
A Software Defined Networking Architecture for
the Internet-of-Things

Zhijing Qin∗, Grit Denker§, Carlo Giannelli‡, Paolo Bellavista‡, Nalini Venkatasubramanian∗
∗ University of California, Irvine, USA ‡ University of Bologna, Italy § SRI International, USA

Abstract—The growing interest in the Internet of Things (IoT)
has resulted in a number of wide-area deployments of IoT
subnetworks, where multiple heterogeneous wireless communi-
cation solutions coexist: from multiple access technologies such
as cellular, WiFi, ZigBee, and Bluetooth, to multi-hop ad-hoc and
MANET routing protocols, they all must be effectively integrated
to create a seamless communication platform. Managing these
open, geographically distributed, and heterogeneous networking
infrastructures, especially in dynamic environments, is a key
technical challenge. In order to take full advantage of the many
opportunities they provide, techniques to concurrently provision
the different classes of IoT traffic across a common set of
sensors and networking resources must be designed. In this
paper, we will design a software-defined approach for the IoT
environment to dynamically achieve differentiated quality levels
to different IoT tasks in very heterogeneous wireless networking
scenarios. For this, we extend the Multinetwork INformation
Architecture (MINA), a reflective (self-observing and adapting
via an embodied Observe-Analyze-Adapt loop) middleware with
a layered IoT SDN controller. The developed IoT SDN controller
originally i) incorporates and supports commands to differentiate
flow scheduling over task-level, multi-hop, and heterogeneous
ad-hoc paths and ii) exploits Network Calculus and Genetic
Algorithms to optimize the usage of currently available IoT
network opportunities. We have applied the extended MINA
SDN prototype in the challenging IoT scenario of wide-scale
integration of electric vehicles, electric charging sites, smart grid
infrastructures, and a wide set of pilot users, as targeted by the
Artemis Internet of Energy and Arrowhead projects. Preliminary
simulation performance results indicate that our approach and
the extended MINA system can support efficient exploitation of
the IoT multinetwork capabilities.

I. INTRODUCTION

The recent surge in popularity of the Internet of Things
(IoT) across multiple domains has stemmed from the spread
of networking-enabled consumer devices that are deployed on
a geographically wide-scale. For instance, within the context
of two large EU Artemis Joint Undertaking projects, called
Internet of Energy for Electric Mobility [1] and Arrowhead [2],
we are addressing wide-scale deployment scenarios of IoT
and the industrial interest for the near future where a large
fraction of vehicular traffic will consist of electric vehicles.
These scenarios give rise to many technical and organizational
challenges - from the monitoring of current road traffic to the
optimization of travel paths based on recharging availability;
from the locating of target vehicles to the dissemination of
alert message in an audio or text format; from the identification
of spatio-temporal recharging patterns for enabling mass scale
user behavior prediction to the optimization of smart grid man-
agement in order to adequately sustain the expected patterns
of recharging requests from different geographical areas.

Real world IoT deployments are fundamentally heteroge-
neous; they are often derived from the integration of already
independently deployed IoT sub-networks, characterized by
very heterogeneous devices and connectivity capabilities. The
co-existence of different types of network technologies is
due to legacy motivations and to different specializations
in different sub-domains. Potential networks in the smart
transportation case above may include single-hop wireless
communications based primarily on Near Field Communi-
cations and ZigBee between neighboring cars and between
cars and recharging sites (at least in the vision of big in-
dustrial players, such as Siemens and ENEL, involved in
the above projects), while single/multi-hop WiFiDirect and
IEEE 802.11p communications will enable the dissemination
of useful recharging data among moving vehicles, as well
as of user-generated entertainment content flow (e.g., tele
audio or video streaming flows) between cars. In addition,
4G-based access to the standard Internet infrastructure will
enable real-time collection of monitoring data at datacenters
either directly from cars (often through smartphone-based
gateways) or via intermediary collectors at road side units.
The above heterogeneity poses novel challenging issues for
both academic and industrial researchers, especially in order
to synergically exploit the heterogeneous network resources
dynamically available in an open IoT deployment scenario.
The heterogeneous network and device resources create

opportunities for a wide range of applications (semantic tasks)
with varying service requirements to execute concurrently. The
envisioned classes of tasks may include:
1) simple point-to-point client-server applications that re-

quire real-time, dependable, and high quality mes-
sage exchange - e.g., real time information about the
road/vehicle status from end devices (highway camera
or vehicle) to the data center, e.g., ”locate yellow sedan
in I-5 highway” or ”determine poor road conditions
along my path of transit”. Such applications require low
latencies and reliable delivery of information;

2) monitoring applications that collect data periodically
from a multitude of data sources, such as in the case
of recharging site, monitoring for global state aware-
ness and optimization. A sample query might be ”get
availability of recharging sites and traffic statistics on
vehicles that have been charged there”. In this case, there
is no strict requirement on latency (at least within one
polling period) and on message loss, but a relatively sig-
nificant number of updates from traffic, often generated
in a very asymmetric way;

3) opportunistic exchange of local monitoring/personal
data, especially between moving vehicles or between978-1-4799-0913-1/14/$31.00 c� 2014 IEEE

vehicles and Internet access points on the the way, e.g.,
”audio chat among cars in a fleet”. In this case, due to
the interactions between multiple parties, a lower jitter
is required, while throughput might be less important.

