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Abstract—Network search makes operational data
available in real-time to management applications. In con-
trast to traditional monitoring, neither the data location
nor the data format needs to be known to the invoking
process, which simplifies application development, but
requires an efficient search plane inside the managed
system. This paper presents a query language for network
search and discusses how search queries can be executed
in a networked system. The search space consists of
named objects that are modeled as sets of attribute-value
pairs. The data model is more general than the relational
model, and the query language is more expressive than
relational calculus. The paper shows that distributed query
processing can be performed using an echo algorithm and
that name resolution can be embedded in query processing.
Finally, two use cases for network search are presented,
one in networking and one in cloud computing, the latter
backed up by a prototype implementation.

Keywords—Network search, management paradigms,
distributed management, name resolution.

1. INTRODUCTION

Network search—or search in networked systems—
can be understood in three ways. First, as a general-
ization of monitoring whereby the monitoring data is
retrieved by characterizing its content in simple terms,
without giving location or detailed structure of the data.
Second, it can be understood as “googling the network”
for operational data, in analogy to “googling the web”
for content. Third, network search can be seen as a
capability that views the network as a giant database of
operational and configuration data, which can be queried
through a database-like interface.

In this paper, we follow the database interpretation
and develop further the concept of network search,
which we motivated and introduced in [42]. Specifi-
cally, we view network data as objects with a simple
structure: an object has a (globally unique) name, a
type and a variable number of additional attribute-value
pairs. Objects are linked through joint attribute-value
pairs through which associations can be expressed and
discovered. We introduce a language to express search
queries. It turns out that processing search queries
can be performed through similar techniques as query
processing in distributed (relational) database systems;
we propose a tree protocol that dynamically creates

spanning trees inside the networked system and incre-
mentally aggregates the partial search results, which
are sent from the leafs of the tree towards the root.
Object name resolution is embedded in a “natural way”
in query processing.

While some database concepts help in engineering
a network search system, there are clear differences
between querying a traditional distributed database and
performing search in a networked system. First, a search
result may not be an exact match, but only ‘close
enough’ to be returned by a query. Second, similar to
web search, search results are ranked, according to how
closely a specific object in the result matches the query,
the search history, etc.

We believe that an important application area for
network search will be capturing and tracing dynamic
service behavior across time and space. For instance,
network search can be used to identify and trace media
streams associated with a videoconference across the
nodes of a network, or to a find the set of virtual
machines associated with a particular application in
a server cluster. The paper will provide more details
about these use cases. Such functionality can, of course,
be “hardcoded” beforehand in specialized protocols;
network search, however, allows us to dynamically
introduce such capabilities into a networked system.

The paper is organized as follows. Section 2 dis-
cusses related work. The overall framework for a net-
work search system is shown in Section 3. Section 4
contains the proposed data model. Section 5 describes
the query language, and Section 6 explains how search
queries can be processed in a distributed fashion in a
networked system. Section 7 discusses two use cases
in some detail, and Section 8 reviews the paper’s
contribution and presents future work.

2. RELATED WORK

There are two main research areas that relate to the
topics adressed in this paper: web search and its evolu-
tion and query processing in large networked systems.
For further research areas related to network search, see
related works section in [42].

Web search, as exemplified by Google’s search
engine, is performed by matching keywords against
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the universe of web pages [31]. Search results are
presented as ranked lists of links to web pages, which
can be accessed through a web browser. Matching is
performed on a distributed inverted index of the web
pages, using a dedicated search infrastructure outside
the web. The index database is populated through so-
called crawlers, which continuously navigate the web
following hyperlinks, i.e., the links between web pages
[17]. The rank of a matched page is determined by
several metrics, including keyword-relevance score [19],
which measures the relevance of the keywords for the
page content, the authority score, which measures the
level of connectedness of the page in the hyperlink
graph [22] [17], and page statistics [10].

As in web search, the search space in network
search is very large. Objects in network search tend
to be more dynamic and can have short life time than
web pages, which requires a different architecture for
network search, that allows for query processing close
to the data (see Section 3). The concept of ranking is
important in both areas. It has been very well developed
in web search, while in our work on network search, it
is part of our future plans.

