
12th IFIP/IEEE International Symposium on Integrated Network Management 2011

A P2P-Based Self-Healing Service for Network

Maintenance

Pedro Arthur Pinheiro Rosa Duarte, Jeferson Campos Nobre,

Lisandro Zambenedetti Granville, Liane Margarida Rockenbach Tarouco

Institute of Informatics
Federal University of Rio Grande do Sui

Porto Alegre, Brazil
Email: {paprduarte.jcnobre.granville.liane}@inf.ufrgs.br

Abstract-The introduction of self-* properties over distributed
network management infrastructures has been proving to be
a feasible approach for the new demands of modern network
management. Among the properties of the self-* management
vision, self-healing figures as key property in improving the
dependability of the managed infrastructures. An interesting
possibility to materialize self-* support - and self-healing support
as well - in network management is through the employment of
peer-to-peer (P2P) management overlays. Considering this sce­
nario, we introduce in this paper a self-healing service provided
by a prototype P2P-Based Network Management (P2PBNM)
system. Such a service is expected to be contracted by human
administrators interested in monitoring and recovering their IT
infrastructures. In addition, an experimental evaluation of the
self-healing service is performed considering a case study where
a Host-based Intrusion Detection System (HIDS) needs to be
constantly observed and eventually healed to keep the underlying
communication network protected.

I. INTRODUCTION

In recent years, communication networks have increased
in size, complexity, and heterogeneity. Moreover, the require­
ments of provided services have become more diverse and
resource demanding [1]. In such scenario, where computer
networks turns to be sophisticated and complex, solutions to
manage the underlying communication infrastructure and help
network human administrators in their daily tasks are crucial.

The introduction of distributed technologies in network
management (e.g., Management by Delegation - MbD) has
lead to improvements over the traditional centralized manage­
ment approach, for example, when communication networks
grow in size. However, the complexity of modern networks
demands management features that are not present, at least
not explicitly, in usual distributed network management tech­
nologies [2].

A recent alternative that complements traditional distributed
management technologies consists in the employment of peer­
to-peer (P2P) management overlays [3]. Such overlays merge
characteristics of P2P and network management systems,
better enabling, for example, collaborative management [4],
more robust connectivity among management entities, and
improved load balance of management tasks at management
peers [5].

P2P-based network management also enables embedding
self-* properties from the Autonomic Computing (AC)

paradigm into the management overlay [6] [7]. The em­
ployment of self-* properties for network management, com­
monly referred as Autonomic Network Management (ANM),
increases the efficiency of network human administrators
through the facilitated automation of management tasks; such
an automation reduces the number of manual interventions
during the execution of management tasks, thus freeing net­
work administrators to deal with the high-level management
goals [8].

Self-healing is one of the key self-* properties, which aims
at automating the failure detection and handling, improving
the dependability of the communication network infrastructure
[9] [10]. In addition, self-healing mechanisms show a great
potential to reduce the Total Cost of Ownership (TCO) of the
infrastructure, which is important because 50% of this cost,
according to Fox et al. [11], is spent on fault prevention,
diagnosis, and repair.

Although there are interesting investigations on self-healing
mechanisms, a de facto solution employing self-healing in
P2P-based network management systems is missing, remain­
ing as an open research problem requiring further investi­
gation. For example, issues encompassing scalability, hetero­
geneity, and distribution of the self-healing mechanisms in P2P
management overlays still need deeper observation from the
network management research community.

In this paper, we introduce a distributed self-healing mecha­
nism that runs over a P2P-based network management system.
Our mechanism uses monitoring and healing workplans to
deal with the native heterogeneity of networks. These plans
are descriptions that capture the knowledge of systems ad­
ministrators on how the managed devices/systems shall be
monitored and healed. In order to sustain its design principles,
we experimentally evaluate our proposal using it as a self­
healing support for a Distributed Intrusion Detection System.

The main contributions of this paper are the following.
We propose a self-healing P2P mechanism that abstracts the

monitoring and healing of managed elements. Furthermore,
the proposed mechanism is totally decoupled from managed

elements. Finally, we also present workplans, descriptions
written in a high-level language that aims to gather the
knowledge of the administrators on how network devices and
systems are maintained.

978-1-4244-9221-31111$26.00 ©2011 IEEE 313

The remainder of this paper is organized as follows. In Sec­

tion II, we present the state-of-the-art on P2P-based network

management systems, and self-healing approaches. In Section

III our proposal and associated concepts are described. A

system prototype, implemented to help in our research, along

with its application programming interface (API) used by

developers to code P2P-based network management software,

are presented in Section IV. In sections V and VI, we present

a case study and a experimental evaluation of our proposal.

Conclusions and future work are provided in Section VII.

II. RELATED WORK

In this section we first discuss about self-healing approaches

to then review the state-of-the-art on P2P-based Network

Management.