While opportunities for new classes of applications are
created in this heterogeneous setting, new challenges are intro-
duced. The first issue involves shared provisioning of network
and sensor resources across applications for efficiency. In the
heterogeneous IoT setting, different user-defined tasks may
run simultaneously – given the shared space they operate
in, they often share the same sensing/networking resources,
with differentiated quality requirements in terms of reliabil-
ity (packet loss), latency, jitter, and bandwidth. Given the
randomized nature of which IoT tasks are required, these
applications are often developed, deployed, and triggered in
an uncoordinated manner. Optimizing sharing of sensing and
communication resources and coordinating messaging in this
context is challenging.
The second issue is an interoperability challenge that arises

when heterogeneous devices exploit different data formats for
modeling information and diverse protocols for machine-to-
machine (M2M) data exchange, often dictated by legacy needs
and the specifics of the domain in which they are applied.
The varying throughput, latency, and jitter requirements of
applications’ different requirements and properties enhance
the complexity of state capture and resource provisioning.
For instance, monitoring data between neighboring cars and
a recharging site or between a recharging site and the smart
grid infrastructure is often transmitted nowadays by adopting
the relatively efficient machine-to-machine protocol called MQ
Telemetry Transport (MQTT). However, our experience with
interoperability challenges has revealed the need to adopt open
and flexible protocols (even if format-inefficient and expen-
sive), such as eXtensible Messaging and Presence Protocol
(XMPP) for message exchange between cars and between a car
user and a user-oriented service implemented over the support
infrastructure, e.g., the recharging sites booking service.
The above articulated scenarios push for a novel software

stack enabling effective resource provisioning in the IoT
Multinetworks environment, to accomplish heterogeneous
IoT tasks with various requirements. As a step towards this
ambitious goal, we have developed MINA, a reflective self-
observing and adapting middleware exploiting the Observe-
Analyze-Adapt loop, to realize and manage dynamic and
heterogeneous multi-networks in pervasive environments [3].
In particular, MINA achieves a reasonably accurate, central-
ized global view of the currently available multi-network
environment and takes advantage of this global view for
adapting it, e.g., by reallocating application flows across paths.
More importantly, MINA adopts state-of-the-art Software-
Defined Networking (SDN) technologies to achieve flexible
resource matching and efficient flow control in industrial
deployment environments. To this purpose, we propose a novel
IoT multinetwork controller, based on a layered architecture,
that makes easier to flexibly and dynamically exploit IoT
networking capabilities for different IoT tasks described by
abstract semantics. Moreover, we modify and exploit the
Network Calculus to model the available IoT multi-network
and we propose a genetic algorithm to optimize its exploitation

through differentiated dynamic management of heterogeneous
application flows.
The benefits of employing SDN techniques in IoT envi-

ronments is becoming recognized in multiple domains be-
yond the smart transportation setting discussed earlier by
both researchers and industry practitioners. For example, [4]
developed a robust control and communication platform using
SDNs in a smart grid setting. Similar efforts have been
explored in the smart home domain where IoT devices are ex-
tremely heterogeneous, ranging from traditional smartphones
and tablets, to home equipment and appliances with enhanced
capabilities. Recent efforts include a home network slicing
mechanism [5] to enable multiple service providers to share a
common infrastructure, and supporting verifying policies and
business models for cost sharing in the smart home environ-
ment. At a lower device level, [6] employs SDN techniques
to support policies to manage Wireless Sensor Networks. In
summary, while there is significant interest in managing IoT
environments, many of the efforts in this direction are isolated
to specific domains, or a specific system layer. The proposed
work employs a layered SDN methodology to bridge the
semantic gap between abstract IoT task descriptions and low
level network/device specifications.
In this paper, we will first show the key differences between

SDN techniques in traditional Data Center Networks (DCNs)
and in IoT environments, and give our vision of a layered SDN
controller in IoT settings (Section II). In Section III and IV,
we illustrate how to utilize the layered view to match proper
resources with low level specification to tasks with high level
semantics. We introduce and modify the Network Calculus
technique to accurately estimate the flow QoS performance
under heterogeneous links. A novel multiple-QoS-constraints
flow scheduling algorithm is proposed in Section V, and we
have verified it in Section VI. Conclusive remarks are given
in Section VII.

II. CONTROLLER ARCHITECTURE

Given the heterogeneity of IoT Multinetworks, it is chal-
lenging to coordinate and optimize the use of the heteroge-
neous resources with the goal of satisfying as many tasks as
possible. We conjecture that the SDN paradigm is a good
candidate to solve the resource management needs of IoT
environments for multiple reasons:

• SDN allows for a clear separation of concerns between
services in the control plane (that makes decisions about
how traffic is managed) and the data plane (actual mech-
anisms for forwarding traffic to desired destinations). The
decoupling encourages abstractions of low-level network
functionalities into higher level services and consequently
simplifies the task of network administrators;

• SDN mechanisms aim to provide a balance between the
degree of centralized control/coordination through the
presence of an explicit SDN controller and decentralized
operations through flow-based routing and rescheduling
within the network components; this balance is realized
via interactions between controllers and controlled de-
vices.

However, the current realization of SDN technologies are
still far from addressing the heterogeneous and dynamic needs

of IoT Multinetworks. The popular use of SDN technologies
today is in DCNs [7][8], where the focus is on the collection
of specific network statistics (e.g., bandwidth consumption)
from nodes networked via fast interconnections within the
datacenter. In contrast, a typical IoT Multinetworks setting
gathers state information from devices distributed over a more
loosely coupled (and possibly wide area) network. Second,
performance metrics of interest in IoT Multinetworks go
beyond bandwidth consumption; with more heterogeneous and
time-sensitive traffic as it is the case in IoT Multinetworks, it
is equally important to reduce the collection overhead and to
keep the effectiveness of the overall data needs. Unlike the
case of DCNs, whose network requirements primarily revolve
around link utilization and throughput, IoT Multinetworks
settings present additional timing related needs - such as delay,
jitter, packet loss, and throughput. Third, unlike the situation
in a DCN, link and node capabilities in IoT Multinetworks are
very heterogeneous and the application requirements are also
different. This implies that the single objective optimization
techniques in DCN flow scheduling, such as bin packing
[7] and simulated annealing [8], are not directly applicable
in IoT Multinetworks. Finally, the nature of interactions in
current realizations of SDN (e.g., OpenFlow [9]) is limited to
south-bound, i.e., lower layer interactions between controller
and devices such as switches. The so-called north-bound
interactions between applications/service and controller have
received much less attention and are not standardized [10].
Although there are proposals [11], [12] that advocate the use
of a network configuration language to express policies such
as ”ban a device if its usage over the last five days exceeds
10 GB”, these policies still focus on lower layer parameters
of the network stack.
More recently, SDN techniques are being applied to wireless