Web search has evolved to include so-called live
search on news, blogs, microblogs, etc. Live content
expires at a faster rate than regular web content [12]
[41]. To maintain the index structure for search, new
techniques have been developed, including partial in-
dexing [18], RSS feeds [7] [12], adaptive periodic
crawling [19]. In addition to the metrics mentioned
above, the freshness of the data is a determining factor
in the ranking of search results [12] [21] [18]. Note
though that the overall architecture of web search has
not changed with the introduction of live search. In
particular, matching is performed in a dedicated infras-
tructure outside the web.

A second innovation in web search has been anno-
tating web pages with names of real-world or abstract
entities, which has been initiated by Wikipedia [8].
The concept of annotated web has triggered research
activities into searching for relationships between enti-
ties in web pages, for example, the fact that person x
collaborates with person y. Two approaches are being
pursued. First, an approach whereby such relationships
are explicitly defined and then queried [25]; second,
an approach where relationships are discovered through
language analysis [27].

We believe that the concept of discovering rela-
tionships between objects is also important to network
search. The language introduced in this paper allows
to discover links between objects which have not been
explicity declared.

A recent focus of research has been search in web-
based social networks. Social networks have concepts
like friends and groups and allow actions such as
sharing, liking, recommending etc., also known as social

tagging [45]. Search in this context are guided by two
principles. It is user-centric [13] [26] and it uses social
graphs as a means to guide the search process in a vast
search space [43] [9].

The idea that domain-specific knowledge can reduce
the search space is applicable to network search. For
instance, when searching for information that involves
a flow, the search process may progress along the path
of the flow, as indicated in the next-hop field in the
flow record. By doing so, we restrict the process from
exhaustively searching the space to searching along a
path.

The concepts proposed in this paper relate to the
field of query processing in large database systems,
which has been recently driven by technology compa-
nies that maintain large-scale ICT infrastructures, such
as Google and Yahoo. These systems are characterized
by a large number of servers that form the nodes of a
distributed database, which stores logs from operational
data, web content, etc. The relational data model has
proved to be too rigid for these databases, and relaxed
models, also called non-SQL databases, have been de-
veloped. Examples include Google’s Dremel database
system [33], together with the BigQuery query language
[3]. Another example is Yahoo’s Pig database system
[23], together with the PigLatin query language [36].
Academic works include the ASTERIX system [14], a
non-SQL database system, as well as the Weaver SQL
system [28], which we developed in our lab.

As advocated by the above described research, we
find that the relational model is too strict for our purpose
and that the expressiveness of the relational algebra
should be retained in the query language. The difference
between a database system as described above and
a network search system is their respective objective:
a database system retrieves known data, while a net-
work search system discovers potentially unknown data
and relationships. Furthermore, in contrast to querying
databases, ranking is important to network search, as
well as imprecise results are useful, if they are obtained
at low cost.

To realize continuous network search queries, the
active research field of distributed stream processing
is relevant. Queries in stream processing systems are
executed on a network of processors, whereby sub-
queries run in the processors, and data streams are
pushed through the network. Examples of academic
research in this field includes TAG [30], and Borealis
[11], whereas IBM’s System S [24] and Yahoo/Apache’s
S4 [35] are well known industrial efforts.

3. AN ARCHITECTURE FOR NETWORK SEARCH

Figure 1 shows an architecture for a network search
system, which we introduced in [42]. Its key element
is the search plane, which conceptualizes the network
search functionality. This plane contains a network
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Fig. 1. An architecture for a network search system [42]

of search nodes, which have processing and storage
capacities. A search node can communicate with a set
of neighbors, which are identified through links of the
network graph. The design of this plane supports search-
ing in a distributed and parallel fashion. A search node
can be realized in various ways: it can be part of the
management infrastructure outside the managed system,
it can be run as a standalone network appliance, or it
can be integrated into a network element using a variety
of technologies. Our current prototype implements the
third option.

The bottom plane in Figure 1 represents the physical
network that is subject to search. Each network element
is associated with a search node, which maintains (or
has access to) configuration and operational data from
that network element. This data is modeled as a set of
objects, whose structure is described in Section 4. Note
that the figure shows the simplest form of association
between a network element and a search node; it is
possible that a search node maintains data from several
physical devices, or, alternatively, a device updates data
on several search nodes. The top of Figure 1 shows
the management plane, which includes the systems and
servers running processes for network supervision and
management.