A. Self-healing Approaches

PANACEA is a framework for the development of self­

healing enabled systems [12]. The approach of this framework

is based on the design-time system instrumentation through

the use of code annotations. These annotations serve later as

an interface for agents to monitor, manage, configure, and

heal systems at runtime. The PANACEA framework present

improved monitoring performance when compared to other

approaches, such as the Glassbox Inspector framework [13].

Despite this improvement, preexisting applications need to be

redesigned or instrumented with self-healing enabling compo­

nents to take advantage of PANACEA framework features.

Moreover, the distributed interaction among healing agents

must be hard coded into the application and tightly coupled

with the service for which it is being designed.

Another approach for the development of self-healing mech­

anisms is to keep different system models running in parallel

[14]. Their objective is to feed monitoring components that

evaluate the system at runtime and trigger corrective actions

as needed. For its application in network systems, models are

used as nodes of an interaction graph that, through its arcs,

represent the collaboration of the components of the system.

The constrains, bounds, and corrective steps for problems

of the system are denoted as annotations in the interaction

graph. The main advantage of the models approach is to

decouple the self-healing mechanisms and the application,

enabling to change the healthily concepts of the system as

its running context change. However, this approach is suitable

only for systems that provide a runtime configuration and data

collecting interface. Moreover, generating consistent models is

not trivial for complex networked and distributed systems.

Although practical results have not been shown yet, a

promising approach is to apply model-driven aspect-oriented

techniques for designing self-healing systems [15] [16]. In this

approach, a concise analysis framework is adopted to model

both failures detection and mitigation strategies. These models

are lately used to feed a specialized, aspect-oriented code

generator to provide self-healing capabilities to the modeled

system though the explicit code instrumentation of entry

points (pointcuts) provided by the models. The use of aspect

orientation would permit that the system dynamically change

its runtime self-healing behavior, thus providing environmental

adaptation capabilities. However, this approach also employs

the instrumentation of the system in design-time. Moreover,

as PANACEA, this approach does not provide a native com­

munication and coordination mechanism.

Self-healing approaches show desirable characteristics that

may be introduced into network management systems, such as

improvements in monitoring performance and environmental

adaptation capabilities. Besides, these characteristics could be

employed in addition to improvements in the infrastructure of

these systems, such as the utilization of P2P overlays. In this

case, however, the mechanisms that implement self-healing

approaches over P2P management overlays must be performed

maintaining the scalability and robustness features of these

overlays.

B. P2P-based Network Management

P2P-Based Network Management (P2PBNM) extends dis­

tributed management models through the composition of char­

acteristics of distributed management and P2P overlays [3]. A

P2P overlay uses resources distributed in several peers in order

to implement applications such as file sharing and distributed

computing. In the P2PBNM model, peers have a double role:

in addition to the execution of normal management tasks, they

also act as regular peers in the P2P overlay [17]. Thus, many

functions required for distributed management are intrinsi­

cally provided by P2P overlays, such as load balancing of

management tasks and cooperative management [3]. Besides,

P2PBNM systems use application layer routing as their main

message passing resource, which makes them an appropriate

choice for inter-domain management, since application layer

routing protocols bypass more easily administrative domains

boundaries [18].

The system administrator interacts with the management

overlay to retrieve information about the network, or to con­

tract services to be applied on the managed elements. Comple­

mentary tools, like topology maps and real-time messaging,

may also be provided by the management overlay. Several

works present the support of different management features in

P2PBNM systems, such as Policy-based Network Management

(PBNM). In this context, the introduction of self-* features

in P2PBNM is investigated by some initiatives. For sake of

simplicity, only few initiatives will be cited, as follows.

"Self-Managed Cells" (SMC) [19] are proposed as an archi­

tectural pattern for ubiquitous computing applications, aiming

at different levels of scale. Each SMC is autonomous and

uses policy-based techniques for driving adaptation decisions.

Among different cross-SMC interactions, the authors describe

P2P interactions. But, concerning to levels of abstraction, it

is not clear whether different SMCs could be "peers". A

managed device is logically connected with only one SMC,

thus, management tasks are not evaluated in a P2P fashion.

There are extension for SMCs to enable self-healing features

for specific contexts, such as pervasive computing systems

[20].

314

Fallon et al. [6] employ a P2P approach to the self­

organization of network management topologies, the "Madeira

Management System", in order to accomplish specific network

management tasks. This approach uses the concept of Adaptive

Management Components (AMC), which are containers that

run on managed elements. AMCs can manage elements on

which they are running and communicate with other AMCs

running on other managed elements through P2P communi­

cation services. Despite the support for self-configuring and

self-optimization, the authors do not mention the possibility

of self-healing features.