networks. OpenRadio [13] suggests the idea of decoupling the
control plane from the data plane to support ease of migration
for users from one type of network to another easily, in PHY
and MAC layers. CellSDN [14] enables policies for cellular
applications that are dictated by subscriber needs, instead of
physical locations - providing finer control of network flows
than previously possible. The OpenWireless [15] prototype
supports seamless handover between WiFi and WiMax net-
works when video data is streamed, using OpenFlow con-
trollers. The wireless SDN solution provides the necessary
building blocks for managing IoT Multinetworks, but they
are not sufficient. The south-bound approach retains its focus
on connecting to a specific lower-level access network; its
application to IoT Multinetworks must support mechanisms
that abstract out the network heterogeneity. Furthermore, the
framework must support north-bound, higher layer interac-
tions, i.e., to the heterogeneous applications and their require-
ments.
In this paper, we propose a novel IoT Multinetworks

controller architecture to overcome these limitations. As
shown in Fig. 1, the data collection component collects
network/device information from the IoT Multinetworks en-
vironment and stores it into databases. This information is
then utilized by the layered components in the left side.
The controller also exposes the Admin/Analyst APIs, which
enable the control processes to be governed not only by the

controller itself but also by humans or external programs.
Note that while the controller is logically centralized, to
improve scalability it can be instantiated multiple times in
different locations, e.g., in a per-domain per-service fashion.

Io
T
M
u
lt
in
et
w
o
rk
s

Taskresource
matching

Solution Spec.

Flow Scheduling

Communications Layer

Service
DB

Task
DB

Device
DB

Network
DB

Data Collection

Admin /Analyst API
Controller

Fig. 1. IoT controller Architecture

We argued that the
concept of an ab-
straction level is fun-
damental to our vi-
sion of IoT Multinet-
works since it allows
to make use of the
heterogeneous multi-
network resources in
a flexible manner. As
shown in Fig. 2, tasks are the highest level of abstractions in
IoT Multinetworks that define what is required; this leaves
open the choice of what applications/services, devices and
communication networks should be exploited to accomplish
the required task. A simple example might be to determine
how many vehicles currently there are in a recharging station.
Services are concrete software/hardware entities that help
in the realization of a task. A task may be realized by a
single service (capture video from recharging station) or a
workflow of services that together realize the task (capture
video and count vehicles). A task/service mapping specifies
which devices and applications should be used to complete
the task. The lower level Flow and Network layers decide
which networks should be used for application flows and how
application flows should be routed across the network. These
decisions will be sent out to the corresponding devices via the
communication and control layer.

Flow Scheduling

Service solution spec.

Communications Layer

Taskresource matchingTasks

Services

Flow &
Network

Comm.
& ControlIn

cr
ea
si
n
g
 L
ev
el
o
f
A
b
st
ra
ct
io
n

Fig. 2. Layering in the IoT controller

Such a layered
view has benefits
since it hides the
details of lower layers
(network/devices) so
that tasks can be
accomplished in a
more flexible way.
Furthermore, the
separate abstraction
levels allow dedicated algorithms to be designated to a certain
layer for improved performance. For example, consider a
specific instance of a smart space IoT setting (as described
earlier). Example tasks here might be ”Locate Cab 001 in I-5
free way section 107” or ”Alert all vehicles about accident
in I-5 free way section 107”. Once such a task is submitted
to the controller from a requesting node, the controller
components process it through a series of steps:

• The task-resource matching component of the controller
maps the task request onto the existing resources in the
multinetwork. For example, for the first task (”Locate Cab
001 in I-5 free way”), this component will determine a set
of available resources in that location (”I-5 free way sec-
tion 107”). Then it will filter out resources from this set
by checking whether they have the capability of locating
and tracking vehicles. The information about the various
capabilities of resources and what services they provide is
stored in the device and service DB. For example, some

resources such as cameras and mesh routers might qualify
because they are adverstised to have such capabilities.
The result of the task-resource matching component is a
set resource solutions, where each resource solution is a
set of resources whose combined capabilities could solve
the task at hand. The task-resource matching component
then further refines each of the resource solution. In our
example of locating and tracking vehicles, for the solution
that consists of a road camera and a server for image
processing, the refinement yields that the video stream
coming from the raod camera is sent to the server and
it also determines the image processing techniques that
will be employed at the server side. These instantiated
resource solution, or solution for short, can be filtered
by automated policies at the controller or via a human in
the loop (i.e., a network operator) - this will decide which
solution the controller will adopt and further optimize it
(Section III).

• Once a solution is selected, the service solution spec-
ification component of the controller maps the charac-
teristics of the devices and services involved in that
solution to specific requirements for devices, networks,
and application constraints (e.g., minimum throughput).
For example, the solution that uses a road camera to
locate and track vehicles will imply certain data rate and
delay requirements of he video surveillance service, given
the video frame resolution, codec, and receiver’s buffer
(Section IV).

• The Flow Scheduling component takes these require-
ments and schedules flows that satisfy them. Scheduling
and coordination of the resources in IoT Multinetworks
are complex due to the heterogeneity of the networks
and various QoS requirements of flows. We propose to
use a logically centralized management and coordination
component (the flow scheduling algorithm is described in
details in Section V).

• Finally the controller triggers the necessary commu-
nications in the IoT Multinetworks, e.g., a command
like ”routing the video data sent from Camera 001 via
Ethernet” will be sent to the devices along the path.