There are two important interfaces in this architec-
ture. The first is the search interface, which supports
the query language discussed in Section 5. We envision
that every search node is an access point for search
queries. The second interface defines the interaction
between a search node and a network element, which
can be realized through polling or can be push based.
This interface is technology-dependent and possibly
proprietary.

Each search node runs a process that communicates

with the associated network element(s) from which it
retrieves network data. A database function dynamically
maps that data into the information model for network
search and updates the local search database.

Search functions, invoked from the management
plane through query invocation, are executed as dis-
tributed algorithms on the graph of search nodes. During
the execution of a query on a search node, the local
search database is accessed, the matching of the local
query against stored indices is performed, and the local
search result is possibly aggregated with results from
other nodes.

4. OBJECT MODEL

We consider physical and logical entities in a net-
worked system, such as routers, servers, IP flows, virtual
machines, etc., as objects in a search space (or object
space). We associate an object in the space with each of
these entities. An object is modeled as a bag of attribute-
value pairs, containing configuration and operational
information. An object is named and typed, and, hence,
has at least two attribute-value pairs. Figure 2 shows two
examples, an IP flow object with information available
on a router, and a virtual machine object with data from
a server.

We name an object using an Uniform Resource
Name (URN) [34]. Such a name is a unique, location-
independent and expressive identifier. (We choose
URNs over Uniform Resource Locators (URLs) [15],
because they are more persistent, and we do not consider
oblivious identifiers, as used in [38], since they are not
sufficiently expressive.) The top attribute-value pair in
the objects shown in Figure 2 are URNs.

We introduce a relation between objects that links
together objects that share attribute-value pairs. The
relation will allow us to find information that belongs to
a certain context in a networked system. For instance,
it will enable us to trace an IP flow passing through
the nodes of a network, or to search for the servers in
a cluster that run applications belonging to a certain
customer.

Consider objects a, b in a search space O. We say a
is directly linked to b, denoted by l(a, b), if a and b share
an attribute-value pair. Obviously, l(·, ·) is reflexive and
symmetric, but not transitive. Note that the same relation
l(·, ·), with the same properties, can be defined on
subsets A,B ⊂ O. We say a ∈ O is linked to b ∈ O,
denoted by l∗(a, b), if

l∗(a, b) :=

{
l(a, b), or
∃c ∈ O : l∗(a, c) ∧ l∗(c, b)

The relation l∗(·, ·) is reflexive, symmetric and tran-
sitive, by construction, and, therefore, an equivalence
relation. Similarly, as above, one can define l∗(·, ·) on
subsets of O. It is often useful to compute the closure of
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name
urn:ns:IPflow:128.146.222.233
:131.187.253.67:03FA:0016:06

type IPflow
srcIPaddress 128.146.222.233
dstIPaddress 131.187.253.67

protocol 6
srcPort 03FA
dstPort 0016
packet 4
octet 1129

timestamp 10:05:11 24 April 2012

name urn:ns:VM:instance-00000007

type VM
uuid 4f5f86875be18e30c9000002

cpuCores 1
memory 1 GB
storage 3 GB

IPaddress 192.168.1.5
server urn:ns:server:Server-08

customer urn:ns:customer:John
dateCreated 12:49:25 10 February 2012

Fig. 2. Sample objects in the search space. On the left, an object representing an IP flow with information from a router; on the right, an
object representing a virtual machine on a server.

a subset A under l∗(·, ·). For instance, all information
associated with a video service can be found in the
closure of the set of flow objects related to the service.

The above described model is simpler and coarser
than the information models traditionally used in net-
work management, such as, SMIv2 [32], GDMO [2],
CIM [1], and YANG [16], but it is also less expressive.
We believe that our model is better suited for network
search, as one can formulate queries with minimal
knowledge about information structure. Furthermore,
one can easily populate our model with data from
available sources in a network system, at the price of
potentially losing structural information.

