
Adaptive Data Protection in Distributed Systems

Anna Cinzia Squicciarini
College of Information

Sciences and Technology
Pennsylvania State

University
University Park, PA,

16802

Giuseppe Petracca
College of Information

Sciences and Technology
Pennsylvania State

University
University Park, PA,

16802

Elisa Bertino
Computer Science

Department
Purdue University

West Lafayette, IN,
47906

ABSTRACT
Security is an important barrier to wide adoption of dis-
tributed systems for sensitive data storage and management.
In particular, one unsolved problem is to ensure that cus-
tomers data protection policies are honored, regardless of
where the data is physically stored and how often it is ac-
cessed, modified, and duplicated. This issue calls for two
requirements to be satisfied. First, data should be man-
aged in accordance to both owners’ preferences and to the
local regulations that may apply. Second, although multiple
copies may exist, a consistent view across copies should be
maintained. Toward addressing these issues, in this work we
propose innovative policy enforcement techniques for adap-
tive sharing of users’ outsourced data. We introduce the
notion of autonomous self-controlling objects (SCO), that
by means of object-oriented programming techniques, en-
capsulate sensitive resources and assure their protection by
means of adaptive security policies of various granularity,
and synchronization protocols. Through extensive evalua-
tion, we show that our approach is effective and efficiently
manages multiple data copies.

Categories and Subject Descriptors
C.2 [COMPUTER-COMMUNICATION NETWORKS
]: Security and protection (e.g., firewalls)

Keywords
Security, Distributed Systems

1. INTRODUCTION
A distributed system is by definition a collection of inde-

pendent computers that appear to the users of the system as
a single coherent system. With the advances of distributed
technologies, including cloud computing, wireless networks,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODASPY’13, February 18–20, 2013, San Antonio, Texas, USA.
Copyright 2013 ACM 978-1-4503-1890-7/13/02 ...$15.00.

grid computing, distributed systems are nowadays prolifer-
ating. Data stored in these systems may often encode sensi-
tive information, and if distributed across regions or nations
it should be protected as mandated by organizational poli-
cies and legal regulations.

Ensuring that policies associated with data distributed
across domain (regardless of where the data is physically
stored and how often it is accessed, modified, and dupli-
cated) are honored is an important challenge. Depending
on the degree of distribution, and the size of the data con-
sumers’ base, users’ data may be stored in multiple loca-
tions, based on providers internal scheduling and manage-
ment processes. Therefore, as data travels across sites and
is modified by multiple parties, it may be replicated and
accessed from remote locations. In these cases, access re-
strictions have to apply not only to changes by the content
originators (or content owners) but also to privacy and au-
diting regulations that are in place in the location where
data is stored and managed.

We notice that data replication in distributed systems is
the norm. In newer environments, such as cloud comput-
ing, data replication is anticipated to gain even more impor-
tance, as the reliability requirements of customers increase.
It has been envisioned that replication technologies will be-
come part of the storage foundation. Cloud providers are to
leverage this technology to meet existing as well as evolv-
ing customer requirements. Replication will not only enable
data recovery in the cloud, but server recovery in the cloud
as well [4, 9].

Toward addressing these issues, in this work we propose
innovative policy enforcement techniques for adaptive shar-
ing of users’ outsourced data. In particular, we introduce
the notion of self-controlling objects (SCOs), that encapsu-
late sensitive resources and assure their protection through
the provision of adaptive security policies.

SCO are movable data containers, generated by end users
through automated wizards. A given SCO may be dis-
tributed across domains if the originator wishes, and con-
tent recipients may consume the encapsulated resource at
any time. Access privileges will be verified at the time of
consumption, based on both the recipient credentials and
the context wherein access takes place. Accordingly, the
content will be decrypted and accessed on the fly. No cen-
tralized policy enforcement engine or decision point is re-
quired in order to enforce the security requirements, since
the core security modules belong to the object itself.

365

SCOs provide strong security guarantees, even in presence
of multiple copies of the same SCO disseminated across the
cloud, and adapt to local compliance requirements. SCOs
support a synchronization and update protocol that relies
on a subset of the SCO themselves. As part of our solution,
we also show how SCOs can either use locally pre-loaded
policies or securely accept new policies from trusted author-
ities.

To effectively accomplish adaptive data protection our de-
sign satisfies the following unique properties: strong binding
between security policies and data, interoperability, porta-
bility, and object security. Protection of encapsulated data
is achieved by provisioning owner-specified security policies
that are tightly bound with the content, and executable
within the SCO. To ensure interoperability, our SCOs are
self-contained, and do not require any dedicated software
to execute, other than the Java running environment. Self-
containment ensures portability, in that SCOs may be moved
and replicated without the need of installing dedicated soft-
ware. To guarantee adaptivity, the policies embedded in
the SCO are sensitive to the location and other contex-
tual dimensions that may affect the enforcement process.
Finally, object security is guaranteed by advanced cryp-
tographic primitives, such as Ciphertext-Policy Attribute-
Based Encryption [2] and Oblivious Hashing for program
tracing [14], combined with extended and advanced object-
oriented coding techniques. We have implemented a running
prototype of the proposed architecture and protocols us-
ing JavaTM-based technologies [11, 21] along with advanced
cryptographic protocols and cross-checking techniques to guar-
antee acceptable trustworthiness of the SCOs. In the paper,
we discuss the results of our experiments on a distributed
system testbed which includes several physical and virtual
nodes installed. Our results demonstrate the resiliency of
our architecture even in case of multiple SCO nodes faults.

The rest of the paper is organized as follows. Next section
provides background notions. Next, in Section 3, we provide
an overview of the notion of SCO. Section 4 discusses the
security policies. Section 5 introduces our synchronization
algorithms. Section 6 discusses the most important prop-
erties achieved by our solution, whereas Section 7 discusses
implementation and security of our solution. Section 8 re-
ports experimental results. Section 9 discusses related work
and Section 10 concludes the paper.

2. CIPHERTEXT-POLICY ATTRIBUTE- BASED
ENCRYPTION

In this section, we briefly discuss the basic cryptographic
protocol underlying our solution. The Ciphertext-Policy
Attribute-Based Encryption (CP-ABE) [2] is a type of public-
key encryption scheme.In the CP-ABE scheme, there exists
a trusted party that generates a public key which can be
used by any entity to encrypt a message irrespective of its
recipients. The message sender encrypts the message using
the public key. A trusted party computes the private key.
Only entities satisfying the rules are able to compute the
private key. The schema includes four phases:

• Setup: The trusted third party takes as input im-
plicit security parameters and outputs the public key
PKABE of ABE protocol and a master key MK. The
master key is only known to the trusted party who
generated it.

Figure 1: Overall Approach

• Encrypt(PK, M, A): The encryption algorithm takes
as input the public key PK, a message M , and an ac-
cess structure A over the universe of desired attributes.
The algorithm encrypts M and produces a ciphertext
M ′ which implicitly contains the access structure A.
M ′ can only be decrypted by the entity which possesses
a set of attributes that satisfy the access structure.

• KeyGen(MK,S): The private key generation algorithm
is carried out by the trusted entity. The algorithm
takes as input the master key MK and a set of at-
tribute values, S on which access control would be
achieved. The outcome of KeyGen(MK,S) is a pri-
vate key SKS .

• Decrypt(M’, SK): The decryption algorithm takes as
input the ciphertext M ′, and the private key SKS .
The output is the original message M .