III. RESOURCING MATCHING

As discussed in the previous section, assigning heteroge-
neous network or device resources to heterogeneous IoT tasks
is challenging. The major reason is that IoT tasks are usually
depicted in an abstract manner and they are independent of the
underlying network and device resources specifications. Thus
a bridge between high level task descriptions and low level
resource specifications is needed.
We employ a semantic modelling approach to provide such

bridge. We use semantic technology (ontologies and rules) to
describe (a) characteristics and capabilities of network and
device resources as well as services and (b) IoT tasks as
hierarchical semantic tasks descriptions where high-level tasks
are refined through sequences or alternatives of low-level
tasks. For example, mesh routers are captures as resources
that have the cabability to locate, match, and track. Similarly,
wireless devices in cars can be identified by mesh routers
and than tracked. By way of example, here is a generic task

description for ”LocateAndTrack(Vehicle,Location)” defined
through the following task plan template:
LocateAndTrack(Vehicle,Location)=

FindLocationResources(in:Location,neededCap:LocationCapability,

out:res:SetOf(LocationResources));

Match(in:Vehicle, SetOf(LocationResources), neededCap:Tracking,

out:SetOf(LocationAndMatchingResources))

For all Res in SetOf(LocationAndTrackingResources) Do

If Res = Camera then

TrackUsingVisualMeans(in:Res,neededCap: CameraTracking,

out:TrackingData)

ElseIf Res = MeshRouter then

TrackUsingDigitalMeans(in:Res,neededCap: DigitalTracking,

out:TrackingData)

Semantic task descriptions are hierarchical and task pa-
rameters are fully typed in terms of ontological concepts. At
the lowest level of the task hierarchy are so-called primitive
tasks. Primitive tasks are not decomposed any further, rather
they are described in terms of a capability that is needed in
order to perform the primitive task. In the above example,
the locate and track task is decomposed into three subtasks:
find location resource, match, ad tracking using either visual
or digital means. Each of the subtasks has certain capabilities
that a resource must have in order to be considered a possible
solution. Through these capabilities, the high-level IoT task
description is connected to the lower-level devices, networks
and services. The requirements on the capabilities are hard
constraints that must be satisfied. Semantic task descriptions
can also have additional soft constraints. For exmple, there
might be a desire to have high resolution cameras to yield
better identification, but a medium resolution camera might
also suffice.
Using the database of semantic descriptions of networks,

devices and services, our analyzer can match resources to a
given task. It is important to note that the analyzer does not
depend on the capabilities needed or provided: it is agnostic
to the specific domain to which it is applied. The analyzer
only assumes that there is a task plan structure with complex
tasks refined to primitive tasks specifying required capabilities,
while for resources it is assumed that they specify what
capabilities they provide.
We have used this approach successfully in other projects

[16], [17]. These projects had the focus to determine the
interoperability of various live or simulated military training
systems, from F18 fighters to complex simulation systems that
are employed in large, joined military trainings [18], [19], [20].
Task plan templates are stored in the task knowledge base

(task KB) and resource descriptions are stored in the resource
knowledge base (resource KB). Having those two knowledge
bases, users or controllers can match the task onto the ap-
propriate taskplan template and submit it to the analyzer. The
analyzer imports knowledge from both KBs and tries to find
resources that have the required capabilities for the tasks. If
such resources exist, the analyzer returns one or more solution
taskplans with resources assigned to tasks, ranking solutions
according to constraint satisfaction.

IV. SERVICE SOLUTION SPECIFICATION
Once a solution is selected, the service solution specification

component maps the characteristics of the devices and services
involved in that solution to specific requirements for devices,

networks, and application constraints. As an instance, Use
video surveillance is selected to accomplish task Locate Cab
001 in I-5 highway - detailed parameters such as video res-
olution(640*800), Frame rate (30fps), Codec(H.264), Client
Buffer(100kbytes)are specified. These service requirements are
then translated into network and resource requirements: Data
Rate of at least 0.7Mbps, Delay less than 1s and Loss Rate
less than 5%. The information needed to determine whether
the desired data rates and delays are possible is obtained from
a Network Information Base (or Network DB) that contains
the state of the networks in the space.

V. FLOW SCHEDULING
The centralized flow scheduling component in our layered

controller can access the network state information of each
link and node that is provided by the MINA global network
state information view. In addition, all flows are registered in
the controller hence the specifications of the flows such as QoS
requirements, packet size, and packet rate are known a-priori
by the flow scheduling component. One of the key modules
in flow scheduling components is the network model, which
takes the network state information and flow specification
as input and calculates analytical results of the end-to-end
performance of each flow before they are actually admitted
into the networks. Finding paths for a flow with even two
constraints is NP-complete [21], hence here we propose a
heuristic algorithm to solve this problem. Every time the
algorithm picks up a heuristic solution, it calls the network
model to verify if the solution is feasible or not (i.e., if QoS
requirements of flows are fulfilled or not). If not, the heuristic
algorithm continues to the next iteration until it finds one
feasible solution or a predefined iteration time is reached.

A. Network Calculus-Based Model

Generally, there are two methodologies in analysing QoS in
communication networks, one is Queueing Theory [22] and the
other is Network Calculus [23]. Queueing Theory is the gen-
eral mathematical study of queues; it models communication
requests or packets as discrete items which could be buffered
in a queue and wait for services provided by the server. It
has played a fundamental role in modeling, analyzing, and di-
mensioning communication networks [24]. Initially Queueing
Theory was derived from modeling the telephone network.
However, unique customer and service characteristics and
requirements in such packet-switch networks often make its
adoption difficult [24]. Hence more analytical techniques are
developed in packet-switched networks. Network Calculus is
a technique dealing with queueing type problems encountered
in modern packet-switched computer networks. Its focus is on
performance guarantees, modeling the arrival traffic, service
capability, and departure traffic as curves. The curves in Fig. 3
represent the data volume that arrived (A(t)), was served
(S(t)) and departed (D(t)) on a node (system) in a time
interval [0,t).
In this paper we assume that each node has a constant

capacity R and can provide a service curve S(t) = R[t−T]+,
as shown in Fig. 3, where R is the capacity (transmission rate),
[x]+ = max{0, x}, and T is the transmission delay, which is
the time between the first bit of the packet entering the queue
and the last bit getting out of the transmitter. Obviously, T

bits

times

D(t)

S(t)

Max Delay

A(t)

Fig. 3. System with Service S(t) =
R[t − T]+, arrive curve A(t) and
departure curve D(t)

video

audio

Fig. 4. Initial Validation Sce-
nario

depends on R, the length of this packet, and the amount of
data in front of this packet when it hits the queue. The core
part of this technique is the use of min-plus convolution on
arrival and service curves, to generate a departure curve:

D(t) = A(t)⊗ S(t) (1)

which means:

D(t) ≥ inf
s≤t

(A(s) + S(t− s)) (2)

There are two properties enabling Network Calculus to model
multiple flows in complex networks:
a) if there is more than one flow going through a node, all

flows share the same transmission service. Here we assume
each intermediate node has a FIFO scheduler, in which packets
are served in a sequence as they arrived. Flow i will have a
leftover service curve:

Si =
θi

Σj �=iθj
R[t− T]+ (3)

where R is the capacity of the downlink of this node (transmis-
sion rate), and θ is the weight of each flow (i.e., data rate= rl);
b) in a multi-hop path, the departure curve of current hop

is the arrival curve of the next hop as shown in Fig. 5,
and a combination service curve along the path S(t) can be
obtained by iteratively adding each node’s service curve using
the associative operation in min-plus convolution.

