been

collected [7].

• Managed device and agent: This refers to the network

component which is being managed by the managing

entity. The agent which is generally a daemon runs in

the background collecting statistics and is responsible for

transferring information back to the central management

entity.

• Network management protocol: This protocol is the

communication medium between the managing entity and

the managed entity. It defines the set of rules which both

follow to communicate with each other.

The simple network management protocol (SNMP) is an

application layer protocol that facilitates the exchange of

management information between network devices. It defines

both a protocol for communication of queries and responses

and also an agent for sending responses within a network [7].

SNMP operates on top of the UDP or TCP transport protocol

and relies on a functioning IP layer to route information. In

the Internet, the Internet Control Message Protocol (ICMP)

provides a mechanism to send error messages when services

on routers and hosts are not available.

Chen et. al [9] proposed the Ad-hoc Network Management

Protocol (ANMP), a protocol for managing mobile wireless

ad hoc networks. The design objective of ANMP is to handle

mobility and power constraints for mobile nodes. The protocol

uses hierarchical clustering of nodes to reduce the number

of messages exchanged between the manager and the agents

(mobiles). Clustering also enables the network to keep track of

mobiles as they roam. ANMP is compatible with SNMP and

can be integrated with existing network management solutions.

Although ANMP is similar to our work since both operate on

multihop wireless networks, our work focuses on providing a

robust and lightweight management solution to static multi hop

wireless networks, where power management and mobility are

non-issues. Another work in this area is Nucleus [18], which

is a network management system developed by Tolle et. al
for wireless sensor networks. Nucleus can retrieve the values

of user-defined attributes and RAM variables from nodes.

In Nucleus, dissemination of query message is carried out

using unrestricted flooding. The flooding messages generate

a single sink tree for collection of management state. Such a

sink tree is regenerated next time a query message is flooded

and thus is resilient to network dynamics to certain extent.

MeshMan differs from Nucleus in two key aspects. First, in

addition to broadcast queries, it also supports unicast queries.

This necessitates an addressing and unicast routing scheme.

Broadcast queries incur much network traffic and should be

avoided if possible. Second, Nucleus reconstructs the sink

tree each time a query is initiated. MeshMan utilizes local

update based on hop distance to maintain routes to the mesh

manager. It is expected that though link quality may vary,

physical connectivity is likely to be more stable in wireless

mesh networks.

Two seemingly conflicting considerations motivate our de-

sign of MeshMan in wireless mesh networks. On one hand,

wireless mesh networks exhibit intricacies such as volatility

of wireless channels, dynamic routes and limited bandwidth,

which are not present in wired networks. A management

solution should be customized to handle these complexities.

On the other hand, there is a need for wireless mesh networks

to inter-operate with wired networks to provide access to

wide-area network connectivity. It is thus desirable to have

a uniform management interface for an ISP to operate both

its wireless and wired infrastructure. To accommodate both

requirements, in our design of MeshMan, the query interfaces

are decoupled from the mechanisms used to route management

information, and thus allow interoperability with other man-

agement solutions. For routing of management information in

mesh networks, we design a solution that is tailored to handle

the intricacies.

III. DESIGN OF MESHMAN

Similar to other network management systems, MeshMan

consists of a managing entity, called mesh manager running

2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009) 227

on a central server, managed devices and agent running on

each mesh node, and a set of network management protocols.

The management protocols in MeshMan not only defines the

set of rules that the mesh manager and managed devices

follow to communicate with each other, it also specifies an

addressing scheme for the auto-configuration of mesh IDs, the

associated adoption protocol and a source routing mechanism.

As stated earlier, this is one key difference between MeshMan

and existing management solutions.

A. Hierarchical addressing

To query management states on individual mesh nodes,

traditional ad hoc routing protocols require maintenance of

routing information proactively or reactively on all nodes.

The MAC and IP address spaces of mesh nodes are flat and

cannot be aggregated easily. This leads to significant message

and space complexity to determine and store the routing

information at the intermediaries, and does not scale well [19].