3. THE SCO-BASED SOLUTION
We illustrate the functionality offered by our policy-protection

framework through a use-case (see Figure 1). We particu-
larly focus on a cloud computing domain, wherein data is
replicated to facilitate users’ access across location. A SCO
is generated by a content originator subscribed to a cloud
provider. The content originator triggers the SCO genera-
tion process as he places sensitive content (e.g. text, video
or image file) on the Cloud Service Provider he is subscribed
to. SCOs may protect files of different kind, including im-
ages, text, and media content.

The originator indicates the file to protect as well as its
security policies (step 1), which are encoded and embedded
in the SCO. Notice that the security policies can include
constructs to specify access control, authentication and us-
age controls. Furthermore, they are enforced according to
contextual criteria defined by the content owners, to ensure,
for example, compliance with location-specific regulations
and policies. In addition to the content owner’s rules, prior
to being signed and sealed, the SCO is loaded with rules
whose enforcement guarantees compliance with security and
data disclosure regulations (e.g. auditing requirements), as
shown in step 3 and 4. The SCO is then stored at a single

366

service provider (SP), and possibly duplicated for greater
dependability and availability. The content stored in each
SCO may be accessed at time by authorized users, SPs for
processing and analysis, and auditors, to meet compliance
requirements. Each time access to the SCO protected con-
tent is attempted, its policy is evaluated according to the
requestor’s credential and location (step 5). If permitted
by the policy, the content is then rendered according to the
granted privilege.

Notice that as SCO instances are accessed, replicated and
moved across different locations, two requirements must be
always addressed: (1) The policy enforced by the SCO must
comply with the legal regulations of the SCO storage loca-
tion. For example, the SCO is stored in a EU server, and
therefore, data disclosure laws apply. (2) Modifications to
the SCO content file must be propagated to all SCO copies,
for obvious consistency reasons. To address the first re-
quirement, the policy in the SCO is organized in rules of
varying priority, and may include specific applicability re-
quirements, defined in terms of pre-defined context-specific
rules. New high-priority rules may be added to the SCO, us-
ing a third-party invocation protocol.To address the second
requirement, the SCO applies a quick synchronization pro-
tocol to all the available copies. The update process entails
a coordinated cooperative protocol among one or multiple
copies of the same SCO and ensures that the most up to
date content version is rendered to the SCO being accessed.

4. POLICIES
We now introduce a simple representation of the security

policies supported by our protection mechanism and their
enforcement process. Our representation allows to enforce
simple access control and usage requirements. The design
of both the language and the resolution algorithm is partly
inspired by the XACML language, which represents the de-
facto standard in terms of access control.

4.1 Policy Specification
We define a security policy as a collection of rules, i.e.

p = {r1, . . . , rn}, n ≥ 1. Each rule controls access and usage
of a given content by a certain user (or collection of users).
It may either target a single content item f (e.g. file) stored
within the SCO, or if the SCO stores multiple content ele-
ments (i.e. files), it may refer to all the files in the SCO. For
simplicity, we assume that the policy rules within a same
SCO are atomic, do not overlap, and do not conflict among
one another.

Definition 4.1 (Policy Rule). A policy rule r is a
tuple 〈s, o, effect:act, cond||Cont〉, where:

• s is the subject element. It can be the name of a
user, or of any collection of users, e.g. subscriber
or Amazon SP2, or a special user collection anyuser
representing all users.
• o is a content item or a set of content items.
• effect:act denotes the effect of the rule in case of

truthful evaluation and impacts the selection of the rule
when multiple rules exist in the same policy. The effect

takes one of the following values:
AbsolutePermit, AbsoluteDeny, FinalPermit. act de-
notes the privilege applied to the content, in terms of
its access and consumption. It is left null in case of
AbsoluteDeny effect.

• cond is an optional element that further refines the ap-
plicability of the rule to the subject in the rule through
the specification of predicates on the subject attributes
(combined with anyuser) and/or the object attributes.
• cont is a set of boolean conjunctive conditions defined

against a set of pre-defined contextual variables.

The context component of our rule model is the key to
support adaptive SCO, as this component specifies the con-
textual conditions controlling the activation of rules in the
security policy. In the current version of the language, we
support two types of contexts: the Environment context,
that depends on the characteristics of the host system, and
the Location context that depends on the subject location.
Each context type consists of a set of pre-defined variables.
Examples include IP address for location conditions, and OS
or System Version for the environment conditions.

4.2 Rules Enforcement Process
The rules enforcement process consists two steps. The first

step identifies a set of applicable rules, as not all rules are
always applicable to all contexts. The second step enforces
the highest priority rule among the set of applicable rules
identified by the first step.
Rules Applicability A rule r in a SCO policy is applicable
to an access request if and only if: (a) the user meets the
subject specification in (r.s); and (b) the user’s and objects
attributes verify true the condition set r.cond, and (c) the
context conditions r.Cont, if present.

To verify the applicability of a given rule, at the time of
an access request, the policy enforcement engine at the SCO
obtains the user credential and verifies its validity. It fur-
ther verifies whether the user attributes satisfy the access
conditions. Next, the SCO collects information required in
order to establish if the context definitions are satisfied. To
achieve this, various actions are undertaken, depending upon
the specific context conditions to be verified. Context primi-
tives deployed within the SCO have direct access to the host
system (e.g. a global clock to check temporal conditions in
the Environment context) or they use metadata carried by
the actions. For example, the location of the SP can be
determined using the IP address. The SCO performs an IP
lookup and uses the range of the IP address to find the most
probable location of the SP, so as to match it against the
location defined in the condition constraint.

Notice that we assume that each SCO copy is always able
to gather the location information (i.e. the IP address and
a free port number) of the machine on which it is running.
This information is needed also to ensure the capability for
a SCO copy to communicate with other copies. Even in an
environment where the applications execution is controlled,
these two pieces of information must always be available.
For this purpose, protected APIs can be used (see Section
7.1), to ensure the correct use of such sensitive information
solely for the purpose of of communications among SCOs. If
other contextual information is necessary for the evaluation
of policy rules is not available to the SCO, the policy rules
will be defined as indeterminate. This will block the use of
the SCO copy for security reasons.
Rule Selection Upon determining the set of applicable rules,
the rule-selection algorithm is executed (see Appendix A for
a detailed flow). By definition, each rule can only have one of
three effects: AbsolutePermit, AbsoluteDeny, FinalPer-

mit.

367

1. An applicable rule whose effect is AbsolutePermit has
the highest priority, that is, access is granted regardless
of the effects of other applicable rules. The motivation
for the AbsolutePermit rule is that access requests
required by law enforcement institutions or national
security agencies should always be able to circumvent
the access restrictions specified by the owner and orga-
nizational policies. We assume that AbsolutePermit

rules are always pre-loaded within the SCO, and de-
fined to meet the regulatory requirements imposed by
countries and jurisdictional locations where the con-
tent may move to. Additional AbsolutePermit rules
may also be dynamically added to the SCO, as it moves
in unforeseen locations. In such case, rules are ob-
tained from a third party (see Section 7.1). The pres-
ence of context in rules with an AbsolutePermit effect
has the ability to confine the geographic locations un-
der which a given regulation is enforced. For example,
the rule 〈anyuser, f1, AbsolutePermit : read,
subject.CountryOfOrigin =′ France′, role = Auditor||
location = France〉 specifies that any French auditor
can read file f1 when the file in located in France.