5. QUERY LANGUAGE

A query on a of search space O returns a subset
of information in this space. We describe the query
language in BNF notation as follows:

Basic: q → t | q ∧ q | q ∨ q (1)
t → a | v | a op v (2)

op → = | < | ≈ | · · · (3)
Link: q → λA | λ∗A (4)

Projection: p → q | πq (5)
Aggregation: r → p | αp (6)

First, we discuss queries q based on rules (1), (2),
(3), which return a set of objects. Rule (2) defines how
a query is made up of tokens t. a stands for an attribute
name, such as load, v for a value, such as 0.7, and op
for a relational operator. Here are some examples of
queries based on rules (1), (2), (3): load, load > 0.7,
server ∧ load > 0.7, server ∨ router, (server ∨ router)
∧ load=0.7.

Each token t expresses a condition on an attribute-
value pair. During query processing, the token is
matched against all objects in the search space—more
precisely, against all attribute-value pairs of objects in
the search space. If the match is successful, then the

object is included in the query result. For example, the
token server returns all objects that contain the attribute
name or value server. The token load>0.7 returns all
objects that include an attribute named load with a value
larger than 0.7.

Note that the match of a token to an attribute-value
pair does not have to be exact, but can be approximate,
for an object to be included in the query result. Ap-
proximate matching applies to value as well as to the
attribute name. We consider approximate matching as an
important characteristic of network search. The degree
to which a token matches an attribute-value pair can be
reflected in the ranking of the object in the query result.
This issue is part of our future work.

The query q1 ∨ q2 returns the union of the results
of sub-queries q1 and q2. Likewise, q1 ∧ q2 returns
the intersection of sub-queries q1 and q2. We give an
example from a datacenter that offers Infrastructure-as-
a-Service: “find servers with at least 12 CPU cores and
that have load lower than 20 percent,” which can be
expressed as

server ∧ cpuCores > 11 ∧ load < 0.2

A special case in matching occurs when the token
contains a name. We allow a substring of the URN
to be given as a name, for example, John instead of
urn:ns:customer:John:Doe. If the substring matches the
value of an object name, then the object is returned.
This way, query processing performs name resolution.

Rule (4) describes link queries, whereby A denotes a
set of objects, λ denotes the operator for direct linking,
and λ∗ denotes the operator for linking. In case of
operator λ, the above query returns the directly linked
objects of A. In case of λ∗, it returns the closure of A
with respect to l∗(·, ·), which means all objects o ∈ O
that are linked to objects in A. The following query
computes the closure of an object and returns objects
of a specific type from that closure: “find servers that
run processes of customer John”.
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server ∧ λ∗ John

Rule (5) introduces a projection operator πa1,···an ,
which is applied to a set of objects and returns those
attribute-value pairs whose attribute names a1 · · · an
are specified. This operator reduces the amount of
information returned by a query, by giving back a subset
of attributes for a particular set of objects, instead of all
attributes of these objects. For instance, the query “find
servers with at least 12 CPU cores” can be written as

πname(server ∧ cpuCores > 12)

Rule (6) describes an aggregation operator αf, a,
which takes as input a set of objects B and returns
the value of the aggregation function f applied to
the values of attribute a in all objects in B; i.e.,
αf,a(B) = f(ba|b ∈ B). Typical aggregation functions
are sum, count, max and other statistical functions,
although non-numerical functions can be used. This
operator computes an aggregated value of a set of
objects, rather than returning the objects themselves.
The query “find the virtual machine with the highest
CPU cores on server X” can be expressed as

αmax, cpuCores (VM ∧ *server*X)

We briefly compare our object model and query lan-
guage with that of the relational model with its standard
operators selection, projection, aggregation and semi-
join [20]. If we restrict our object model in such a
way that objects of the same type have a predefined set
of attributes only, and tokens are of the form a op v
only, then our model becomes as expressive as the
relational model, in the following sense. An object in
our model corresponds to a tuple in the relational model
and vice-versa; objects of the same type correspond
to a relation and vice-versa. Now, it is straightforward
to show that queries on our model produce results
that corresponds to those results the operators on the
relational model produce. For example, a basic query
made up of rules (1), (2), (3) corresponds to a selection
operation (possibly with set union or intersection), a
(direct) link query expressed by rule (6) corresponds to
a semi-join operation, etc. To see the latter, consider
two set of objects A1 and A2 and their relations R1

and R2. It is then straightforward to see that the query
A1 ∧ (λA2) in our model produces the result that
corresponds to the relational query R1 �R2.