We observe that for management purpose, it is sufficient for

the mesh manager to know how it can reach each mesh node

and vice versa. Intermediate mesh nodes do not need to keep

routing information to one another. Therefore, we choose to

use source routing for unicast queries and maintain states at the

mesh manager only. This also simplifies the implementation

of managed agents on mesh nodes.

In MeshMan, each node is assigned a mesh ID of variable

length in the dot decimal representation. Starting from the

mesh manager with mesh ID 1, the number of fields of

the mesh ID reflects the distance to the mesh manager in

a tree rooted at it. The mesh ID of a child is obtained by

appending an additional field to the mesh ID of the parent

node. Therefore, all children with a common parent share

the same prefix. As an example, the children of node 1.2

are assigned mesh ID of 1.2.1, 1.2.2 etc. Allocation of the

mesh IDs is done using the adoption protocol presented in

Section III-B. The mesh manager maintains the (mesh ID,

MAC address) mapping for all active nodes in the network.

One key advantage of the proposed hierarchical addressing

scheme is that it naturally facilitates address aggregation. A

mesh ID encodes the source route to the corresponding node,

and serves as routing directive. For instance, to query a node

with mesh ID 1.2.1, the route taken is via node 1, node 1.2. By

limiting the number of child nodes a parent node can have,

we can bound the length of each address field (e.g., 1 byte

in our implementation). In comparison with a naı̈ve source

routing scheme that concatenates 48-bit MAC addresses of

nodes along a path, mesh ID representation is more compact

and incurs less overhead. Multiple mesh managers can be

supported if the address space is partitioned such that a

separate address is used for different mesh managers. For ease

of presentation, we assume in the rest of the paper, there is

only one mesh manager.

B. Adoption protocol

In this section, we describe the adoption protocol to allocate

mesh IDs to nodes in a fully distributed manner.

1) The core algorithm: The adoption process starts from

the mesh manager and propagates toward the peripheries of

the network. A node is both a “client” and a “server” in that

it can assign addresses to its child nodes once it is allocated

an ID by its parent.

A node periodically broadcasts a Discovery frame announc-

ing its path cost to the mesh manager. A node chooses the node

among its neighbors that has the least cost path to the mesh

manager and sends back a mesh ID Request to the potential

parent. The parent responds with a mesh ID Offer to the child

and the adoption process is complete. If a node has a parent,

and receives an offer from another neighbor in its broadcast

domain, it checks if the offer contains a less costly path to the

mesh manager. If so, the node abandons its previous parent

and chooses the new parent. Link metrics such as Expected

Transmission Count (ETX) [16] and Weighted Cumulative

ETT (WCETT) [17], can be used to choose routes based on

the quality and the bandwidth of the link. They were proved

to be effective as compared to hop counts for choosing higher

throughput routes. However, routing flapping and instability

may occur if the threshold values are not tuned properly as

reported in [20]. In MeshMan, management traffic is loss

resilient and light in bandwidth consumption. We choose to

use hop counts instead as the link metric for route selection

so as to maintain stability and minimize variability in routes.

This also helps in reducing the traffic incurred to update the

(mesh ID, MAC address) mapping at the mesh manager which

occurs when a new route is added or deleted. Measurements

from a wireless mesh testbed also confirm our hypothesis as

detailed in Section V-B.1.

2) Handling packet losses: Since the protocol runs over

error-prone wireless channels, it is essential to account for

the loss of any frame involved in the adoption process. One

possible solution is to use soft state and have a time out

mechanism for each Request or Offer sent. Expiration of

the timer triggers retransmissions of the corresponding frames.

This is the mechanism adopted in DHCP [10]. However, it

adds additional complexity to maintain soft states at mesh

nodes. The design of our adoption protocol is inherently robust

to withstand frame losses due to the periodicity of Discovery

frames. Consider for instance the loss of Request Frames. In

this case, the child node does not receive an Offer frame,

which would have been sent otherwise. The node sends a

Request frame again the next time a Discovery frame is

received from the potential parent. In the case that the Offer
frame is lost, the parent has added the node as its child, but the

child is not aware of it. The child node will send a Request
frame again to the parent upon reception of the next Discovery
frame. The parent simply retrieves the existing mesh ID and

offers it to the child.