S(t) = S1 ⊗ S2 ⊗ ...⊗ Sn (4)

A1(t)
S1(t) S2(t)

D1(t)=A2(t) D2(t)

A1(t)
S(t)

D2(t)

Fig. 5. Association of service curve

However, Network
Calculus originally
can only provide an
upper bound on the
delay for the whole
time scale: it is not
possible to dig into the fine grained characteristics of the
traffic, such as jitter. Hence we slightly modified classic
Network Calculus by examining the traffic as a set of discrete
points, rather than a curve, where each point represents a
packet. It assumes that the profile of each flow (e.g., packet
length and sending time) is known at each sender, and each
packet is served by the service curve S(t) with a constant
capacity R and a delay T . At the time of a packet arrives, we
examine the current queue state in terms of how many packets
are there in the queue and what are the lengths. The delay T
is the transmission time of all packets that are already in the
queue. Hence the total delay of a packet consists two parts:
one is T and the other is the transmission (service) time of
the packet itself. In this way, we can get an approximate
end-to-end delay for each packet. To be consistent with our

experiment platform (Qualnet), we defined the jitter as the
difference between two successive packet arrival intervals,
as specified in [25]. In this paper, we examine three QoS
parameters: delay, throughput, and jitter. For each flow, we
profile it with correct set of points at the sender side to plot
the curve. Once we get the arrival curve D(t) of flow i at the
destination node by the modified Network Calculus model,
we compare it with flow i’s initial arrival curve A(t). Each
point (packet) suffers from a delay and have a final arrival
time. The average delay, average jitter, and total throughput
for each flow can be calculated accordingly. In our initial
validation scenario, we have a two-hop network consisting
of one video server and one audio server, one router and 5
clients. Each server connects to the router via a 100Mbps
Ethernet link while each client connects to the router via a
2Mbps 802.11b wireless link. Each server provides either
a video streaming service or a Skype voice service to one
of the clients, as shown in Fig. 4. The video streaming and
Skype voice services are based on real traces collected by
the Arizona University [26] and the Polytechnic University
of Turin [27]. We tested this initial validation scenario via
Qualnet simulator and found the results are consistent with
our Network Calculus based model, as shown in Fig. 6: the
average error rate of the delay, jitter, and throughput are 0.05,
0.08, and 0.03 respectively.

40000

50000

60000

70000

80000

90000

100000

110000

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3 4 5

Qualnet_Delay

Model_Delay

Qualnet_Jitter

Model_Jitter

Qualnet_TP

Model_TP

Th
ro
u
gh
p
u
t (b

p
s)

D
el
ay
 &
 J
it
te
r
(s
)

(b)

Fig. 6. Initial Validation Results

B. Genetic Algorithm-based Multi Constraints Flow Schedul-
ing

Multiple constraints often make the routing problem in-
tractable [28]. For example, finding a feasible path with two
independent path constraints is NP-complete [21]. Traditional
flow schedulers in DCNs employs heuristic algorithms such as
bin packing [7] and simulated annealing [8]; however, these
algorithms have good performance when the constraints are
only the link utilization and cost in wired networks, but cannot
work well under multiple QoS constraints in heterogeneous
networks.
Genetic Algorithms (GAs) are adaptive heuristic search

algorithms based on the evolutionary ideas of natural selection
and genetics. In searching a large state-space, multi-modal
state-space, or n-dimensional surface, a genetic algorithm may
offer significant benefits over typical search of optimization
techniques, e.g., linear programming, depth-first, and breath-
first. In particular, a communication path in a network perfectly
matches with the chromosome concept in GAs: nodes are the
genes, mutation and crossover can be done by replacing a

sub-path and exchanging sub-paths between two paths, and
the fitness value is the QoS performance of the flow going
through this path.
Many GA-based routing protocols with multiple QoS con-

straints have been proposed in the past decade, e.g., [28], [29],
[30]. However, we argue that our approaches have made the
following key contributions in the IoT settings: a) existing
approaches only examined single flow performance, while
multiple flows with different QoS requirements coexist in an
IoT environment. Since the inter flow interference can greatly
affect the end-to-end flow performance, our approach takes this
effect into consideration; b) heterogeneous network capacity
is one of the key characteristics in IoT environments, and thus
our approach schedule the flows over links with difference
capacity.

1) Problem statement: Given a directed graph G < V,E >,
where V is the set of nodes and E is the set of links, each link
(u, v) ∈ E has a capacity Ru,v , which is equivalent with the
transmission rate of node u. F is the set of flows and each
flow fi ∈ F has several parameters: source s, destination d,
start time t0 and arrival curve Ai(t). In IoT settings, each
flow has a QoS requirements vector Qi =< w1, w2, wm >,
where each element indicates one QoS parameter requirement.
In this paper we use the vector < wd, wj , wt >, which states
the requirements for delay, jitter, and throughput respectively.
The problem is to find a path p from source node to destination
node for each flow, such that:

Xi(p) � Qi, for each flowfi ⇐⇒ (5)
xd ≤ wd and xj ≤ wj and xt ≥ wt, for each flowfi (6)

where Xi(p) =< xd, xj , xt > is a vector in which each
element represents the end-to-end delay, jitter, and throughput
of flow fi when using path p respectively.