Panisson et al. [5] propose "ManP2P", a P2PBNM system

prototype. ManP2P is partially inspired by the Management

by Delegation (MbD) model and it is based on a service­

oriented approach. This system is designed to support self-*

features through the implementation of autonomic modules in

peers. These modules are designed to communicate with other

components of the P2PBNM system, when necessary. The

possibility of implementing self-healing features in ManP2P

is discussed, however, only for the management overlay itself

[21]. Besides, there is not an actual implementation of self­

healing features.

The utilization of P2P overlays as an infrastructure for

network management systems could offer improvements in

different aspects, such as scalability and reliability. Despite

many improvements brought by P2PBNM systems (e.g., load

balancing of management tasks), there are still issues to be

addressed. For example, the mechanisms used to enable a

higher availability of the network management system are not

extended to the managed devices/systems [22].

III. PROPOSAL

As earlier stated, P2P-based Network Management

(P2PBNM) systems extends distributed network management

systems through the composition of characteristics of

distributed management models and P2P overlays. This

composition can offer improvements in scalability, reliability,

operational costs [3], and also permits heterogeneity among

its constituent entities.

In a P2PBNM system, peers have to perform management

tasks and their related provisioning details (e.g., location of

peers in the P2P network). From the user perspective, however,

the overlay provisioning details must be transparent, requiring

no knowledge about the implementation or architectural orga­

nization of nodes in the overlay topology.

Peers perform management tasks through management ser­

vices in P2PBNM systems. Management service is a key

concept of the P2PBNM model, and, the present work follows

the conception of management service from Panisson et al. [5],

which is briefly revisited along this section. In this context, the

result of these services are the execution of a management task.

Each Management Service has a unique service identification

and is reached through the overlay communication services.

Management components are responsible for implementing

the management services. These components perform their

tasks in regardless of the location of peers that provide it.

Management components have to advertise the P2P manage­

ment overlay about the services they implement and also com­

municate with the other peers that provide the same service

in order to perform the management tasks in a coordinated

way. Besides, management components are responsible for

publishing the description of their associated management

services, and replying queries issued by other peers.

Peers are organized into groups according to management

services they expose [5]. Thus, peers that offer a specific

management service are organized into a group (without hu­

man intervention) and peers can participate of several groups

accordingly to offered services [23]. Peer groups improve the

availability of management services through the replication of

management components in different peers. Thus, while there

are peers in a group, the management service provided by this

group will remain available. Figure 1 presents a general view

of P2PBNM.

---- Logical Connections - Physical Links � Service Requests

Fig. 1. P2P-based Network Management (P2PBNM) model

The application of P2P technologies improves the de­

pendability of network management system (e.g., through

the replication of management components). However, more

effort is necessary to improve the dependability of managed

services/devices. One approach to this improvement is the

utilization of self-* features, specially self-healing.

The present proposal is aimed at develop a self-healing

facility on top of a P2PBNM system. This facility is im­

plemented as a management component and divides the self­

healing into two different services: monitoring and healing,

both of them provided by peer groups of the P2P management

overlay. The monitoring service is responsible to periodically

verify the state of the managed device/system and identify

anomalies/faults, all of which must be reported to the healing

service. The healing service, in its turn, shall stand still waiting

for anomalies/faults notifications issued by the monitoring

service.

The services are implemented as managements components

of the P2P management overlay. When loaded, the components

315

communicate with the grouping service of the overlay, identify

other peers that implement the monitoring and healing service,

and synchronize with them.

The binding of the self-healing service and its managed

element is done at run time by the system administrator and

consists of three major steps, depicted in Figure 2. First, the

system administrator issues a healing service request to the

healing group, which will return a healing service identifier.

Second, the system administrator issues a monitoring service

request to the monitoring group, which will return a monitor­

ing service identifier. Finally, the system administrator issues

a monitoring-healing binding request to the monitoring group,

which binds a monitoring service identifier to a healing service

identifier. After the binding step, the monitoring service starts

to monitor the managed element. The requests are dissected

and the interactions among the services are explained in the

following subsections.

System

Administrator
Healing Peer Group Monitoring Peer Group

Healing Service Request ""
,

f.(�.:�����.:.:�!�:.!�
Monitoring Service Request

���!:i!?!J�.�.��.�I:.:}.o................
Mo itoring-healing binding Request",

Fig. 2. Self-healing service request.

A. Monitoring Service

A monitoring service request is issued by the system

administrators to request a monitoring service for a managed

element (e.g., a network device). A monitoring service request

consists in a tuple (target, workplan, period). The target
attribute of this tuple specifies the target management element

of this service request and any other relevant information,

like transport layer protocol and service port, or system­

specific parameters. The workplan attribute is the manage­

ment element monitoring workplan, a high-level description

that defines how the managed element should be monitored

and which parameters identify its normal and anomalous state.