3) Managing node failure: Since Discovery frames are

transmitted periodically, they also act as Keep Alive messages.

Upon reception of a Discovery frame a node updates the

timestamp. Node failure or disconnection is detected using the

timeouts. If the timestamp associated with the current parent

becomes stale, a node can request a new mesh ID from a

228 2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009)

different neighbor. Similarly, a parent removes a child and

informs the mesh manager if the child is not active for a

prolonged period of time.

C. Routing of management traffic

There are two types of queries originating from the mesh

manager, namely, broadcast queries and unicast queries.

Broadcast queries are delivered to all mesh nodes using flood-

ing. Techniques such as random initial back-off can be adopted

to suppress redundant broadcast transmissions. Unicast queries

originate from the mesh manager and are destined to a specific

MAC address. The mesh manager first looks up the mesh ID

and then routes the query hop-by-hop using the source route

information included in the corresponding mesh ID. In the

unicast queries, the MAC address information is included as

the destination address.

Query responses are delivered to the mesh manager hop-by-

hop. A node sends the response to its parent, which forwards

the message onwards. We do not enforce reliability in the

delivery of query responses since queries can be retransmitted

if no response has been received upon timeouts at the mesh

manager. This requires additional bookkeeping at the mesh

manager but simplifies the implementation of mesh nodes.

1) Failure handling: Due to the lack of end-to-end reliabil-

ity, update messages that carry the (mesh ID, MAC address)

mapping can be lost. Several failure scenarios may arise. First,

the mesh manager does not have the record of a particular

MAC address. This may occur when the update message was

lost when the node first joined the network. Second, a mesh

manager may have incorrect mapping. For example, when a

node’s parent fails, it requests a mesh ID from a different

node and updates the mesh manager its latest binding. If the

message is lost, the mesh manager still has the old binding

and will wrongly route the message to a non-existing node.

Lastly, a mesh manager may have out-dated information about

a failed node.

When the mesh manager has incorrect information about a

failed node or a node whose mesh ID changes, query messages

with the old mesh ID would eventually arrive at a node where

the source route and/or the MAC address in the destination

field is invalid. This node is responsible to generate an error

message including the header portion of the query message

informing the mesh manager. Upon reception of the error

message, the mesh manager deletes the corresponding entry.

When the mesh manager cannot find a mesh ID entry for

a MAC address, we utilize the broadcast query to resolve

the MAC address by asking “who has MAC address xx?”

This is similar to the Address Resolution Protocol (ARP)

with the difference that the query is propagated via multiple

hops. Frequency of broadcast queries is rate limited to avoid

excessive traffic in the network.

IV. IMPLEMENTATION

MeshMan is implemented as user space daemons in Linux.

This allows fast prototyping and portability to other POSIX-

based operating systems.

A. System architecture

Fig. 1. MeshMan system architecture (colored blocks are modules imple-
mented in MeshMan)

Fig. 1 shows how the different components of the system fit

together. The framework consists of the following modules:

• Adoption Protocol Daemon (APD): This process runs

on mesh node. There are two sub-components in this

module, i.e., the Adoption Layer implementation and the

routing module, which is responsible for routing queries

and responses.

• Mesh Manager Daemon (MMD): This daemon acts as the

managing entity that maintains MAC address to mesh

ID mapping. Update messages from mesh nodes are

delivered to this daemon.

• Frame Queuer Daemon: This process is responsible for

demultiplexing frames that are destined for MMD or APD

from the kernel space and placing them in a message

queue in user space based on the message type.

• Queryd: Queryd is an administrative tool that takes

user input and serializes queries to the specified MAC

addresses or broadcast addresses and process responses.

The Libnet (Libpcap) [11] open source library is used in

our implementation to inject (capture) packets to (from) the

network interface card bypassing the TCP/IP network stack.

B. MeshMan message format

The structure of MeshMan message format is similar to

ICMP message. It consists of a common header and a message

body specific to each type of messages. The common header

(IV-C) contains 4 fields, i.e., version, type, code and length.

The first field version indicates the version of the protocol.