2. If no AbsolutePermit rule is applicable, the AbsoluteDeny
rules are considered. If one AbsoluteDeny is applica-
ble, access is denied. For example, a rule may specify
that accesses must blocked from certain geographical
areas, considered unsafe or legally prohibited (e.g. for
copyright agreements). An example of rule with such
effect is as follows: 〈anyuser, f1, AbsoluteDeny:
read, subject.location = China||location = China〉.

3. If neither AbsolutePermit rules or AbsoluteDeny rules
are applicable, the most specific applicable rule with a
FinalPermit is evaluated. The effect of such rules is to
represent criteria that are preferred by content owner
and that are to be met in order to obtain access. These
rules may also include context conditions.

4. Finally, if no applicable rule exists, access is denied;
the “deny takes precedence” principle is adopted.

Upon a positive access control decision (i.e. an AbsolutePermit

or an FinalPermit decision) by a rule r, the access is granted
according to the specified action set in r.act. The action set
can vary according to the specific content type hosted within
the SCO. For example, for image files, allowed actions are
view, edit, download.

Architecturally, rules are translated into executable Java
policy files and access structures for encryption (see Sec-
tion 7.1), according to the cryptographic protocol used for
content protection and access. Possibly applicable rules are
pre-loaded in each SCO as it is created, based on the spe-
cific SP’s servers’ locations and anticipated location access.
We assume that rules with a FinalPermit effect entered
by the content originator do not change, but additional
AbsolutePermit and AbsoluteDeny rules may need to be
added to the SCO as it is accessed from unknown locations
whereby AbsolutePermit and AbsoluteDeny rules are appli-
cable.

5. SYNCHRONIZATION AND VERSIONING
SCOs may be replicated for a number of reasons, including

workload distribution, disaster recovery, efficiency. Given
the unique nature of SCOs, as SCO copies are generated,

it is crucial to guarantee that the same policies and usage
conditions apply for the object replica.

By replicating a SCO, a network of SCOs is inherently
created (referred to as SCON), whereby nodes are SCO
copies and edges their connections. To ensure consistency
and proper policy enforcement, a distributed synchroniza-
tion mechanism is to be deployed. The synchronization
mechanism should be scalable, and incur in a low-traffic
network overhead. A simple coverage algorithm can syn-
chronize the content of all the SCON nodes upon change.
However, if the number of nodes in the SCON increases dras-
tically, the synchronization may incur in poor performance.
Conversely, a fully centralized system may not scale effec-
tively, if SCOs are spread across different locations. There-
fore, we need an efficient structure to guarantee full synchro-
nization of the SCO copies while at the same time reducing
the number of messages exchanged among copies. Our solu-
tion lies in the notion of SCON View, representing an elastic
view V of nodes in the SCON. Nodes in V are SCOs, and
are referred to as Master nodes, in that they are always syn-
chronized. The remaining nodes in the network are Slave
nodes and are instead synchronized only after contacting a
Master node.

5.1 SCO Network Creation
Starting from the generic SCON of identical copies, we

build a network’s view as the basis for our synchronization
protocol. First, notice that SCOs keep track of how many
copies exist in the SCON, by maintaining a shared counter
of the known SCO copies in a local and encrypted registry
Network Management Information (NMI), which is updated
each time a new copy is created and later synchronized. To
build the network, we apply the following procedure. As
mentioned, each SCO can either be a Slave node or a Mas-
ter node. At the time of creation of the SCO, the first α of
its identical SCO copies are by default Master nodes. Start-
ing from the α+1th copy, the subsequently generated copies
will be Slave nodes up until the ωα threshold is reached. For
example, let α be equal to 5, and assume that 6 copies of
the same SCO exist. Let ω be equal to 2. Regardless of
the actual synchronization mechanism, copies from 1 to 5
are synchronized at each change, as they are Master copies,
while the copy number 6 in order to be synchronized must
communicate with one of the Master copies. As the number
of SCO copies grows we continue to maintain an acceptable
ratio between overall SCO copies and Master copies, in or-
der to ensure good performance of the synchronization sys-
tem. Suppose that we need α Master copies every ωα SCO
copies. Let n be the current total number of SCO copies.
Let the nodes be sorted by the time of creation, by means
of a timestamp. Upon creating a new instance of the SCO,
the following node-ratio rule applies:{

k(ωα) ≤ n ≤ k(ωα) + α nth node is Master

k(ωα) + α < n < k(ωα) + ωα nth node is Slave

(1)
k represents the Master/Slave ratio according to the nodes’

number. It is incremented each time n = k(ωα)+ωα. Upon
generating a SCO instance, its connection to existing SCOs
are to be established. SCO Masters and Slaves each main-
tain information about some of the nodes in the SCON. Pre-
cisely, each time a Master is generated, it stores its current
local position (IP and port number) and uses the originally

368

available position and port number to connect with its orig-
inal version. As the new copy informs its parent node, the
SCO updates its NMI registry by adding a new record, up
until a set threshold of known copies, discussed next. It then
propagates the information to the Master nodes merging the
list with the new records stored at each Master. Until there
are less than ωα Master nodes in the SCON, all nodes are
completely connected. From the α + 1 Master, each node,
whether Master or Slave, must be connected to Master nodes
with a degree γ.

Definition 5.1 (Nodes Connectivity). Let N be the
set of copies of a same SCO, distributed across multiple SPs.
Let M be the set of Master nodes such that M ⊆ N and
e = (n, n′) be a connection between two nodes. For each
node n ∈ N the following rule applies:{
∃e = (n, ni)∀n, ni ∈ N |N | ≤ α
∃e1, . . . , eγ , ei = (n, ni) ∧ ni ∈M,∀i ∈ [1, γ] |N | > α

By satisfying this simple rule, our system is robust against
γ−1 simultaneous faults of Master nodes. In other words, if
we set γ = 3 and two simultaneous Master nodes faults oc-
cur during synchronization, no Master node will be isolated
in the SCON. Further, any Slave node will still be able to
synchronize by querying the surviving Master node. If a
Master is determined to be faulty, the other Master nodes
will update their connections in order to meet again the con-
nectivity rule. If the failed Master node recovers, it is then
treated like a new node, and it will be a Master or a Slave
following the rule of Eq. 1.

Example 5.1. Assume: ω = 2, α = 5, γ = 3. An exam-
ple of SCON with n = 8 is shown in Figure 2 (top). By
deleting any γ − 1 nodes together with their connections, all
the remaining nodes in the graph SCON are still connected,
satisfying the connectivity rule. Hence, erasing 2 Master
nodes (or two connections) leaves the network connected.

Each connection also has a communication cost φ, estimated
by the SCOs by computing the distance with the other con-
nected SCO (through IP lookup). The actual value of γ, as
well as α and ω can be set empirically. As we show in our
experimental evaluation, changes in these parameters only
slightly affect the performance of the overall system.
We are now ready to define the SCON. The algorithm for
the SCON construction is reported in Appendix A.