While our model is as expressive as the relational
model, it is more general. First, it allows for objects
of the same type to have different attributes. This
generalization allows us to capture the heterogeneity of
network entities. For instance, network functions like
firewalls come in different varieties and, therefore, need
to be described using different attribute sets. Second,
our model replaces the tuple identifier in the relational
model, i.e., the key attributes, with a single attribute,

namely, the object name. Third, in our model, an
attribute name or an attribute value, can be given as a
query, which is not possible in the relational model. This
allows us to invoke queries without explicit knowledge
of the object structures, and it enables us to give values
without providing the corresponding attribute names as
well. Lastly, the link operator in our model does not the
have a corresponding operator in the relational model
(although the direct link operator has, as discussed
above).

6. DISTRIBUTED QUERY PROCESSING

Our approach to process network queries makes use
of the echo protocol, a tree-based protocol suitable for
distributed polling [40] [29]. It is based on an algorithm
first described by Segall [37]. The execution of the
echo protocol can be understood as the subsequent
expansion and contraction of a wave on a network
graph. The execution starts and terminates on an ini-
tiating node of the graph, also called the root (node).
The wave expands through explorer messages, which
nodes forward to their respective neighbors. During the
expansion phase, local operations are triggered on the
nodes after receiving an explorer. The results of these
local operations are collected in echo messages, when
the wave contracts, so that the aggregated result of the
global operation becomes available at the root node.
During the expansion phase, the protocol constructs a
spanning tree on the network graph for the purpose of
collecting and aggregating the partial results during the
contraction phase.

The echo protocol executes on the network graph of
the search plane (Figure 1). The protocol can be started
on any search node once a query q has been received.
First, the query is disseminated by explorer messages
to every node and executed as local operation against
the local database D. The results of the local operations
are sent, by echo messages, on the spanning tree from
child nodes to parent nodes, where the partial results are
aggregated. (Note that the term aggregation here refers
to the processing of the partial query results, not to a
possible aggregation operator in the query q.) Figure
3 shows a sample spanning tree created by the echo
protocol on nodes n1, · · · , n6 with root n1. It further
shows the message exchange between nodes. Each node
shows the local database D containing the objects with
information from that node, together with the variable
result, which contains the (partial) result of the query
q.

The definition of the local operation, the aggregation
operation of the query result, and the current local
state of the query collection, are modeled in an object,
called the aggregator object of the echo protocol (see
Figure 4). The aggregator in the figure contains the code
to process a query q that contains neither λ nor λ∗
operator. Line 2 defines the variable result, which is
either a set of objects or, it contains an aggregated value
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of this information in case the query contains an ag-
gregation function. Lines 3-4 defines the local function
and lines 5-9 defines the procedure how partial results
are aggregated. If the query q includes an aggregation
operator αf,a, then variable result is updated using the
aggregation function fa, otherwise by computing the
union of the partial results.

Fig. 3. Distributed query processing: The echo protocol creates
a spanning tree in the search plane. Each node contains the local
database D. The variable result contains the partial result of a query
q. Some of the explorer (EXP) and echo (ECHO) messages are shown.

1: aggregator object processQuery( )
2: var: result:QueryResult;
3: procedure local( )
4: result := q(D);
5: procedure aggre-

gate(childResult:QueryResult)
6: if q contains αf,a then
7: result := fa(result, childResult);
8: else
9: result := result ∪ childResult;

Fig. 4. Aggregator for processing a query without link operators.

We describe now the processing of queries q that
contain link operators. First, if q is of the form λA,
whereby A is a set of objects, then the local function
in the aggregator object can be written as A ∪ {o ∈
D − A | ∃a ∈ A : l(a, o)}. Second, if q is of the
form λq′, then processing q requires two executions of
echo; during the first execution, q′ is computed, and the
second execution computes the directly linked objects.
Finally, in case q is of the form λ∗q′, at least two
executions of echo are required, whereby, first, q is
processed, then λq′, λ(λq′), λ(λ(λq′)), etc. The process
stops when the output set does not grow from one
execution to the next.