The extra information passed through the target attribute are

used as arguments for the monitoring workplan in order to

assist it in dealing with specificities of the managed element

and provide more flexibility and reuse possibilities for the

monitoring workplan. The period attribute determines how

often the target managed element shall be verified.

As response for a monitoring service request, the monitoring

service group issues back a monitoring service reply. The

content of this reply is a monitoring service identifier (Ms/D),

which globally identify a service request in a monitoring

service group. The monitoring workplan received is randomly

distributed among log2n peers, where n is the number of peers

in the monitoring group.

The peers responsible for a monitoring workplan organize

themselves in a logical ring and the monitoring workplan is ex­

ecuted every period seconds in a token-signalized round-robin

fashion. The monitoring peer that hold the token executes the

monitoring workplan and i) if the results indicates that the

target managed element is healthy, the token is passed for the

next peer in the ring flagged as successful; ii) if the workplan

indicates that the managed element is unhealthy, the token is

passed to the next peer in the ring flagged as unsuccessful.

The message flow during a monitoring is shown in Figure 3

A, for subsequents healthy evaluations, and Figure 3 B, for a

unhealthy evaluation.

1--
�

i
l_.

1--

�
c_

Monitoring Group

Evaluation

Healthy
Successful Token

Evaluation

Unhealthy

Unsuccessfullb

�E'.::::. ,u::::"::::;ion '---I •..•.. _._ _._ .•...•

Fig. 3. Monitoring group message flow.

As shown in Figure 3 B, a peer immediately executes the

monitoring workplan when it receives a unsuccessful flagged

token. This is done to assure that the anomaly is not transient

or related to connectivity problems between the managed

element and the previous peer in the ring. In the case that the

current token holder also detects the anomaly, a notification

is raised to the healing service group so the healing process

may be initiated. The monitoring group will stop monitoring

the ill managed element until the healing group notifies it that

the workplan shall be resumed or dropped.

B. Healing Service

A healing service request consists in a tuple

(target, workplan). As in a monitoring service request, the

target attribute specifies the management element targeted

in the service request and so may also contain information

other than its network address. The workplan attribute of the

tuple is the managed element healing workplan, a high-level

description that defines how the anomalies shall be treated.

The healing group sends a healing service identifier as

response to a healing service request. This identifier is used

to globally identify the healing workplan and to bind it to a

monitoring service.

To improve the reliability of the healing service, a healing

workplan is replicated among log2n peers of the healing

316

group. Trying to attain more responsiveness and scalability, the

peers that replicated the healing workplan also become able to

execute it. Moreover, every peer in the group is able to map a

healing workplan identifier to its responsible peers. Thus, any

peer of the group may act as a notification gateway, upper

bounding the healing workplan activation to a maximum of

two messages exchanges. A peer that does not hold a specific

healing workplan is referred as a unaware peer.

C. Healing and Monitoring services interaction

When a unhealthy notification comes from the monitoring

group, the healing workplan is executed by one of the peers

of the healing group. This is shown in Figure 4.

Managed Element

I Unsuccessful Token

Unhealthy

,.
.. :

I :C; I I

I
Evaluation

I I
'RokenRecelvcd I

,i(, --------------r ------------ � ,
I Unhealthy I I I Unhealthy Notification I

: ,." : : :);:
: Healing :"':���:.!I!i�� ��i,:e� _� ______________ : _______________ :
,i(

Fig. 4. Anomaly detection and notifications sending.

Since there is no strict rule about which peer of the healing

group shall receive a unhealthy notification, may exist cases

where a unaware peer of the healing group receives it. In this

case, the unaware peer shall assume the responsibility for the

notification and forwards it to the right peers.

After executing the healing workplan, the healing group

notifies back the monitoring group. This notification shall

contain information about the healing success or failure. This

message determines if the monitoring group will resume the

related monitoring workplan or will drop it. The former is

done when the healing workplan succeeds and the system is

once more in a healthy state, and the latter is done when the

healing workplan can not bring back the managed element

from unhealthy.

A special case for a healing notification is when a managed

element is replaced by a newly configured one. In order to

minimize the time to the self-healing service get reestablished,

instead of dropping its monitoring workplan and waiting for

a new service request, the monitoring group shall learn about

the new element. To accomplish this, the healing group shall

notifies the monitoring group as if the healing workplan was

successfully executed, and append the information required by

the monitoring group about how to monitor this element.

IV. IMPLEMENTATION

Our self-healing mechanism is built on top of a prototype

P2P-based network management system. The implementa­

tion of this prototype, ManP2P-ng, has been done in the

Python programming language using Twisted, an event-driven

networking development framework [24] as its underlying

network infrastructure. In the following subsections we detail

this prototype design and implementation, as so we do for our

self-healing mechanism.