The byte long type field broadly defines the frame type for

different modules: i) AP for Adoption Protocol, ii) Route for

the Routing component and iii) MM for MMD. The two byte

2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009) 229

code field further identifies the “subtype” of message within

each MeshMan message Type value.

C. Adoption Protocol Daemon

Implementation of the APD is summarized in Fig. 2.

Messages arriving at a node are placed in the message

queue by Frame Queuer. Frames destined for the Adoption

Protocol are picked up by the FrameDemultiplexer module.

The FrameDemultiplexer module passes the frame to the

FrameParser, which decodes the frame and classifies it as per

the type and code field in the common header. The frames are

then demultiplexed to the Adoption Protocol or the Routing

submodule. It is then handled by the FrameProcessor, which
makes the algorithmic decision of what needs to be done upon

reception of the frames. For instance, an Offer needs to be sent

in response to a Request; or a query needs to be forwarded if

it is not the final destination.

For messages leaving the node, the FrameConstructor mod-

ule is responsible for constructing responses, notifications,

offers and discovery messages, and injecting them into the

network stack using the Libnet library [11]. Since mesh IDs

are of variable length, they are encoded using a definite-form

scheme where the length of the mesh ID is placed before the

mesh ID.

The ParentManager maintains the parent of a node. The

ChildManager keeps track of the adopted children. It has

three tasks, i.e., to grant relative mesh IDs to new children,

to clean up dead children and to translate relative mesh IDs

(i.e., excluding the prefix of the parent) to MAC addresses.

To accomplish this, the ChildManager maintains a list of the

children MAC addresses that are associated with their relative

mesh IDs and the timestamp of the last update. In addition, it

also maintains a “dead children” list, which are found during

clean up. Before a new child is added, it is checked if the MAC

address already exists in the list. In the case that it exists, the

timestamp is updated and the relative mesh ID is returned. In

the case where the MAC address is new, the dead children list

is first checked for an available mesh ID. Otherwise, a new

mesh ID is generated by incrementing the mesh ID counter

and allocated to the child.

The RouteManager routes queries to the destination nodes

and responses back to the mesh manager. Upon reception of a

query, the destination MAC is compared with the node’s MAC

address. When a match is found, the query is processed and

the response is returned. To forward queries, ChildManager is

called to resolve the relative mesh ID to the next-hop MAC

address and the frame is forwarded. In a similar manner,

responses are forwarded to the mesh manager using the

parent’s MAC address provided by ParentManager.

D. Mesh manager daemon

The MMD as the managing entity has the sole important

task of maintaining source routes from itself to every node

in the network. To accomplish this, MMD keeps a hash table

which maps the MAC address of a node to the corresponding

mesh ID. In addition, it stores pointers from parents to child

Fig. 2. Implementation of the adoption protocol daemon

nodes. This corresponds to a tree rooted at the mesh manager.

When a node is allocated a mesh ID, its APD sends an

AddRoute notification to the MMD. The MMD checks if the

MAC Address exists. It updates the routes, adding a forward

pointer from the parent to the new child. When a parent

determines a child fails or moves away, its APD sends a

DeleteRoute notification to MMD. The MMD deletes the

child entry and its subsequent children in the tree using the

Depth First Search algorithm.

If the MMD fails to find a mesh ID for a given MAC address

for query messages, it sends out a broadcast query message

requesting such information.

E. Queryd

Queryd is a simple tool for administrators to send out

queries to an agent as well as return the responses in human

readable forms. It uses the MAC address and the query as

the input. The Linux /proc file system allows direct access

and modification of kernel memory variables. We utilize the

/proc file system as the management information base (MIB).

Hence, the query corresponds to an in-memory value to be

read from the remote system via the agent. For example, the

following command fetches the routing table from a remote

agent with the MAC address 00:FF:23:AB:11:22.

00:FF:23:AB:11:22 /proc/net/route

Serialization of query and response messages from/to users

is handled by the MMD automatically.

V. EVALUATION

We have carried out extensive evaluations of the proposed

management framework on our wireless mesh network testbed.

Large-scale simulations in Qualnet are omitted due to space

limits.