The proof that the above described distributed pro-
cessing technique is correct draws from the fact that the
global database, which contains all objects, is horizon-
tally fragmented; each object is stored in exactly one
local database. The performance characteristics of dis-
tributed query processing is based on the performance

properties of the echo protocol [40]. For instance, the
execution time of a query grows proportionally with the
height of the spanning tree, which is upper bounded
by the diameter of the network graph. The protocol
overhead is evenly distributed on the network graph, as
two messages traverse each link during the execution
of echo. Lastly, the number of messages each search
node processes is upper bounded by the degree of the
network graph. While the above properties suggests that
the presented generic approach to network search is a
scalable solution, major challenges remain to engineer
a large-scale network search system. See Section 8.

7. USE CASES

A. Use Case: Networking

The delivery of complex networking services in-
volves increasing numbers of entities with numerous
interdependencies, many of which are only temporary
and fleeting in nature. With the advent of cloud services
and virtualization, many of the entities themselves are
increasingly short-lived, as layers of virtualized entities
build on each other. In addition, many decisions that
affect end-to-end service characteristics depend on very
dynamic decisions, such as performance routing in
which the path of individual packets in a media stream
depends on short-lived fluctuations in load and service
levels. As a result, management paradigms need to
increasingly shift away from planning and predicting,
towards monitoring and tracing (packets in a network,
dependencies between resources, policy decisions im-
posed on a flow, etc.), in order to understand what is
precisely going on, should it be required.

However, tracing, while tremendously important,
can be a challenge. This is where network search can
provide some distinct advantages. Consider the case
in which an operator is concerned about an interac-
tive video session whose service level is deteriorating.
The operator has no way of knowing which particular
systems or links the stream is traversing and might
contribute to the problem. Using network search, the
operator can issue a network query to retrieve a list of all
systems in the network with a flow record which contain
the source and destination systems as part of their flow
keys, along with the flow records and the interface
statistics of the incoming and outgoing interfaces. The
search provides the operator with data from every node
in the network that participates in the flow. From this,
an application can perform further analysis and stitch
together which path the flow takes, whether multiple
routes (perhaps due to load balancing considerations)
are taken, where packets are dropped, etc.

Now consider the same scenario but involving net-
working boundaries at which NAT (Network Address
Translation) is performed. For example, the session
might involve two endpoints in two different enterprises
and traverse a public service provider network. In that
case, network address translation occurs at the border
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between enterprise A and the service provider, and again
at the border between the service provider and enterprise
B. As a result, the same session is associated with
different flow keys in each of these domains. Hence,
network search cannot be applied naively in the same
query being issued to every device in either of the
involved networks. Instead, the query itself needs to be
locally adapted according to the network address trans-
lations at the different network boundaries—the network
search needs to be NAT-aware. For this purpose, we
introduce NAT-aware search nodes at nodes that involve
a NAT function. A NAT-aware search node has access
to the same NAT database as the NAT function itself.
Whenever a search query or a search result involves an
IP address in the NAT database, the NAT transformation
is applied as the query traverses the network boundary.

B. Search on a Cloud Infrastructure

In order to experiment with network search con-
cepts, we have instrumented a cloud Infrastructure-
as-a-Service (IaaS) platform in our laboratory with
network search functions. The platform contains nine
high-performance servers, interconnected by Gigabit
Ethernet, and runs the OpenStack cloud management
software. (See [44] for details.) The components of
the network search system include search nodes—each
server on the testbed runs such a node—and managers
in the management plane that run in a management
station. Each search node contains a local database
based on MongoDB [5] that maintains the network
objects. Currently the database has four types of objects,
namely, server, virtual machine (VM), application, and
customer. A data sensing component reads system files,
such as ‘/proc’ [6], libvirt configuration [4] etc., and
populates and periodically updates the objects in the
local database at a rate corresponding to their respec-
tive lifetime. A distributed query processing component
implements the protocol outlined in Section 6. The
manager component offers two types of interfaces for
accessing network search functionality: a simple line
console and a graphical, menu supported interface that
allows to compose queries and browse the output in
various ways. Due to lack of space, details about this
implementation will be reported elsewhere.