A. ManP2P-ng management overlay

ManP2P-ng has embedded mechanisms for the self­

organization and maintenance of a flat-topology P2P network,

and flood-based resource discovery protocol. Beyond these,

ManP2P-ng has not any other functionality, but provides a

Application Programming lnteiface that may be used to extend

the overlay. Indeed, the group abstraction and the self-healing

mechanism are implemented throughout this API.

One of the key features of ManP2P-ng architecture is the

notion of peer group, where a set of management components

implementing the same management service are grouped to­

gether in order to improve service availability. Thus, peers that

expose a specific management service are self-organized into

a peer group (as described in Section III).

B. Application Programming lnteiface and Management

Components

ManP2P-ng has an API that developers of management

components must use in order to integrate their management

components in a peer. This API has all the advantages of the

Python language, including ease of development and platform

independence. Besides, ManP2P-ng uses a standard event­

driven networking development framework and exposes all of

its features to management component developers.

The use of ManP2P-ng API allows instantiation, initializa­

tion, and operation of management components, which imple­

ment management services. Thus, a management component

is managed through a well defined life cycle. This API also

supports the use of P2P services provided by the underlying

P2P system or by other management components.

Management components are defined in a components de­

scriptor. This descriptor is an XML document that describes

the management components to instantiate, the name of

each management component, their interdependence, and the

Python module to load and use. The descriptor is organized by

the "<management-component>" XML element, where each

element informs the init parameters used during initialization

of the management component. This document is published to

the P2P management overlay using the P2P Services.

Management components, and their associated management

services, may vary from very simple ones (e.g., a protocol

gateway to access management devices via SSH or HTTP)

to more complex ones (e.g., support for Policy-Based Net­

work Management - PBNM). These services have a unique

service identifier (also known as group identifier). Moreover,

a management component may extend the API, providing extra

features to other components.

All Management Components that join a group have the

same operations. These operations form the management ser­

vices. The management services are then provided by the

peers of the peer group. The multiple instances of the same

317

management component at different peers of a peer group

provide fault tolerance features inherent to P2P systems.

C. Monitoring and Healing Workplans

We describe monitoring and healing workplans using Pon­

der2 [25]. Ponder2 is a toolkit that supports the specification

and enforcement of authorization and obligation policies.

In workplans, only obligation policies are used. Obligation

policies define actions that should be invoked in response to

an event if specific conditions are met, and, are described in

the form of Event-Condition-Action (ECA) rules.

Self-healing requires the combination of a monitoring work­

plan and a healing workplan. The use of workplans means

they can be easily changed without recoding components.

The Monitoring workplan is the first descritpion used for

the self-healing procedure. As management data is required

to verify the health of a device or system, the monitoring

workplan maps the human knowledge of how to acquire this

management data, and which events and system parameters

indicates the healthy or unhealthy state of a device or system.

The Listing 1 shows an example of monitoring workplan.

On the reception of a message from a device/service moni­

tored, it is checked if the message payload presents a fault

indicating content. If this condition is met (fault indicating

content), the healing service is informed about this fault.

<add name=" Monitor">
<c reate type =" obli g ation"

event = "1 event I DetectionSer viceMes s a ge"
acti ve =" t rue ">

< a r g name=" fault"l>
<condition>

<eq>! content ;<!- ->fault</eq>
<I condition>
< action>

<infor m " heali n gSer vice" I>
<I action>

Listing 1. Monitoring workplan example

The Listing 2 shows an example of healing workplan. After

fault detection, the healing workplan is used to correct the

fault detected. In this example, the "healingActivities" script

would be performed.

<add name="H ealer">
<c reate type =" obli g ation"

event = " I even tiMon i tori n gSer viceMes s a ge"
acti ve =" t rue ">
< a r g name=" m onitor" I>
<condition>

<eq>! content ;<!- ->faul t</eq>
<I condition>
< action>

<e xecute sc rip t ="heali n gA cti vities"l>
<I action>

Listing 2. Healing workplan example

V. CASE STUDY

The case study presented is based on the use of a self­

healing mechanism to assist a Host-based Intrusion Detection

System (HIDS). An HIDS monitors and analyzes hosts in

order to determine whether they are being attacked or compro­

mised. Ideally, an HIDS must employ a correlation engine able

to detect patterns in misuse scenarios. Moreover, RIDS also

must produce human-readable outputs so system administrator

may diagnose threatening events and, when necessary, respond

to them. However, IDS can be easily compromised by new or

unknown attacks [26], or non-malicious faults.

Though commonly deployed HIDS use a manager-agent

approach, HIDS slightly differ in the sense that, while standard

approaches are based on data pushes from managers into

the agents, HIDS uses a pull approach, where each intrusion

detection agent periodically collects data about the host it runs

on and sends this data to the manager. In the context of HIDS,

agents are usually referred as sensors, and so they will be

referred along this case study.