2) Data structures and Procedures: Chromosome Structure
and Initialization. A chromosome represents a path, which is
a list containing nodes (genes) from source s to destination d.
Each flow fi eventually has one chromosome. No duplicated
genes are allowed in a single chromosome which means no
loops in the path. Two initial chromosomes for each flow are
set by using Dijkstra’s algorithm and the second shortest path
between source s and destination d.

Fitness Value. We use the following equation to calculate
the fitness value for each chromosome (path):

[α
xd − wd

wd
+ β

xj − wj

wj
+ γ

wt − xt
wt

]+ (7)

where < xd, xj , xt >= Xi(p) is the flow end-to-end per-
formance on delay, jitter, and throughput by using path p
respectively. We employed the techniques described in Section
V-A to get the fitness value. α, β, γ are the weight factors of
the QoS parameter, which only depends on the flow. Here
[x]+ = max{0, x}. Apparently, a path with fitness value 0
is a feasible path. We rank individuals by fitness value, the
smaller the fitness value, the higher it is ranked.

Crossover. For each flow, we choose the most two top
ranked chromosomes (i.e., the shortest and the second shortest
paths on the first iteration) with common genes as the parents
(if they do not have common genes, we skip crossover in this
iteration). A single point crossover at the common genes are

performed to generate new offspring. For example, we use path
s, a, b, c, d and s, e, b, d to generate two children: s, a, b, d and
s, e, b, c, d by performing the crossover at the common gene
b. Those four chromosomes are served as input of Mutation
procedure.

Mutation. Given a path s, a, b, c, d, we choose a bottleneck
node, say node b. Among the neighbours of its last hop,
node a, we randomly choose another node x which can reach
the destination node d. Hence we can get a mutation path
s, a, x, .., d. Here we determine the bottleneck node as the
one incurring the largest delay along the path. For each flow,
the mutation procedure takes four chromosomes as input and
generates four new chromosomes. Those eight chromosomes
will be ranked based on their fitness values.

Acceptance and Replacement. The outputs of mutation are
eight ranked chromosomes (paths) for each flow, and the top
two chromosomes will replace the current two chromosome
parents of the current round of iteration. The new chromosome
parents will be the input of the Crossover procedure for the
next iteration.

Termination. The algorithm will iteratively run until each
flow has a feasible path (with fitness value 0) or the predefined
generation size is achieved. In our experiments, we set the
generation size to 10.

VI. CUSTOMIZED SIMULATION PLATFORM AND
EVALUATION

We have implemented a prototype of the proposed controller
on top of the Qualnet simulation platform [31]. Qualnet
provides a comprehensive environment for designing network
protocols, and it enables creating and animating different
network scenarios, under which the performance of the pro-
tocols can be analysed. We customized Qualnet with SDN
features by injecting a OpenFlow-like protocol in IP layer. In
every network scenario, there is only one node serving as the
controller and the remaining nodes are all controlled devices.
While achieved performance results already demonstrate the
feasibility of the proposed approach, in the future we intend to
further investigate our solution by extending the simulated en-
vironment considering the case of an actual vehicular scenario
served by multiple controllers.
In Fig. 7, we illustrate the operation flow of how this

protocol works in a software defined manner:
1) service or application requirements, network topology,

and device properties are registered to the controller and
stored in the database;

2) the controller translates service requirements into net-
work QoS requirements. Preprocessing and analysis is
performed if necessary;

3) the controller exploits the algorithm described in Sec-
tion V-B to schedule flows, in order to fulfill QoS
requirements;

4) the controller sends flow entries to controlled devices
in charge of routing flows. A flow entry contains in-
formation such as source/destination IP address/port, IP
address of next hop, and the new destination IP address;

5) controlled devices receive flow entries from the con-
troller;

6) controlled devices identify each flow going through (by
source/destination IP address/port), and check whether

there is an entry for this flow, then do actions determined
by IP address of next hop and the new destination IP
address.

Device

Heterogeneous
Network

Controller

Device1

Device2

Routing
Layer

IP
Layer

MAC Layer

PHY Layer

Trans Layer

APP Layer

Communication

Flow Identify

Lookup Flow Entry

Action

Qualnet

Communication

Flow Scheduling

Requirements Specification

Device4

Device3

1

2

3

4

5

6

Fig. 7. Operational Flow Diagram

Note that one of the important differences between SDN in IoT
environments and in DCNs is that in IoT end devices usu-
ally have multiple network interfaces and horizontal/vertical
handovers often happen. Hence, once the intermediate device
reroutes a flow, it should not only change the next hop, but
also the destination IP address. For example, in Fig. 7 when
Device 1 reroutes a flow destined to Device 4 from 1-2-4 to
1-3-4, it should not only change the next hop from Device 2 to
Device 3, but also change the destination IP address from WiFi
interface address to Bluetooth interface address of Device 4.
Of course, this procedure requires a more secure mechanism
operated in the intermediate device, which is one of our future
work directions.
In this section, we evaluate our GA-based flow scheduling

methodology and compare it with other two common schedul-
ing algorithms used in SDN world: bin packing and load
balance. The former tries to maximize the link utilization,
which means it tries to accommodate as many flows as
possible into a single link. Instead, the latter assigns flows into
a link so that the total amount of the flows are proportional to
the capacity of the link. In order to have reasonable results, we
exploit a real deployed smart campus network topology [32].
This topology is quite similar to actual application cases where
vehicles with wireless connectivity exploit either LTE or WiFi
road side units to receive data from servers. The topology
consists of 3 data servers, 3 edge switches (each server has
a 1Gbps Ethernet link to one single edge switch), 2 core
routers(each edge switch has one 10Gbps Ethernet link to
every core router), and 15 access points (each access point
has one 100Mbps Ethernet Link to every core router) with
45 end devices. There are three types of access points: WiFi,
Femtocell and Bluetooth, with data rates 10Mbps, 2Mbps, and
1Mbps respectively (end devices have direct connection with
access points). A SDN controller is connected to the network
with the layered functionalities. Each device has three network
interfaces, at each time instance only one interface can be used;
however, vertical handover could be performed if necessary.
Each of the three data servers provides either file sharing,
tele audio, or video streaming services. We assign each of
the 45 end devices a service, randomly chosen from 16 file
sharing services, 11 tele audio services, and 7 video streaming
services. File sharing flows are modeled by sending Constant
Bit Rate with packet length uniformly distributed in [100,
1000] bytes with period T, the latter uniformly distributed in