Definition 5.2 (SCO Network). G = (N,E,W) is
called SCO network (SCON), with N the set of nodes and
E the set of arcs, such that the elements of E are pairs of
elements of N (|E| ⊆ |N |2); and W : E × Φ → w ∈ <+

is the edge labeling function. W maps the communication
cost φ to an edge weight w. Each node n ∈ V is an in-
stance of a SCO, which is abstracted by a tuple of n =<
nID,m,NMI, l, CS >. Where nID is the id, m ∈ {M,S}
indicates where the node is a Slave or a Master, NMI is
the information needed for network management. Finally, l
is the current location (IP, port) of the node, and CS repre-
sents the SCO content, i.e. the protected content and policies
included in the SCO. G satisfies the following properties:

• The CS component is identical upon synchronization
across all nodes in N .

• ∀n ∈ N, m = M (n is a Master) or m = S (n is a
slave), according to the node-ratio rule of Equation (1)

• ∀ n ∈ N satisfies the connectivity rule of Def. 5.1.

• ∀ eij ,∈ E exists a corresponding weight wij according
to the weight function W .

We denote the components of nodes using the dot nota-
tion.

The cost of traversing the SCON is Θ(SCON) =
∑|E|
i=0W (ei,Φi) =∑|E|

i=0 wi. For example, W may assign weights according to
the following mapping. Let ei,j = (ni, nj) be the edge link-
ing ni, nj . Let l.IP denote the machine’s IP address.

wij =

0 ni.m = S ∧ nj .m = M

1 ni.m, nj .m = M ∧ nj .l.IP = ni.l.IP

2 ni.m, nj .m = M ∧ nj .l.IP 6= ni.l.IP

(2)

As we discuss next, the weight of each edge is used by the
synchronization algorithm for optimization purposes.

5.2 Synchronization Algorithms
The synchronization process varies depending on whether

the node to be synchronized is a Master or a Slave. It entails
a collaborative protocol among Master nodes while it is a 2-
party protocol for SCO slaves.
Master Synchronization: The Master node synchroniza-
tion process is triggered upon receiving an update to the
content or to the policy rules of one of its SCOs, or when new
network management information is to be exchanged (e.g. a
new Master is added). The update is a collaborative process
that maps to the problem of finding the minimum spanning
tree (MST) of the SCON View. For this purpose, we adopt
a parallel search algorithm [7]. The nodes obey the same
algorithm and exchange update messages with neighbors un-
til the MST is constructed, traversing low-cost connections
first. The algorithm determines fragments of the MST and
connects them progressively, until one MST if found. At the
end of the algorithm execution, each node knows its prece-
dent and successor in the MST, and therefore it is able to
pass updates along. The algorithm reaches the optimal so-
lution with a complexity of O(

√
N log∗N), where N is the

number of nodes.

Example 5.2. In our example, assume that the updated
Master node is the node with number 5 and that the weights
of the arcs are assigned according to the rule of Equation 2.
Figure 2 shows one possible construction of the MST.

Slave Node Synchronization: Synchronization can occur
in two directions: from a Slave node to a Master node and
vice versa. In the first case, the Slave node contacts the
Master node to communicate the changes occurred at the
Slave’s content or its policy rules (by an authorized user),
so as to allow the Master node to propagate the update
among the nodes of the view V . In the second case, a Slave
node needs to check for updates within the view V of Master
nodes to update its local Content Section. This second type
of synchronization can occur either periodically, or at each
access, to ensure a tighter control. When synchronization
is requested, the Slave node connects to any of the Master
nodes among the set of adjacent-known Master nodes. The
choice of such Master node is random, so as to ensure a fair
distribution of workload on Master nodes. We now elaborate
on the synchronization processes for the two directions.
Slave Update: As a Slave obtains an access request from
a third party it may contact a Master node to check for

369

Figure 2: The two steps of synchronization: MST
construction and updates.

updates in the SCON. Upon opening a secure connection,
the Slave sends the digest of its current CS, so as to allow the
Master to check if the received digest matches the current
digest within its CS. If the two digests are the same, the
update will not be necessary. Otherwise, the SCO Slave
obtains the new CS and NMI. The redeployment aspects of
the SCO are discussed in Sec. 7.1.
Master Update: When a Slave node contacts a Master to
send an updated version of the managed content, the Slave
node sends to the Master the SCO updated content or net-
work information (denoted as CS and NMI respectively in
Def. 5.2). We notice that this case presents an interesting
transaction aspect: if two content files on SCO instances
were updated simultaneously, multiple inconsistent versions
of the same SCO may exist. To address this issue, two alter-
native solutions are possible. The Master node may apply
one of the following two strategies (according to its con-
figuration): (1) If one of the SCO instances was modified
under an AbsolutePermit rule, it is used for propagation.
Other conflicting copies are detached, that is they are han-
dled as independent SCO objects, unrelated from the SCON.
(2) Locking mechanisms may be enforced [15], which block
multiple accesses in write mode at the same time.

6. PROPERTIES
We briefly discuss relevant properties of our solution, re-

lated to correctness, robustness, and consistency.

Property 6.1 (Enforcement Correctness). Given
a SCO, if a rule with AbsolutePermit or AbsoluteDeny is
applicable to a request q, it is always enforced.

This property is guaranteed by the combined effect of the
enforcement algorithm and of the synchronization process.
The enforcement algorithm guarantees that rules with Abso-

lutePermit and AbsoluteDeny effects are given highest pri-
ority. If the rule is not local to the SCO, the synchronization
process guarantees that the applicable rule is passed along
to the SCO.
Robustness here refers to the ability of the SCO to withstand
crashes of one or multiple machines hosting SCOs.

Figure 3: SCO Architecture

Property 6.2 (Robustness). The SCON is resilient
to up to γ − 1 multiple Master nodes failure.

This property is the result of the connectivity rule (see
Definition 3). Each node, whether Master or Slave, will
always be connected to at least γ Masters, and therefore
resistant to up to γ − 1 simultaneous failures. Consistency
of SCON is defined as follows.

Definition 6.1 (SCON Consistency). Let SCON be
the SCO Network constructed according to Definition 5.2.
The set of SCON is in a consistent state if and only if: 1)
each Master node carries the most up to date content and
policy version; 2) upon an access request q, each Slave node
enforces the highest priority policies rule that applies to q.

Property 6.3 (Consistency). The SCON satisfies the
consistency definition.

This property can be demonstrated by analyzing the SCON,
and the guarantees provided by the synchronization algo-
rithms. Precisely, the requirement (a) of Def. 6.1 is sat-
isfied by construction of the SCON. The SCON defines a
set of connected masters (see Algorithm in Appendix A),
whereas the synchronization process ensures that each Mas-
ter is timely informed about the latest version of the SCO’s
content. Condition (b) is a consequence of the enforcement
correctness property (Property 1): every SCO applies the
policy enforcement algorithm, which selects the highest pri-
ority rule.

7. ARCHITECTURE
We now present the implementation details of the SCO

architecture, along with a discussion on the SCO security.