A. Failure Scenarios

From a macro vintage point, there are two scenarios for

faults in an HIDS. The first scenario is when a sensor node

fails. A well-designed HIDS must continue to function prop­

erly without the failing node. Is not essential, but is strongly

recommended that administrators get informed about these

faults. The second and most critical scenario is when the

manager node fails. In this scenario, an HIDS must notify

the administrator about the manager fault and graciously halt

the sensor nodes to prevent misuses.

Due to the primary role that Information Technology (IT)

security plays in nowadays communication networks infras­

tructures, both scenarios described are undesirable as they

partially or completely stop the intrusion detection facility.

During the HIDS downtime, in the first case, the host which

the sensor fails may be lately compromised and maliciously

used without knowledge by the system administrator. In the

second scenario, the statements for the first scenario are also

true, but in a more comprehensive scale (e.g., an O-day worm­

like exploit tool would indiscriminately spread itself).

B. Self-healing of HIDS Manager and its Sensors

The Self-healing of RIDS can be performed in different

ways, and may involve different failures scenarios, reasons and

recovery procedures. In this subsection, we discuss a common

procedure to recover sensors and managers nodes.

The fault monitoring is traditionally performed through

periodical polling by a network management system. When

faults occur, human administrators have to manually perform

the healing procedure. The traditional procedure to heal a

HIDS manager or its sensors consists in i) remotely access the

machine; ii) verify its latest entries in the system log files; iii)
determine the cause of the failure or degradation; iv) readjust

its parameters or develop a new set-up; and finally, v) put it on­

line. In HIDS manager failure scenario, this is more critical, as

some modifications needs to be propagated to all the sensors

managed by the faulty manager.

The utilization of a P2P-Based Self-Healing Service brings

advantages as the traditional procedures for monitoring and

healing HIDS have concerns related to scalability and robust­

ness. First, in a large HIDS system, would be infeasible for

318

human administrators to deal with a faulty manager that has

a high number of sensor nodes associated with them. Second,

the decisions related on how to deal with most faults, usually,

do not involve complex analysis and action performing, thus,

these faults would be easily healed though simple healing

workplans. As minor faults are the most frequent, this would

greatly reduce the demands for the attention of the system

administrators. Finally, the repeatedly execution of the same

tasks by human resources is proved as error prone.

VI. EVALUATION

In this section, assuming the previous statements about

self-healing of RIDS infrastructures, we present experimental

measurements to verify the feasibility of our proposal. These

experiments aim to measure the total management traffic
generated throughout the self-healing process and its average
duration time. The experiments considered two scenarios.

In the first scenario, the healing workplan is completely

executed by the peer that received a unhealthy notification

from the monitoring peer group. The second scenario presents

a cooperative healing workplan, where some actions involve

the use of services provided by other peers of the manage­

ment overlay. For simplicity, we refer to the former scenario

as independent healing workplan execution, and the last as

cooperative healing workplan execution.
In both experiments and evaluation scenarios, we consider

a management overlay composed of 32 peers, evenly divided

into monitoring and healing groups. Besides, in order to

evaluate the relation of the size of the RIDS infrastructure

and the parameters observed, we vary the number of sensor

nodes in 1, 2, 4, and 8. For the second scenario, two peers of

each group were also used to implement and provide a Remote

Procedure Call (RPC) service used in the healing workplan.

In the first experiment, the total amount of management

traffic generated during the healing process is measured. The

objective of this experiment is to show the impact of the self­

healing related traffic in the communication network demands

as the number of managed elements grows. Figure 5 shows

the results of this experiment.

�
""
�

:E
i"

f--

�
f--

50000

40000

30000

20000

10000

I ndependent Healing Workplan --+­

Cooperative Healing Workplan ---*---

of HIDS sensors nodes

Fig. 5. Total management traffic during the Self-Healing process.

Figure 5 shows that, although essentially the same tasks

are performed in both scenarios, as both workplans are func­

tionally the same, the independent workplan execution require

less network traffic than the cooperative workplan execution.

During the independent workplan execution, messages are

exchanged only between the peer who notices the fault (i.e., a

peer from the monitoring group) and the peer who performs

the workplan. (i.e., a peer from the healing group). On the

other hand, when a collaborative execution is in place, in

addition to the regular flow, synchronization messages must

be exchanged between the peers of the healing group and the

peers of the RPC group, so the result of the procedures calls

may be collected and analyzed.

In the next experiment, the average duration time of the

healing, considering both evaluation scenarios, is measured.

The motivation of this experiment is to evaluate the impact of

the cooperation among the overlay peers in the time needed

to heal the system. The results are shown in Figure 6.