0

50

10 0

15 0

20 0

25 0

30 0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Kb
ps

B in P a ck in g

Lo a d B a la n ce

P rop o s ed A l g or ith m

F low Id

F i l e s h a r i n g

0

1

2

3

4

5

6

7

8

9

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Bin Packing

Load Balance

Proposed Algorithm

FlowId

Se
co

nd Tele Audio

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Bin Packing

Load Balance

Proposed Algorithm

Video

FlowId

Se
co
nd

(a) End-to-End Throughput (b) End-to-End Delay (c) End-to-End Jitter
Fig. 8. Performance Comparisons Results

[0.01, 0.1] seconds. Tele audio and video streaming flows are
from real traffic traces [26], [27].

In our GA-based flow scheduling algorithm, we initially
choose two paths for each flow as parents. Under this specific
network topology, we choose the path generated by load
balance algorithm as one of the parents; then, we determine
the other parent by exchanging the current core route with
the alternative one (we have two core routers). We argue
that the file sharing service requires large throughput, the tele
audio service requires low delay, while the video streaming
service requires low jitter. Since QoS requirements wd, wj , wt

mentioned in Section V-B2 highly depend on the user
experience, audio/video codec and buffer size in the end
devices, etc, we do not set any particular QoS requirement in
this simulation based experiment. Instead, we try to optimize
the QoS performance (maximize throughput, minimize delay
and jitter) in a predefined amount of generations (we set 10
generations here). Hence we slightly change the fitness value
in equation (7) with αxd+βxj+γ(10000/xt): for file sharing
flows (α, β, γ) = (0, 0, 1), for tele audio flows (α, β, γ) =
(1, 0, 0), and for video streaming flows (α, β, γ) = (0, 1, 0).

We have totally 45 flows (each of 45 end devices has
one flow): flows 1-21 are file sharing, flows 22-36 are tele
audio, and flows 37-45 are video streaming. Fig. 8(a) shows
the Flow Throughput comparison. For file sharing flows, the
load balance algorithm outperforms the bin packing algorithm,
while our proposed algorithm has an average 8% throughput
increase if compared with the load balance algorithm. The
reason is in wireless links when link utilization exceeds
a threshold, the packet drop rate increases dramatically, as
indicated in [33]. Fig. 8(b) shows that for tele audio flows,
our proposed algorithm can improve the end-to-end delay
performance by 51% and 71%, compared to load balance and
bin packing algorithm respectively. However, the other two
types of flows suffer approximately the same delay experience
under these three algorithms. We argue the reason is tele
audio flows have bursty traffic patterns; it might not have
big data volume, but if two flows are scheduled with similar
busty pattern in the same link, a large delay occurs. That
is why tele audio flows have poor delay performance under
bin packing and load balance algorithms. Fig. 8(c) shows
that video streaming flows have an average 32% and 67%
less jitter with our proposed algorithm than the other two
algorithms. Two observations can be obtained here: a) video
streaming flows have a better overall jitter performance than
tele audio ones; b) our proposed algorithm has almost the

same throughput and delay performance on video streaming
flows, compared with the other two algorithms. The reason is
video streaming flows have variable packet length, but almost
constant inter packet interval. Hence if the interfered flows
also have a stable inter packet interval, the jitter should be
low. In fact, our proposed algorithm schedules more video
streaming flows with flow sharing flows (more stable inter
packet interval) than tele audio flows (variable inter packet
interval).
Extra flow entry messages overhead exists in the beginning

of the experiments. Since we assume that we perform a
one time flow scheduling and flows are stable once they are
initialized, we do not examine how the extra message overhead
affects the network performance. However, enabling online
scheduling with dynamic flow admission is also one of our
future work directions.

VII. CONCLUSIONS

In this paper, we have presented an original SDN controller
design in IoT Multinetworks whose central, novel feature is the
layered architecture that enable flexible, effective, and efficient
management on task, flow, network, and resources. We gave a
novel vision on tasks and resources in IoT environments, and
illustrated how we bridge the gap between abstract high level
tasks and specific low level network/device resources. A vari-
ant of Network Calculus model is developed to accurately esti-
mate the end-to-end flow performance in IoT Multinetworks,
which is further serving as fundamentals of a novel multi-
constraints flow scheduling algorithm under heterogeneous
traffic pattern and network links. Simulation based validations
have shown that our proposed flow scheduling algorithm has
better performance when compared with existing ones. We are
currently in the process of integrating this layered controller
design with our MINA software stack, in a large IoT electrical
vehicular network testbed [2] and developing more secure,
sophisticated tools to assist on-the-fly resource provisioning
and network control.
What we have realized is that the layered controller design

is critical to the management of heterogeneous IoT Multinet-
works. Techniques applied at each layer could be different - in
our design, the semantic modeling approach performs resource
matching and the GA-based algorithm schedules flows. Those
techniques can be viewed as plug-ins and can be adjusted
or replaced in different IoT scenarios. We strongly believe
that our novel layered controller architecture that inherently
supports heterogeneity and flexibility is of primary importance
to efficiently manage IoT Multinetworks.

REFERENCES

[1] Internet of energy for electric mobility. [Online]. Available:
http://www.artemis-ioe.eu/

[2] Arrowhead. [Online]. Available: http://www.arrowhead.eu/
[3] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubrama-

nian, “Mina: A reflective middleware for managing dynamic multinet-
work environments,” in Proceedings of IEEE/IFIP Network Operations
and Management Symposium 2014, ser. NOMS 2014. Krakow, Poland:
IEEE, 2014.

[4] A. Sydney, “The evaluation of software defined networking for com-
munication and control of cyber physical systems,” Ph.D. dissertation,
Department of Electrical and Computer Engineering College of Engi-
neering, KANSAS STATE UNIVERSITY, Manhattan, Kansas, 2013.