7.1 Implementation of SCO
Each SCO is constructed and accessed using several cryp-

tographic keys. One key set is used for encryption and de-
cryption of sensitive content using the Cyphertext-Policy
Based Attribute scheme (CP-ABE) [2], whereas the second
key pair is associated with the owners’ identity, and is used
for signature purposes. Further, some of the low sensitive
information, such as the SCON information uses a SCO spe-
cific key shared among the SCO copies.
Core Components: Architecturally, the SCO includes two
components and the Network Management Information (NMI),

370

all wrapped into an external JAR (see Figure 6). The first
component, referred to as Application Section, is a set of
unmodifiable software modules, signed and sealed to ensure
integrity of the application. The Application Section is itself
deployed in a nested JAR. The second component, referred
to as Content Section, stores the protected content items,
the Java policy file that records the policies implementing
the security rules. This section and the NMI represent the
dynamic part of the SCO and is modified upon updates.
Since the Content Section stores confidential data, a signed
digest of the content and of the Java policy file is added
at each update, using the key of the user committing the
update. The NMI, instead, stores the shared counter and
the address known neighbors. NMI is also encrypted using
the SCO specific key. The Application Section is further
organized into four components: Authentication and Ac-
cess Control Component (AAC), Action Control Component
(ACC), Content Protection Component (CPC), and Syn-
chronization Component (SYC). The AAC implements the
authentication and authorization mechanisms, by exploiting
the services offered by Java Authentication and Authoriza-
tion Services (JAAS) [11] and Security Manager. By means
of JAAS primitives, the SCO accepts X.509 certificates1.
The ACC implements mechanisms for managing access to
protected content, according to the outcome of the authen-
tication and authorization process. This component accesses
the Java policy file, which dictates what portions of the code
to execute upon verification of identities and of authoriza-
tion. The ACC also deals with the NMI. The CPC manages
the protected content stored in the Content Section, as well
as the protocols to re-deploy the new Content Section upon
updates. Content encryption and access control enforcement
are integrated by the use of the CP-ABE scheme [2].
Policies Implementation: The security policies are trans-
lated into Java policies (stored into the Java policy file) and
access structures that are the input for CP-ABE encryption.
CP-ABE supports the notion of attribute-based policies as
a criteria for encryption and it is complementary to the Java
policy. The access structures are embedded as part of the
encrypted content, as by the CP-ABE construction, and
therefore not separately stored. These keys are known to
the owners and the certification authorities only, and always
extracted by valid certificates used for authentication. Con-
versely, the Java policy file is stored in the Content Section.
Each Java Policy specifies which party can access a specific
resource (code, file) and how, while which subject is enti-
tled to decrypt -and therefore view- the protected content
is addressed by means of the CP-ABE boolean access struc-
ture entries. Content is encrypted using the Encrypt(PK,
T, f) primitive, where T is the access structure representing
the attribute-based conditions (in terms of conjunctions and
disjunctions) and f is the file being encrypted, while PK is
the encryption key of the owner. We assume that CP-ABE
keys are managed by the certificate authorities issuing the
attribute certificates used for attributes verification.
Copy management: Copy management and communi-
cation protocols are managed by the SYC component.The
SYC handles secure communication protocols and traces the
copies, to support secure versioning. It is organized into two
sub-components: the Connection Manager and the Synch
Tools. The Connection Manager handles all processes for

1The SCO may be configured to interpret any other authen-
tication token - such as XACML, SAML, X.509.

creating a connection to another SCO copy or accepting a
connection request sent by another SCO copy, besides imple-
menting the Challenge-Handshake Authentication Protocol.
The Synch Tools implement all the mechanisms for synchro-
nization between copies, whether Masters or Slaves. Both
components ensure secure connections through SSL.
Context Retrieval for policy evaluation Every time the
SCO moves in a new location (geographical or cyber), con-
textual information is used in order to verify if new secure
policy rules apply to the specific location of consumption.
To guarantee this high level of adaptivity, the system must
be able to retrieve, at any single access attempt, all the in-
formation needed to define the current context, both in term
of time and physical and/or cyber space. Geographical in-
formation is generated by the GeoIP service [8] that uses as
input only the IP address of the machine hosting the SCO.
Temporal information (i.e. 10:11 AM Tuesday, March 06,
2012, Eastern Standard Time (EST) -05.00 UTC) is gener-
ated by using the WorldTimeServer service [8] that uses as
input the current geographical location of the SCO.
Depending on where and how the SCO is accessed, obtain-
ing this information may require different approaches. For
example, data stored on cloud service providers can be ac-
cessed in two different ways, as simple documents stored in
a virtual drive (for example by using Amazon Cloud Drive,
Dropbox, or Windows Live Sky Drive), or as application
data accessible by applications built and hosted on the SP
(for example data stored in Amazon S3 used by application
hosted in Amazon EC2). These two ways of data consump-
tion are substantially different. In the case of virtual drives,
a copy of the SCO is downloaded from the virtual space on
the user’s machine. The context information is retrieved di-
rectly by the SCO that wraps the content, running on the
local machine, by exploiting the Global Services [8].
In case an application accesses data stored by the provider
(e.g. an application built on Amazon EC2 accesses data
stored on Amazon S3), the context information must be
provided by the provider hosting the data and the appli-
cation. The SP generates and makes available a context file,
using the provider’s APIs. The context file includes the cur-
rent time and geographical location of consumption, and an
identifier of the Cyber Location (e.g., Windows Azure Do-
main) where the information was captured. If the SCO is
located on a public domain or on a public network, location
and temporal information are retrieved by the SCO through
the context information file. We provide a concrete example
in the context of Amazon Web Services APIs in the code
snippet below.
AmazonS3 s3 = new AmazonS3Client(new PropertiesCre-

dentials(S3Sample.class.getResourceAsStream

("AwsCredentials.properties")));

s3.createBucket(bucketName);

s3.putObject(new PutObjectRequest(bucketName, key, SCO));

S3Object object = s3.getObject(new

GetObjectRequest(bucketName, key));

AmazonEC2 ec2 = new AmazonEC2Client(credentials);

AllocateAddressResult aar = ec2.allocateAddress();

aar.getPublicIP();

The example shows how to store the SCO in the Ama-
zonS3 storage service, and retrieve the content from the
SCO using Amazon EC2. The AmazonEC2 instance can
retrieve the information needed to create the current con-
text of data consumption and create the context file. The

371

actual location is defined by the public IP address (retrieved
by the allocateAddress() function), where the AmazonEC2
instance is actually running. The same approach could be
adopted by other Cloud providers, like Windows Azure or
Rackspace.
If it is not possible to retrieve all the information needed
to define the current context, the context will be defined as
indeterminate. This will render the SCO not accessible.

Adaptiveness: If the policy enforcement mechanism de-
termines the lack of a rule applicable to the current context,
the SCO before enforcing the FinalPermit rules forwards
a policy request to retrieve high-priority rules applicable to
the current context, if any. We assume that a trusted au-
thority (CA) managed by the SP is responsible collecting
contextual policies that implement local laws or regulations.
Thus, the SP updates the SCO policy rules, whenever the
SCO is in an unknown and unexpected context. The execu-
tion flow is as follows. The SCO sends a request to the CA,
through an encrypted channel requesting for high priority
rules. The CA after having verified the request’s authentic-
ity, determines whether any policy rules applicable to the
context specified by the SCO exist. If some policy rules
are found, the CA executes the policies translation and re-
defines a new Content Section with a new encrypted content
and a Java policy (without modifying the location informa-
tion). The CA calculates the new digest and signs it with
its private key, to ensure integrity. Once the new content
section is ready, the CA sends it to the SCO that replaces
its current content section and activates the synchronization
process, to disseminate the newly acquired rules. If no pol-
icy rule referred to the specified context is found by the CA
in its policy rules set, the CA returns no output, and the
FinalPermit rule is applied.