00

'"
E
;::

.§
�
"
'"
'"

�
.i(

6.5

5.5

4.5

Independent Healing Workplan !-------+-----­

Cooperative Healing Workplan '---*--'

3.5 '----'-----'-------'--------------'-----'

of HIDS sensors nodes

Fig. 6. Average duration time of the Self-Healing Process

Figure 6 shows that the cooperation among the peers of the

management overlay beneficially impacts in the self-healing

duration time. The independent workplan execution demands

resources from a single peer of the healing group. Then,

although some tasks run in parallel, the peer responsible for

the workplan gets overloaded as the number of RIDS sensor

grows. Collaborative workplan execution permits a more fine

grained resource usage, allowing peers to share the healing

workload. Thus, as the management overlay grows and its

peers implements the services necessary to a specific self­

healing process, the during time of this process would greatly

reduce.

The results shown in Figures 5 and 6 make explicit the trade­
off between the amount of traffic generated by the execution

of a healing workplan, and the total time it takes. While

an independent healing workplan execution is less resource

demanding, a cooperative healing workplan execution is most

suited for time-critical situations, as the workload it imposes

might be shared among the peers of the management overlay.

319

VII. CONCLUSIONS AND FUTURE WORK

The new trends of network management demands requires

more sophisticated approaches, and so, is a key research issue

in the network management area. Self-* features over dis­

tributed network management infrastructures, like P2P over­

lays, has been proving by the research community as feasible

approaches for these demands. This is particularly true when

improvements to the dependability of managed devices/sys­

tems are taken into consideration. However, distributed net­

work management systems, in general, have only mechanisms

to improve the availability of its constituent entities.

In this paper we have defined the basic building blocks

required to develop self-healing mechanism over a P2PBNM

system. One of the key features of the presented self-healing

mechanism is the notion of monitoring and healing work­

plans, descriptions in a high-level language that capture the

knowledge of the systems administrators of how the managed

devices/systems shall be monitored and healed. We have

also presented the design and implementation of ManP2P­

ng, a prototype P2PBNM system, used as a basis for the

instantiation of our self-healing service proposal. This service

was implemented as a management component through the

Application Programing Interface provide by ManP2P-ng, and

is underlaid in its coordination and communication primitives.

We have also presented an experimental evaluation of this

proposal. In addition, we have described a case study using

the self-healing of a distributed Host-based Intrusion Detection

System (HIDS) to show the possibilities of our proposal.

Although the present proposal shows good results in eval­

uations performed until the present moment, it is necessary

to evaluate more complex scenarios, in the number of healed

elements and their heterogeneity, the number of peers in the

management overlay, the services they expose, and high rates

of churn. We are also looking at additional infrastructure

settings that could lead to important effects, such as high inter­

mittency in the connection between peers in the management

overlay.

REFERENCES

[1] J. Famaey, S. Latrea, J. Strassner, and F. De Turck, "A hierarchical ap­
proach to autonomic network management," in Network Operations and
Management Symposium Workshops (NOMS Wksps), 2010IEEEIIFlP,
19-23 2010, pp. 225 -232.

[2] A. Pras, J. Schoen waelder, M. Burgess, O. Festor, G. M. Perez,
R. Stadler, and B. Stiller, "Key research challenges in network manage­
ment," IEEE communications magazine, vol. 45, no. 10, pp. 104-110,
October 2007.

[3] L. Z. Granville, D. M. da Rosa, A. Panisson, C. Melchiors, M. J. B.
Almeida, and L. M. R. Tarouco, "Managing computer networks using
peer-to-peer technologies," IEEE Communications Magazine, vol. 43,
no. 10, pp. 62-68, 2005.

[4] c. Melchiors, L. Z. Granville, and L. M. R. Tarouco, Open Informa­
tion Management: Applications of 1nterconnectivity and Collaboration.
Information Science Reference, 2009, ch. P2P-Based Management of
Collaboration Communication Infrastructures.

[5] A. Panisson, D. M. da Rosa, C. Melchiors, L. Z. Granville, Maria, and
Liane, "Designing the Architecture of P2P-Based Network Management
Systems," in ISCC '06: Proceedings of the 11th IEEE Symposium on
Computers and Communications. IEEE Computer Society, 2006, pp.
69-75.

[6] L. Fallon, D. Parker, M. Zach, M. Leitner, and S. Collins, "Self-forming
Network Management Topologies in the Madeira Management System,"
Lecture Notes in Computer Science, vol. 4543, p. 61, 2007.

[7] A. Konstantinou and Y. Yemini, "A2A: An Architecture for Autonomic
Management Coordination," in Integrated Management of Systems, Ser­
vices, Processes and People in It: 20th TfiplIeee International Workshop

on Distributed Systems: Operations and Management, Dsom 2009,
Venice, Italy, October 27-28,2009, Proceedings. Springer-Verlag New
York Inc, 2009, p. 85.