[5] Y. Yiakoumis, K.-K. Yap, S. Katti, G. Parulkar, and N. McKeown,
“Slicing home networks,” in Proceedings of the 2nd ACM
SIGCOMM workshop on Home networks, ser. HomeNets ’11.
New York, NY, USA: ACM, 2011, pp. 1–6. [Online]. Available:
http://doi.acm.org/10.1145/2018567.2018569

[6] T. Luo, H.-P. Tan, and T. Quek, “Sensor openflow: Enabling software-
defined wireless sensor networks,” Communications Letters, IEEE,
vol. 16, no. 11, pp. 1896–1899, November 2012.

[7] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: scaling flow management for high-performance
networks,” in Proceedings of the ACM SIGCOMM 2011 conference, ser.
SIGCOMM ’11, 2011.

[8] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: dynamic flow scheduling for data center networks,” in Proceed-
ings of the 7th USENIX conference on Networked systems design and
implementation, ser. NSDI’10, 2010.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev.

[10] M. Mendonça, B. N. Astuto, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A Survey of Software-Defined Networking: Past, Present,
and Future of Programmable Networks,” 2013, in Submission In
Submission. [Online]. Available: http://hal.inria.fr/hal-00825087

[11] A. Voellmy, H. Kim, and N. Feamster, “Procera: a language for high-
level reactive network control,” in Proceedings of the first workshop on
Hot topics in software defined networks, ser. HotSDN ’12, 2012.

[12] Hinrich, N. Gude, M. Casado, J. Mitchell, and S. Shenker, “Practical
declarative network management.” in Proceedings of the 1st ACM
Workshop on Research on Enterprise Networking, pp. 110. ACM, New
York, ser. WREN 2009, 2009.

[13] M. Bansal, J. Mehlman, S. Katti, and P. Levis, “Openradio:
A programmable wireless dataplane,” in Proceedings of the First
Workshop on Hot Topics in Software Defined Networks, ser. HotSDN
’12. New York, NY, USA: ACM, 2012, pp. 109–114. [Online].
Available: http://doi.acm.org/10.1145/2342441.2342464

[14] L. Li, Z. Mao, and J. Rexford, “Toward software-defifned cellular
networks,” in Software Defined Networking (EWSDN), 2012 European
Workshop on, 2012.

[15] R. Sherwood, M. Chan, A. Covington, G. Gibb, M. Flajslik, N. Hand-
igol, T.-Y. Huang, P. Kazemian, M. Kobayashi, J. Naous, S. Seethara-
man, D. Underhill, T. Yabe, K.-K. Yap, Y. Yiakoumis, H. Zeng, G. Ap-
penzeller, R. Johari, N. McKeown, and G. Parulkar, “Carving research
slices out of your production networks with openflow,” SIGCOMM
Comput. Commun. Rev., vol. 40.

[16] D. Elenius, D. Martin, R. Ford, and G. Denker, “Reasoning about
resources and hierarchical tasks using owl and swrl,” in Proceedings of
the 8th International Semantic Web Conference, ser. ISWC ’09, 2009.

[17] D. Elenius, R. Ford, G. Denker, D. Martin, and M. Johnson, “Purpose-
aware reasoning about interoperability of heterogeneous training sys-
tems,” in The Semantic Web, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2007, vol. 4825, pp. 750–763.

[18] R. Ford, D. Martin, D. Elenius, and M. Johnson, “Ontologies and tools
for analysing and composing simulation confederations for the training
and testing domains,” J. Simulation, vol. 5, no. 3, pp. 230–245, 2011.

[19] ——, “Ontologies and tools for analyzing and synthesizing lvc con-
federations,” in Simulation Conference (WSC), Proceedings of the 2009
Winter, Dec 2009, pp. 1387–1398.

[20] R. Ford, D. Hanz, D. Elenius, and M. Johnson, “Purpose-aware interop-
erability: The onistt ontologies and analyzer,” in Simulation Interoper-
ability Workshop, 07F-SIW-088. Simulation Interoperability Standards
Organization, September 2007.

[21] Z. Wang. and J. Crowcroft, “Quality of service routing for supporting
multimedia applications,” in JSAC 14 (7), 1996.

[22] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris, Fundamentals
of queueing theory. Wiley. com, 2013.

[23] J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of determin-
istic queuing systems for the internet. Springer, 2001, vol. 2050.

[24] Y. Jiang, “Network calculus and queueing theory: two sides of one
coin: invited paper,” in Proceedings of the Fourth International ICST
Conference on Performance Evaluation Methodologies and Tools. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering), 2009, p. 37.

[25] A. Chadda, “Quality of service testing methodology,” 2004.
[26] Video streaming trace files. [Online]. Available:

http://trace.eas.asu.edu/TRACE/ltvt.html
[27] Skype tele audio trace files. [Online]. Available:

http://tstat.polito.it/traces-skype.shtml
[28] R. Leela, N. Thanulekshmi, and S. Selvakumar, “Multi-constraint qos

unicast routing using genetic algorithm (muruga),” Appl. Soft Comput.,
vol. 11, no. 2, Mar. 2011.

[29] F. Xiang, L. Junzhou, W. Jieyi, and G. Guanqun, “Qos routing based on
genetic algorithm,” Computer Communications, vol. 22, no. 1516, pp.
1392 – 1399, 1999.

[30] A. Koyama, L. Barolli, K. Matsumoto, and B. Apduhan, “A ga-based
multi-purpose optimization algorithm for qos routing,” in Advanced
Information Networking and Applications, 2004. AINA 2004. 18th
International Conference on, vol. 1, 2004, pp. 23–28 Vol.1.

[31] “Scalable networks technologies http://www.scalable-networks.com.”
[32] Uc berkeley campus network maps. [Online]. Available:

http://net.berkeley.edu/netinfo/newmaps/
[33] R. Raghavendra, E. Belding, K. Papagiannaki, and K. Almeroth, “Un-

wanted link layer traffic in large ieee 802.11 wireless networks,” Mobile
Computing, IEEE Transactions on, vol. 9, no. 9, pp. 1212–1225, Sept
2010.