7.2 Security Features
We discuss possible attacks to our SCO-based framework.

We assume that a content originator does not release sen-
sitive information to unauthorized parties, and secret keys
used for signature generation and content encryption are
kept secret. Conversely, an attacker may try to access in-
formation directly from the SCO that is disseminated in the
network or try to disassemble the SCO to gain access to the
protected content. We only consider attacks to the SCOs.
Attacks attempting to exploit the communication between
SCO are prevented by means of encrypted authenticated ses-
sions and use of challenge response protocols.
Disassembling and Reverse Engineering: By disas-
sembling the SCO outer JAR, an attacker will be able to
get the internal elements of a SCO. The disassembled Core
JAR will show the attacker all .class files. The class files
once extracted can easily be decompiled into the original
source code using Java decompiler tools. To mitigate this
risk, we adopt Java-specific obfuscation techniques, which
leverage polymorphism and exception mechanism to drasti-
cally reduce the precision of points-to-point analysis of the
programs [17]. Regarding the Application Section, the at-
tacker cannot change the content after disassembling the
Section, nor can he reassemble it with modified classes, files,
or packages, because of the protection offered by the JAR
seal and signature techniques. As a result of the disassem-
bling, no sensitive information can be obtained from reverse
engineering since this information is not within the code but
is retrieved by the originator’s certificate, at the SCO execu-

tion time. The attributes and keys used for decrypting the
content under the CP-ABE scheme are never stored, but re-
trieved when needed. Instead, in the Content Section the
Java Policy file is encrypted using the RSA encryption algo-
rithm with the owner’s secret key of 2048 bits, and therefore
resistant against brute force attacks. Even if the attacker ob-
tains the decryption key used to read the Java Policy file,
it will never be able to alter the content, if the CP-ABE
key used for content encryption remains secret. CP-ABE is
by construction resistant to collusion and chosen plaintext
attacks. The only possibly useful information stored in the
Application Section is the key encrypting the NMI. Since we
rely on advanced obfuscation techniques and store the key
in randomized fashion, it is hard to retrieve it. Even in case
the key is obtained, the attacker only learns the connections
of the SCO and the size of the SCON.
Security Policy modification: A malicious user might
attempt to tamper with the SCO in order to change the
security policy and gain access to protected content. Our
architecture leverages the properties of the CP-ABE encryp-
tion schema rendering this attack not feasible. In the CP-
ABE the access permission policy is directly and implicitly
contained within the protected content. There is no actual
policy file that an attacker can modify to change the access
decision. Even if the attacker decrypts and reads the Java
Policy file, the file does not provide information about the
actual authorization and privileges in terms of content ac-
cess. A user will be able to decrypt the protected content
only if her attributes satisfy the attribute-based policy used
for content encryption. A malicious user could overcome
this control by trying to build a set of attributes to satisfy
the access structure for the encrypted content. Such attack
would fail during the authentication phase, in that the at-
tacker would need to provide a valid certificate with those
attributes, for which he would need the CP-ABE master key
stored at the authority.
Unauthorized copy of protected content: A malicious
user with right to access the encrypted protected content can
generate another possible attack. Once the user is granted
access to the protected content, the user attempts to copy it,
and save it in a decrypted form in order to allow unautho-
rized users to read the content. We mitigate this attack by
decrypting the content always on the fly and transferring it
directly to the content rendering application, therefore pre-
venting the attacker from intercepting temporary files. The
content rendering application (such as the Java application
window) is then in charge of securely rendering the content.
Bypassing Authentication: An attacker could try to by-
pass the authentication process and try to directly access the
protected content. A way for the attacker to do so is to mod-
ify the code within the Application Section. This approach
would not work since both the digital signature and the seal-
ing guarantee the JAR file integrity. This ensures that the
code within classes and packages cannot be changed. Alter-
natively, the attacker may try to change the behavior of our
application. The attacker can try to exploit malicious exter-
nal code, able to communicate with our internal code, thus
altering the proper functioning of the application. For exam-
ple, an attacker could insert malicious code and bypass the
authentication step so to jump directly to a different point
of the execution. To solve this problem, we exploit program
tracing techniques [14], by inserting in the application code
a set of checkpoints. Each checkpoint controls the current

372

Figure 4: (a) Synchronization for networks of increasing size and γ, (b) Synchronization for networks of same
size and different γ (c) Robustness of SCON

value of a set of global oblivious hash variables whose value
is continuously changed during the application execution us-
ing the oblivious hash technique. During the execution each
checkpoint controls the value contained in these hash vari-
ables. If the value of a hash variable is different from what it
would be obtained from a proper code execution, the check-
point fails and the application is forced to end. This tech-
nique allows us to force a particular sequence of instruction
execution within methods, and a certain sequence of method
calls within a class or between classes. An attacker cannot
eliminate the checkpoints used for program tracing because
these checkpoints are directly inserted in the signed code.
Any such change would be detected by the verification of
the code signature.
Java Corruption: Undoubtedly, the most challenging at-
tack to our architecture is corruption through compromised
Java environments. With a corrupted Java Running En-
vironment (JRE) the attacker may overcome all the Java-
based security controls (signature, sealing, authentication).
Hence, the attacker may authenticate, read and modify the
JAR. However, unless the attacker has a valid cryptographic
key, the attacker cannot access the content or the policy.
Henceforth, while the synchronization mechanism may fail,
the confidentiality and integrity of the content are guaran-
teed, since the keys are never stored in the application. To
quickly detect a corrupted JRE we tie together various con-
trol mechanisms, and continually do crosschecks and stop
any execution as soon as any crosscheck fails. These checks
include integrity checks on the system environment, vali-
dating manifest of sensitive directories, validating the run-
time JAR, and checking that the extended Policy Manager
is operating. These system integrity checks are repeated
more times during the execution of the application, before
critical points. Examples of critical points are: permis-
sion check, policy enforcement, protected content encryp-
tion/decryption, and creation of secure connections between
SCOs. A stronger solution consists of deploying a Java Se-
curity Extension for the JRE, that provides assurance of
correct system operation and integrity even in presence of
successful attacks on the underlying operating system. The
primary objective of this security extension is improving the
level of the operational integrity of the Java application.
This approach, originally proposed by Wheeler [24] consists
of extensions to the Java 2 security system. The JRE ex-
tended components can be directly contained in our SCO,
and ready to be loaded at each execution. The SCO will run
only if all the extended components are properly loaded, to

ensure proper functioning of all the Java security services.
More details are reported in the Appendix.

8. EXPERIMENTAL EVALUATION
We tested our framework on the Emulab testbed. The test

environment consists of several OpenSSL-enabled servers:
one head node which is the certificate authority, and several
computing nodes. Each of the servers is installed with the
Eucalyptus middleware [6]. We used Linux-based servers
running Fedora5 OS. Each server has a a 64-bit Intel Quad
Core Xeon E5530 processor, 4 GB RAM, and a 500 GB
Hard Drive, and is equipped to run the JRE 6. We con-
ducted several tests to evaluate the performance of the two
key operations supported by our framework: (1) node syn-
chronization; (2) Content Section update.