A. Testbed setup

A 12-node wireless mesh testbed has been setup on the

2nd and 3rd floors of the Phillip G Hoffman building at the

University of Houston to run wireless experiments. Fig. 3

230 2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009)

Fig. 3. The WiSeR Mesh Testbed at the University of Houston. Dots are
mesh nodes. Blue lines indicate the existence of links among mesh nodes
reported by OLSR

shows a snap shot of the real time connectivity map of the

testbed. Each node is an embedded Wireless Router Appli-

cation Platform (WRAP) board with 233 MHz AMD Geode

SC1100 CPU, 64Mb DRAM, with dual Mini PCI Atheros

802.11a/b/g Wireless Cards and one Ethernet port.

We have ported the OpenWRT Linux distribution on the

nodes. OpenWRT is a Linux distribution based on the buil-

droot system and designed to be deployed on wireless em-

bedded devices [12]. Although each node has 2 wireless mini

PCI cards, we used only one radio to run the experiment sets.

The second radio is put to promiscuous mode to sniff ongoing

transmissions for collection of traffic statistics. Each node in

the test bed has an Ethernet connection acting as the control

pipe to issue experiment commands from a central server and

for data collection and acquisition.

We chose the Optimal Link State Routing (OLSR) protocol

as the routing protocol for SNMP queries. The Net-SNMP

[13] implementation of the Simple Network Management

Protocol was selected as the management tool for baseline

comparisons with MeshMan. To provide fair and accurate

measurements, we used the RDTSC assembly instruction,

which is a mnemonic to read the timestamp counter on Intel

x86 processors [14]. The instruction returns a 64 bit value

that represents the count of ticks from the processor reset. To

gain a better understanding and dissect the time measurements,

we instrumented our implementations and the Net-SNMP

implementation with the RDTSC instruction at the appropriate

code locations.

The parameters used in the experiments are summarized in

Table I.

TABLE I

COMPONENTS OF THE ADOPTION PROTOCOL DAEMON

Parameters Value
Frequency of Discovery Message 1 second
Parent Time Out 3 seconds
MMD Mapping Time out 5 unanswered queries

B. Experimental results

We measure the query-response time, traffic overhead,

and reconfiguration time in presence of network dynamics

under different schemes. For comparison, we have imple-

mented/ported the following schemes:

• MeshMan routing and native query (MM-NQ)

• OLSR Routing and native query (OLSR-NQ)

• OLSR routing and SNMP query (OLSR-SNMP)

In the case of MeshMan, we experiment with both unicast

queries and broadcast queries. Broadcast queries are not di-

rectly supported with OLSR on OpenWRT. It should be noted

that the key advantage of MeshMan lies its robustness and

flexibility, i.e., the ability in handling network level outage and

node dynamics. Therefore, it is crucial to understand whether

the robustness comes at the cost of degraded performance. All

results presented are average of ten experimental runs.

1) Bootstrap time and convergence: In this set of exper-

iments, we investigate the time it takes to reach a stable

state when the network is first booted up. In particular, for

MeshMan, during the bootstrap phase, mesh IDs are allocated

starting from the mesh manager. Upon assignment of a mesh

ID, the node will report the information to the mesh manager

resulting in an update. In the case of OLSR, routing table

entries are created and updated when link state information is

collected or changed.

Fig. 4 shows the number of updates in every 10s period at

the mesh manager and the gateway node. We see that after 10s,

the number of updates with MeshMan quickly diminishes. The

mesh IDs are stabilized. In comparison, the route entries keep

changing during the first 100s at the gateway node in OLSR.

In part, the fast convergence in MeshMan can be explained by

the use of hop distance as link metrics. Even in presence of

channel variation, hop distance remains constant most of the

time.

Fig. 4. Initial setup time (Number of updates in each 10s interval over time)

2) Query response time: In this set of experiments, we

investigate the query response time under different schemes.

With MeshMan, we evaluate the efficiency of both broadcast

query and unicast query. In broadcast query, queries with

broadcast mesh ID are flooded in the network. All nodes will

respond to a broadcast query. SNMP does not support broad-

cast query directly. It is up to the network layer implementation

for supports of IP broadcast/multicast, which is yet available

in OLSR.