[8] B. Jennings, S. Van Der Meer, S. Balasubramaniam, D. Botvich, M. O.
Foghlu, W. Donnelly, and J. Strassner, "Towards autonomic manage­
ment of communications networks," IEEE Communications Magazine,
vol. 45, no. 10, pp. 112-121, 2007.

[9] D. Ghosh, R. Sharman, H. Raghav Rao, and S. Upadhyaya, "Self-healing
systems - survey and synthesis," Decis. Support Syst., vol. 42, no. 4, pp.
2164-2185, 2007.

[10] R. Sterritt, "Autonomic networks: engineering the self-healing property,"
Eng. Appl. Artif. Intell., vol. 17, no. 7, pp. 727-739, 2004.

[II] A. Fox, E. Kiciman, and D. Patterson, "Combining statistical monitoring
and predictable recovery for self-management," in WOSS '04: Proceed­
ings of the 1st ACM SlGSOFT workshop on Self-managed systems. New
York, NY, USA: ACM, 2004, pp. 49-53.

[12] D. Breitgand, M. Goldstein, E. Henis, O. Shehory, and Y. Weinsberg,
"Panacea towards a self-healing development framework," in 1ntegrated

Network Management, 2007. 1M '07. 10th IFlPIIEEE International
Symposium on, may 2007, pp. 169 -178.

[13] Glassbox Documentation, .. http://www.glassbox.coml ...
[14] D. Garlan and B. Schmerl, "Model-based adaptation for self-healing

systems," in WOSS '02: Proceedings of the first workshop on Self­
healing systems. New York, NY, USA: ACM, 2002, pp. 27-32.

[IS] Y. Liu, J. Zhang, and J. Strassner, "Model-driven adaptive self-healing
for autonomic computing," in MACE '08: Proceedings of the 3rd

IEEE international workshop on Modelling Autonomic Communications
Environments. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 62-73.

[16] Y. Liu, J. Zhang, M. Jiang, D. Raymer, and J. Strassner, "A model-based
approach to adding autonomic capabilities to network fault management
system," in Network Operations and Management Symposium, 2008.
NOMS 2008. 1EEE, apr. 2008, pp. 859 -862.

[17] A. Binzenhofer, K. Tutschku, B. auf dem Grabem, M. Fiedler, and
P. Carlsson, "A p2p-based framework for distributed network manage­
ment," in Proceedings. Wireless Systems and Network Architectures in

Next Generation Internet, ser. Lecture Notes in Computer Science, vol.
3883. Heidelberg, Springer-Berlim, 2006, pp. 198-210.

[18] A. Fiorese, P. Simoes, and F. Boavida, "A P2P-Based Approach to Cross­
Domain Network and Service Management," in Proceedings of the 3rd

International Conference on Autonomous Infrastructure, Management
and Security: Scalability of Networks and Services. Springer-Verlag,
2009, p. 182.

[19] E. Lupu, N. Dulay, M. Sloman, J. Sventek, S. Heeps, S. Strowes,
K. Twidle, L. Keoh, and A. Schaeffer-Filho, "Amuse: autonomic man­
agement of ubiquitous systems for e-health," Journal of Concurrency
and Computation: Practice and Experience, John Wiley, 2007.

[20] S. M. Bourdenas T. and E. Lupu, Architecting Dependable Systems (To
be published). Springer LNCS, 2010, ch. Self-healing for Pervasive
Computing Systems.

[21] c. C. Marquezan, C. R. P. dos Santos, J. C. Nobre, M. J. B. Almeida,
L. M. R. Tarouco, and L. Z. Granville, "Self-managed services over
a p2p-based network management overlay," in Proceedings. 2nd Latin
American Autonomic Computing Symposium (LAACS 2007), 2007.

[22] C. C. Marquezan, L. Z. Granville, G. Nunzi, and M. Brunner, "Dis­
tributed autonomic resource management for network virtualization," in
Network Operations and Management Symposium (NOMS), 20101EEE,
apr. 2010, pp. 463 -470.

[23] J. C. Nobre and L. Z. Granville, "Consistency maintenance of policy
states in decentralized autonomic network management," in Network
Operations and Management Symposium (NOMS), 2010 IEEE, apr.
2010, pp. 519 -526.

[24] A. Fettig, Twisted network programming essentials. O'Reilly Media,
Inc., 2005.

[25] Ponder2 Documentation, .. http://www.ponder2.net/ ...
[26] C. J. Fung, Q. Zhu, R. Boutaba, and T. Basar, "Bayesian decision

aggregation in collaborative intrusion detection networks," in Network
Operations and Management Symposium (NOMS), 2010 IEEE, apr.
2010, pp. 349 -356.

320