Concerning the synchronization algorithms, we tested the
overall time required to complete synchronization processes.
We considered networks of Master nodes only. As shown in
Figure 4(a), we varied the number of Master nodes from 5
to 50. We run two tests, with SCON of γ equal to 3 and
5, respectively. With a higher connectivity (γ = 5) the syn-
chronization is consistently faster, for every SCON size. We
notice that even if the synchronization times for 50 Master
nodes appear relatively high, this synchronization may help
to quickly update several hundreds nodes. For example, we
estimated that 50 Master nodes with γ = 3 may tolerate
about 400 Slave nodes. To obtain such estimate, in a sep-
arate test we measured the time for synchronizing a Slave
node by obtaining the Content Section from a Master node.
The overall synchronization time consists of: (1) the connec-
tion and authentication time; and (2) the Content Section
update time. Using a file of average size 20Mb, and a connec-
tion with a speed of 100Mb/sec the overall synchronization
time is 240 ms. This implies that even in absence of paral-
lelization, a Slave node may have to wait up to 240ms to be
updated. Within 2 seconds, each Master node can serve 8
Slave nodes for a total of 400 Slave nodes.
Next, to better investigate how to reduce the synchroniza-
tion time, we tested the effect of the Master nodes degree, γ.
We tested the synchronization times for values of γ ranging
from 1 to 10. We repeated these tests for different net-
work sizes. As reported in Figure 4 (b), the overall trend
is the same: the times for synchronization drop drastically
after a certain value of γ. For values higher than such op-
timal value, the times remain seemingly constant. The op-

timal value appears to be approximately at γ = |M|
10

, where
|M | is the Masters’ cardinality. Based on these two exper-
iments, we conclude that efficient synchronizations can be

373

achieved with acceptable tolerance without requiring highly
connected networks. Additionally, we tested the synchro-
nization time in case of failed nodes. The results are re-
ported in Figure 4 (c). The test considers a SCON with 30
Master nodes, and γ = 8. Each test considers an increasing
number of failed nodes from 1 to all but one (7). Clearly,
the times increase significantly, due to the time spent by a
node waiting for the response. Yet, the synchronization can
be completed within 150 sec.
To evaluate content update times, we tracked the time re-
quired for constructing a new Content Section (see Sect. 7).
For a file of size equal to 1.2 MB, the overall update time is
equal to 850ms. Most of the update time is due to the cryp-
tographic operations. Encryption time under CP-ABE is
proportional to the complexity of the policy. For this exper-
iment, we considered an access tree with 20 leaves, resulting
in a content encryption time of 640ms. Our experiments
with files of different size reflect the complexity of the origi-
nal CP-ABE protocol [2]. The other operations required to
complete the update, i.e. content replacement, digest cre-
ation signature are in the order of few milliseconds, with the
exception of the digest creation time, which takes 160ms.
Finally, we tested the overall size of the SCO. The Applica-
tion Section is fixed, and it has a size of 350 KB. The Con-
tent Section includes one Java Policy file, which is about 5
KB and the content. This Policy file size changes slightly
depending upon the number of grant and deny in the Java
policy. The NMI is also small, < 20KB and its size depends
on γ (# of known Master nodes). The size of the protected
content file is to be added also. With the encryption, the
NMI and Content Section files increase of a few bytes.

9. RELATED WORK
Access control [22,25] and data management outsourcing

techniques targeting the cloud have been recently proposed
[1, 13, 18]. Further, cloud-specific cryptographic-based ap-
proaches for ensuring remote data integrity have been de-
veloped [23]. Ateniese et al. [1] proposed the Provable Data
Possession model for ensuring possession of files on untrusted
storages, as well as a publicly verifiable version, which allows
anyone to challenge the server for data possession [5]. These
schemes are effective with static data, but are not suitable
for dynamic scenarios where data may change and be used
within and outside the cloud domain. Subsequently, Wang
and et al. [23] proposed a data outsourcing protocol specific
to the cloud. Wang’s work is focused on auditing of stored
data from trusted parties, and does not deal with access
policies, nor does it provide aspects of data management.
The notion of SCO is corroborated by previous projects [10,
16] and our own results [20]. Our approaches are closely re-
lated to self-defending objects (SDO) [10] and self-protecting
objects. SDOs are Java-based solutions for persistent pro-
tection to certain objects. SPOs are software components
hosted in federated databases. The objective of SDOs is to
ensure that all the policies related to any given object are en-
forced irrespective of which distributed database the object
has been migrated to. SDOs depend on a Trusted Com-
mon Core for authentication and authorization, and there-
fore are not applicable in distributed systems. In fact, the
realm of application of both SDOs and SPOs is restricted to
centrally controlled systems that support trusted cores and
federations. As a result, adaptiveness, synchronization and
versioning issues are not considered. Related to the idea of

self-protecting data is also the work on sticky polices [16]
that focuses on portability of disclosure policies by means
of declarative policies tightly coupled to sensitive data by
means of cryptographic algorithms. However, these policies
are designed for federated organizations, and therefore lack
adaptiveness to the domain of application.
Furthermore, enterprise Java Beans (EJB), Microsoft’s Com-
ponent Object Model (COM), and the Common Object Re-
quest Broker Architecture (CORBA) are all object-oriented
frameworks for building three-tiered applications. While
they differ in design and exact functionality, all are based
on distributed objects, location transparency, declarative
transaction processing, and integrated security. They share
SCO’s goals of offering object-oriented technologies to fa-
cilitate distributed transactions and programming in dis-
tributed systems, but target trusted enterprises. Similarly,
Orleans [3] offers a software framework focusing on synchro-
nization of distributed programming objects and recovery on
the cloud. Despite these similarities it fundamentally differs
from our approach in that it focuses on programming envi-
ronments and does not involve any protection of the objects,
nor it is concerned about controlling accesses or usage.
Distributed synchronization protocols have also been widely
investigated in the past [15]. However, these protocols are
based on the use of software agents external to the objects
(e.g. a lock manager), whereas in our case the SCO encap-
sulates all the software needed for an update and only the
availability of a Java environment is required. Also those
protocols do not include any protection mechanism for the
object, nor do they support policies based on contexts or
other properties of the access requestor. Yet, implementing
a locking mechanism for our SCO-based architecture is part
of our future work.
Other well-known cryptographic primitives have been de-
veloped not only to protect remote data from attacks to
confidentiality and integrity, but also to support condition
evaluation on encrypted data [12,19]. These approaches may
be suitable for secure content rendering from the SCO, but
are complementary to our architecture, in that they address
confidentiality, rather than distributed management.

10. CONCLUSION
We presented an approach for secure and distributed data

management. The idea behind our solution is to protect the
data by means of wrappers applied to the targeted content
file(s) which protect the content as it travels across domains
by locally enforcing security policies. The policies may be
dynamic, and adapt to the location and other contextual
dimensions. We plan to further develop the policy language
and support more articulated contexts. We will also inves-
tigate how to support distributed locking systems.

11. ACKNOWLEDGEMENT
Portion of the work from Dr. Squicciarini was funded by

the National Science Foundation under Award #1250319
“Collaborative Research: Brokerage Services for the Next
Generation Cloud”. Portions of the work from Dr. Bertino
was funded by National Science Foundation under Award #
1111512 “Privacy-Enhanced Secure Data Provenance”.

374

[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring,
L. Kissner, Z. Peterson, and D. Song. Provable data
possession at untrusted stores. In ACM conference on
Computer and Communications Security, pages
598–609, 2007.

[2] J. Bethencourt, A. Sahai, and B. Waters.
Ciphertext-policy attribute-based encryption. In 2007
IEEE Symposium on Security and Privacy, SP ’07,
pages 321–334, Washington, DC, USA, 2007.

[3] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya,
and J. Thelin. Orleans: cloud computing for everyone.
In Proceedings of the 2nd ACM Symposium on Cloud
Computing, SOCC ’11, pages 16:1–16:14, New York,
NY, USA, 2011. ACM.