There are two types of queries, namely, single queries which

request a single record of information; and bulk queries which

request a collection of information. In SNMP, bulk queries

2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009) 231

can be issued with multiple GET requests in serial or a single

BULK GET. The later is more efficient.

Fig. 5 and Fig. 6 show the query response time for sin-

gle queries for /proc/sys/kernel/hostname and bulk query for

/proc/net/route. The total response time can be split in the

following parts: i) processing time to generate a request at

the managing entity, ii) network delay from the manager to

an agent, iii) processing time at an agent to interpret message

and generate response, iv) network delay from an agent to the

manager, and v) processing time at manager to receive and

interpret response.

Fig. 5. Response time of single queries /proc/sys/kernel/hostname

Fig. 6. Response time of bulk queries /proc/net/route

We see that the processing time at the managing entity

and agents for single queries is quite significant as shown

by the difference between OLSR-NQ and MM-NQ. In both

cases, native queries are used. OLSR-NQ incurs slightly less

response time compared to OLSR-SNMP as a result of more

efficient encoding in the native query. Interestingly, compared

to single queries, broadcast queries incur less response time

even though the response traffic load is higher. This is because

broadcast messages are not retransmitted in events of packet

losses in the IEEE 802.11. Among all schemes, MM-NQ

performs the best. Similar observation can be made for bulk

queries (Fig. 6). However, the difference in response time

is less pronounced. In this case, the total response time is

dominated by network delay. The effect of processing time is

not as significant. With broadcast queries, larger amount of

traffic is generated resulting higher network delay.
3) Management overhead: To measure the network over-

head we use tcpdump at the mesh manager to capture network

activity, and the tcptrace tool [15] to estimate bandwidth

consumption by the management applications.
Fig. 7 and Fig. 8 show the amount of management traffic

in different schemes. For single queries (Figure 7), we see

that SNMP incurs higher management overhead compared to

other schemes. This is consistent with the response time mea-

surements. Again, we observe that native queries are generally

more efficient. For bulk queries (Fig. 8), the difference is less

pronounced. As the query interval increases, the management

overhead decreases roughly linearly.

Fig. 7. Management traffic overhead vs unicast query interval

Fig. 8. Management traffic overhead vs broadcast query interval

232 2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009)

Fig. 9. Recovery time from node dynamics

4) Recovery from network dynamics: Finally, we evaluate

how MeshMan reacts to network dynamics. In particular, three

set of experiments are carried out:

• With Add Route Notification: The Mesh Manager keeps

querying a particular node (node A) at an interval of 1s.

We bring node A’s parent down and wait for the node

to be adopted by a sibling, which sends an Add Route
Notification message to the Mesh Manager. We measure

the time difference between the last successful query

before nodes A’s parent is down to the first successful

query after that.

• Without Add Route Notification: In this case, the Add

Route Notification from node A’s new parent is turned off

in order to simulate losses of Add Route Notification. In

this case, when the Mesh Manager cannot reach a node,

after five unanswered queries, it broadcasts a mesh ID

mapping query to each node. If the end node has the

requested MAC Address, it replies with its own mesh

ID.

• OLSR: Here, we bring down a node and see how quickly

OLSR adapts to such a scenario. We send SNMP queries

to node A and bring down its parent (node B). Eventually

as OLSR picks up an alternate path to node A, it starts

responding to queries. We measure the time difference

between two successful queries when node B is brought

down. To have a fine-grained measurement, we changed

the timeout value in SNMP to 1 second, which is com-

parable with the query interval in MeshMan.

We vary the hop distance from the node in question (i.e.,

node A). The results are shown in Fig. 9. We see that with

Add Route Notification, the time to recover from a single

node failure is the minimum. However, without Add Route

Notification, broadcast query can still successfully determine

the mesh ID and MAC address binding within a short period

of time. OLSR, on the hand, takes longer to propagate the up-

to-date routing information. This implies with MeshMan, we

can potentially take a reactive approach to network dynamics,

where the mesh manager queries (and caches) nodes’ mesh

IDs only when user query occurs.