We have used the network search system on the
OpenStack platform for conducting a range of ex-
ploratory experiments. The platform can be loaded by
external load generators that were developed for evalu-
ating performance management solutions for OpenStack
[44]. The produced load has a time-varying pattern of
several types of applications running in virtual machines
of different configurations and lifetimes. Here are some
of the experiments we have performed. First, we inquire
about the load on a server cluster, which is given by a
range of IP address: αsum, load (192.168.212.*). Given
the case that the load is unexpectedly high, we want to
find out which applications are running on this cluster:
πname( application ∧ λ∗ 192.168.212.*). Finally,

we want to identify the customers for which these ap-
plications are executed: πname( customer ∧ λ app1 ∨
· · · ∨ appn). In a further set of experiments, we study
the behavior of the virtual machines on the platform
under an adaptive placement policy. First, we are in-
terested in learning the distribution of the uptimes of
the virtual machines. The query πuptime(VM) provides
the uptime of the active virtual machines, out of which
the distribution can be computed. (If a distribution
aggregator is implemented, then the distribution can
be directly computed as part of the query). Second,
we want to study the movement of virtual machines
that belongs to a specific application. We can achieve
this by periodically issuing the query πname, server

(VM ∧ appx).

We ran a series of performance tests on the search
system, the details of which can be found in [39]. For
some experiments, the search space was populated with
2000-3000 objects on each server, which took up some
1-1.5 MB of disk space. In the current configuration,
objects are refreshed once per second via polling, which
creates a CPU load of about 2 percent on each server,
for local databases with 2000 objects. Global search
queries, which include projection and aggregation oper-
ators, execute in approximately 20 milliseconds, while
link queries can take considerably more time. An anal-
ysis of the performance measurements suggests that
there is a room for performance improvements in the
implementation of the current prototype.

8. DISCUSSION

The contribution of this paper centers around a
simple query language for search in networked systems.
Queries are based on a model where objects are repre-
sented as a set of attribute-value pairs. We propose a
method for distributed execution of search queries in a
networked system in which nodes maintain objects that
contain configuration and operational information. We
argue why the proposed method provides the correct re-
sult for a network query. Two use cases further motivate
the paradigm of network search and demonstrate that the
introduced language is useful. Our implementation gives
evidence that the design can be implemented (even if
the testbed is of limited size).

Similar to the case of web search, the simplicity of
our query language has the drawback that, often, the
information we are interested in cannot be expressed
in a sufficiently precise manner, and, therefore, the
query result needs interpretation. For instance, the query
“search for servers that run processes of customer John”
cannot be directly expressed in our query language, but
only through attribute names, values, and object links,
for example, through server ∧ λ∗ name = *John. This
query returns objects with attribute name (or value)
server that are linked to objects whose names end with
John. The query result needs to be interpreted and,
hopefully, contains the information we searched for in
the first place.
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An argument can be made that search queries can
be implemented as specialized protocols in a networked
system, and, therefore, a generic search system is not
needed (see Section 7-B). However, we believe that a
network search system enables new functionality to be
added on-demand, or it allows for network applications
to dynamically adapt their information demand.

In future work, we plan to further develop the
paradigm of network search. Here are some of our
priorities. While the contribution in this paper focuses
on database aspects of network search, network search
includes concepts that go beyond database functionality,
most importantly, approximate matching of attributes
and ranking of search results (see Section 1). We
envision, for instance, that ranking takes into account
the freshness of the data, the locality of the query
invocation, and the number of tokens in a query that
matches a particular object, and that the ranking process
is realized as a distributed aggregation function.

Second, we plan on improving the scalability of
distributed query processing for network search. While
this paper describes a distributed method for query
processing, each query still invokes an operation on
every search node, which is expensive in a large system.
We are considering several approaches to reduce the
footprint of a query. As pointed out in Section 2, domain
knowledge can be used to guide the search process and
thus reduce the search space. Alternatively, an index
structure can be developed to reduce the number of
nodes that are involved in processing a query. Link
queries require special attention, since each such query
involves several executions of echo. Possible heuristics
for reducing the overhead include restricting the search
to those links with the number of intermediate objects
below a given bound, and limiting the subsequent execu-
tions of echo to those nodes that produced a non-empty
query result during the previous execution.

Additionally, work is needed for the development
of efficient local databases, the population of local
database with available data sources, the development
of concepts regarding the privacy and security of local
data, as well as a framework for search in a multi-
domain environment.
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