[4] R. Crozer. Mr rental trials azure as telstra cloud
redundancy.
http://www.itnews.com.au/News/306871,mr-rental-
trials-azure-as-telstra-cloud-redundancy.aspx.

[5] R. Curtmola, O. Khan, R. Burns, and G. Ateniese.
MR-PDP: Multiple-replica provable data possession.
In The 28th International Conference on Distributed
Computing Systems, pages 411 –420, June 2008.

[6] Eucalyptus Systems. http://www.eucalyptus.com/.

[7] R. G. Gallager, P. A. Humblet, and P. M. Spira. A
distributed algorithm for minimum-weight spanning
trees. ACM Trans. Program. Lang. Syst., 5:66–77,
January 1983.

[8] GeoIP Web Service.
http://www.webservicex.net/geoipservice.asmx.

[9] Gordon’s Notes. Reliability and the cloud -
redundancy required.
http://notes.kateva.org/2011/05/reliability-and-cloud-
redundancy.html.

[10] J. W. Holford, W. J. Caelli, and A. W. Rhodes. Using
self-defending objects to develop security aware
applications in java. In 27th Australasian conference
on Computer science - Volume 26, ACSC ’04, pages
341–349, Darlinghurst, Australia, Australia, 2004.

[11] Java Authentication and Authorization Services.
http://java.sun.com/products/archive/jaas/.

[12] J. Katz, A. Sahai, and B. Waters. Predicate
encryption supporting disjunctions, polynomial
equations, and inner products. In 27th annual
international conference on Advances in cryptology,
pages 146–162, Berlin, Heidelberg, 2008.
Springer-Verlag.

[13] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and
M. Isard. A cooperative internet backup scheme. In
USENIX Annual Technical Conference, pages 29–41,
2003.

[14] D. Liu and S. Xu. MuTT: A Multi-Threaded Tracer
for Java Programs. In 8th IEEE/ACIS International
Conference on Computer and Information Science,
pages 949–954, 2009.

[15] M. T. Ozsu and P. Valduriez. Principles of Distributed
Database Systems, 2/E. Prentice Hall, 1999.

[16] H. C. Pöhls. Verifiable and revocable expression of
consent to processing of aggregated personal data. In
International Conference on Information and
Communications Security (ICICS), pages 279–293,
2008.

[17] Y. Sakabe, M. Soshi, and A. Miyaji. Java obfuscation
with a theoretical basis for building secure mobile
agents. In A. Lioy and D. Mazzocchi, editors,
Communications and Multimedia Security. Advanced
Techniques for Network and Data Protection, volume
2828 of Lecture Notes in Computer Science, pages
89–103. 2003.

[18] T. J. E. Schwarz and E. L. Miller. Store, forget, and
check: Using algebraic signatures to check remotely
administered storage. In IEEE International
Conference on Distributed Systems, page 12, 2006.

[19] N. Smart and F. Vercauteren. Fully Homomorphic
Encryption with Relatively Small Key and Ciphertext
Sizes. In Public Key Cryptography â PKC 2010,
volume 6056 of Lecture Notes in Computer Science,
pages 420–443. 2010.

[20] A. Squicciarini, G. Petracca, and E. Bertino. Adaptive
data management for self-protecting objects in cloud
computing systems. In The International Conference
on Network and Service Management (CNSM), 2012.

[21] Sun. Lesson: Packaging programs in jar files.
http://java.sun.com/docs/books/tutorial/deployment/jar/.

[22] Q. Wang and H. Jin. Data leakage mitigation for
discretionary access control in collaboration clouds. In
16th ACM symposium on Access control models and
technologies, SACMAT ’11, pages 103–112, New York,
NY, USA, 2011. ACM.

[23] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou.
Enabling public verifiability and data dynamics for
storage security in cloud computing. In ESORICS,
pages 355–370, 2009.

[24] D. M. Wheeler, A. Conyers, J. Luo, and A. Xiong.
Java security extensions for a java server in a hostile
environment. In ACSAC, pages 64–73, 2001.

[25] S. Yu, C. Wang, K. Ren, and W. Lou. Achieving
secure, scalable, and fine-grained data access control
in cloud computing. In Proceedings IEEE INFOCOM,
pages 1–9, 2010.

375

12. REFERENCES

Algorithm 1: SCO Network node addition

Require: ω Ratio
α ≥5 nodes ratio
γ ≥ 2 Redundancy Threshold
SelectedMs Set of Masters to be contacted during syn-
chronization
NMI Network Management Information
selectRandomM(SelectedMs) Selects a new Master from
NMI that it is not in SelectMs set

Begin
t = NMI.getNumCopies()
SelectedMs = {}
if (t = k(ωα) + ωα) then

k++
end if
if (k(ωα) ≤ t ≤ k(ωα) + α) then

%Master
if (t ≤ 2) then

for (count := t; count > 1; count –) do
SelectedMs := NMI.selectRandomM(SelectedM)

end for
else

if γ > t− 1 then
count:= t− 1

else
count:= γ

end if
while count6= 0 do

SelectedMs≤ NMI.selectRandomM(SelectedM)
count−−

end while
end if
PORT := n.getFreePort()
NMI.addNewMaster(IP,PORT)
NMI.incNumCopies() startSynch(NMI)

else
%Slave
count := γ
while (count 6= 0) do

SelectedMs ≤ NMI.selectRandomM(SelectedM)
count−−

end while
NMI.incNumCopies()
startSynch(NMI)

end if
End

B: Security Extensions
The Java-based security extensions proposed in Section 7.2
provide assurance of correct system operation and integrity
even in presence of successful attacks on the underlying op-
erating system. The primary objective of this security ex-
tension is improving the level of the operational integrity
of the Java application. The idea, originally proposed by
Wheeler [24] relies on extensions to the Java 2 security sys-
tem, including the Security Manager, the Class Loader and
the Policy Manager. The JRE extended components can be

directly contained in our SCO, and ready to be loaded at
each execution. The extensions create a strong dependency
between these components. For example, the Class Loader
will not operate without the extended Security Manager.
The extended Security Manager performs system integrity
checks during startup and during normal permission checks.
These checks include integrity checks on the system environ-

Figure 5: Policy Evaluation and Enforcement

ment, validating manifest of sensitive directories, validating
the run-time Jar (rt.Jar), and checking that the extended
Policy Manager is operating.

These system integrity checks are repeated during the exe-
cution of the application, before critical points. Examples of
critical points of the execution are: permission check, policy
enforcement, protected content encryption/decryption, and
creation of secure connections between SPCs and Synchro-
nization Managers. The extended policy manager checks
that the system’s configuration (.policy and .conf files) are
not modified, by verifying theirs digital signature. Before
the Class Loader loads any classes, its loads the extended
Security Manager, which checks the system and validates
that the extended Policy Manager is loaded. If any of the
integrity checks fails, each extended component notifies the
other components of the failure, and attempts to shut down
the system operation. Furthermore, to prevent any sensitive
operation from being performed for newly loaded classes, the
extended Policy Manager denies access to all services and
resources by returning a null permission in response to any
query.

376

APPENDIX
A: Algorithms
In this appendix we provide the main algorithms presented
in the paper. First, we present the operational flow of the
policy enforcement algorithm. The algorithm is displayed in
Figure 5. Algorithm 1 reports the node creation process.