VI. CONCLUSION

In this paper, we have designed, implemented and evalu-

ated MeshMan, a management framework for wireless mesh

networks. A management solution in wireless mesh networks

needs to be designed to handle network dynamics, variation in

link qualities, and node addition or failure with low overhead.

MeshMan provides an efficient and robust way to retrieve

information from mesh networks. Its most salient feature is the

tolerance to network level failures. MeshMan has comparable

or better performance compared to its counterpart - SNMP in

terms of response time, and management overhead. We plan

to extend it to provide configuration of network devices and

port our implementation to kernel space on Linux platforms.

Currently, MeshMan only supports a single logical mesh

manager. Multiple mesh managers can be employed at the

network edge to improve fault tolerance and scalability using

anycast.

REFERENCES

[1] J. Bicket, D. Aguayo, S. Biswas, and R. Morris. Architecture and
evaluation of an unplanned 802.11b mesh network. In Proceedings of
ACM MOBICOM, 2005.

[2] Fire Tide Networks. An Introduction To Wireless Mesh Networking,
White Paper. http://www.firetide.com.

[3] Lili Qiu, Paramvir Bahl, Ananth Rao, Lidong Zhou. Troubleshooting
wireless mesh networks. Computer Communication Review 36(5): 17-
28, 2006.

[4] Julia Kantorovitch, Zach D Shelby, Tommi Saarinen , Petri Mähönen.
Wireless SNMP, Technical Paper. University of Oulu, Finland, 2001

[5] R.Sprenkels, J.P.Martin-Flatin. Bulk Transfers of MIB Data. The Simple
Times, 7(1):1-7, 1999

[6] S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating routing misbehavior
in mobile ad hoc networks. In Proceedings of ACM MOBICOM, Boston,
MA, Aug. 2000.

[7] Douglas Mauro, Kevin Schmidt. Essential SNMP (2nd Edition). O’
Reilly Media, 2005

[8] P. Jacquet, P. Mühlethaler, T. Clausen, A. Laouiti, A. Qayyum and L.
Viennot. Optimized Link State Routing Protocol for Ad Hoc Networks.
In Proceedings of the 5th IEEE Multi Topic Conference (INMIC 2001)

[9] W. Chen, N. Jain and S. Singh. ANMP: Ad hoc network management
protocol. IEEE Journal on Selected Areas in Communications 17(8)
(August-1999) 1506–1531.

[10] Berry Kercheval. DHCP: a guide to dynamic TCP/IP network configu-
ration. Prentice Hall PTR, c1999.

[11] Mike Schiffman. Building Open Source Network Security Tools:
Components and Techniques. Wiley, 1st edition, 2002

[12] OpenWRT. http://en.wikipedia.org/wiki/OpenWrt
[13] Net-SNMP homepage. http://net-snmp.sourceforge.net
[14] RDTSC description. http://en.wikipedia.org/RDTSC
[15] Tcpdump home page http://www.tcpdump.org
[16] Douglas S. J. De Couto, Daniel Aguayo, John Bicket, Robert Morris. A

High-Throughput Path Metric for Multi-Hop Wireless Routing. In Proc.
of ACM Mobicom 2003.

[17] Richard Draves, Jitendra Padhye, Brian Zil. Routing in Multi-radio,
Multi-hop Wireless Mesh Network. In Proc. of ACM Mobicom 2004

[18] Gilman Tolle, David Culler. Design of an Application-Cooperative
Management System for Wireless Sensor Networks. In Proc. of IEEE
EWSN, 2005. p 1 – 12

[19] Y.Ge, L. Lamont, L. Villaseno. Improving Scalability of Heterogeneous
Wireless Networks with Hierarchical OLSR IN Proc. of The OLSR
Interop & Workshop, San Diego, USA, August 2004

[20] Krishna Ramachandran, Irfan Sheriff, Elizabeth Belding, Kevin
Almeroth, Routing Stability in Static Wireless Mesh Networks. Passive
and Active Measurement Conference, Louvain-la-neuve, Belgium, April
2007.

2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009) 233

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

