
1

Distributed Systems (ICE 601)
Replication & Consistency - Part 1

Dongman Lee
ICU

Distributed Systems - Replication&Consistency (Part1)

Class Overview
• Introduction
• Replication Model
• Request Ordering
• Consistency Models
• Consistency Protocols
• Case study

– Lazy replication
– ISIS
– Transactions with Replicated Data

2

Distributed Systems - Replication&Consistency (Part1)

Why Replication?
• Purpose

– increase availability, dependability and/or performance without
knowledge of replica visibility

• Replication transparency
– hiding the replication of state in a system

active vs. primary/stand-by replicas
generic functions: active and passive replication mechanisms

Logical shared resource

A C DB

Distributed Systems - Replication&Consistency (Part1)

Replication Model
• Replication model spectrum

– consistency
totally synchronous model

complete synchronization among replicas
asynchronous model

asynchronous update of replicas - that is, allow temporal inconsistency
among replicas

most replication models are somewhere between these two models
– purpose

performance improvement
reduction of delay by caching or replicating a server near clients

availability
make the service accessible (close to 100%) in the presence of process
and network failures (partition and disconnection)

fault tolerance
guarantee strictly correct behavior despite of failures (byzantine and
crash)

3

Distributed Systems - Replication&Consistency (Part1)

Replication Model (cont.)
• Basic architectural model for replicated data management

FE

Requests and
replies

C

ReplicaC

ServiceClients Front ends

managers

RM

RMFE

RM

Distributed Systems - Replication&Consistency (Part1)

Replication System Model [Weismann]
• Replication protocol model

– Request phase
active replication
passive replication

– Server coordination
message ordering: FIFO, causal, total

– Execution
– Agreement coordination

necessary in database while ordering guarantee is enough for distributed systems
– Client response

synchronous vs. lazy or asynchronous

Phase 1:
Client
contact

client

replica 1

Phase 2:
Server
coordination

Phase 3:
Execution

Phase 4:
Agreement
Coordination

Phase 5:
Client
response

update

update

client

replica 2
replica 3

4

Distributed Systems - Replication&Consistency (Part1)

Replication System Model (cont.)
• Replication model

– Active replication
deterministic execution
request sent to replicas using atomic totally ordered multicast
no need of agreement

– Passive replication
non-deterministic execution
view synchronization
no need of server coordination

– Semi-active replication
non-deterministic execution
request sent to replicas using atomic totally ordered multicast
leader informs followers of its choice using view synchronization

– Semi-passive replication
same as passive without view synchronization
allow for aggressive time-outs values and suspecting crashed processes without
incurring too high cost for incorrect failure suspicions

Distributed Systems - Replication&Consistency (Part1)

Group System Model
• Definition

– a set of one or more objects, joined through a common interface,
acting as a single unit for purposes of naming and function

• Group types
– replicate

replicated members for highly availability and/or reliability
primary/stand-by
modular redundant

– partition
members executing a common job in a divided manner

e.g. highly parallel array processing

– aggregate
non-replicated members sharing the provision of the service defined
by group’s interface

e.g. group conferencing

5

Distributed Systems - Replication&Consistency (Part1)

Group Communication Model

object

Object
groupagent

Object group interaction model

• Group communication =
membership service + multicast with ordering support

Join

Group
address

expansion

Multicast
communication

Group
send

Fail Group membership
management

Leave

Process group

Distributed Systems - Replication&Consistency (Part1)

Membership Service
• Membership service

– interface for group membership changes
– failure detection
– membership change notification
– group address expansion

• View delivery
– view: a list of the currently active and connected members in a

group
– basic requirements for view delivery (view notification)

order
If a process p delivers view v(g) and the v’(g), then no other process
q = p delivers v’(g) before v(g)

integrity
If process p delivers view v(g) then p v(g)

Non-triviality
If process q joins a group and is or becomes indefinitely reachable from
process p = q, then eventually q is always in the views that p delivers

6

Distributed Systems - Replication&Consistency (Part1)

Membership Service (cont.)
• View-synchronous group communication

– Guarantees provided by view-synchronous group communication
agreement

correct processes deliver the same set of messages in any given view
integrity

if a process p delivers message m, then it will not deliver m again
validity

correct processes always deliver the messages that they send

Distributed Systems - Replication&Consistency (Part1)

Membership Service (cont.)
• View-synchronous group communication (cont.)

p

q

r

p crashes

view (q, r)view (p, q, r)

p

q

r

p crashes

view (q, r)view (p, q, r)

a (allowed). b (allowed).

p

q

r

view (p, q, r)

p

q

r

p crashes

view (q, r)view (p, q, r)

c (disallowed). d (disallowed).
p crashes

view (q, r)

7

Distributed Systems - Replication&Consistency (Part1)

Request Ordering
• Why ordering is concerned?

– concurrent execution of update requests at replicas may result in
inconsistency among replicated data
serial equivalence of update requests is required

expense of ordering should also be considered

• Ordering requirements
– total ordering

requests are processed in the same order at all replicas
– causal ordering

causally related requests are only ordered at all replicas
– sync ordering

requests are ordered in sync before or after a certain request at all
replicas

Distributed Systems - Replication&Consistency (Part1)

Request Ordering (cont.)
• Request handling at replicas

– every request is held-back until ordering constraints can be met
– request is defined to be stable at a replica once no request from a

client and bearing a lower unique identifier can be subsequently
delivered to replica; that is, all prior requests have been processed

• Request ordering implementation
– group communication

ISIS
– exchanging gossip messages among replicas

lazy replication

8

Distributed Systems - Replication&Consistency (Part1)

Request Ordering (cont.)
• Properties for request ordering

– safety
no message will be delivered out of order from hold-back queue to
processing queue
once a message has been in the processing queue, no prior request
should not be in there

– liveness
no message should wait indefinitely in hold-back queue

Request processing

Processing
queue

Hold-back
queue

Request
ordering

Incoming
request

Distributed Systems - Replication&Consistency (Part1)

Request Ordering (cont.)
• Total ordering implementation

– requires a mechanism to uniquely sequence each request, which
enables sequential ordering among messages

– unique id generation
sequencer approach

request id is generated by a designated process, sequencer
every request is sent to the sequencer which assigns a unique id being
incremented monotonically and forwards the request to replicas
sequencer may become performance bottleneck and point of failure

data update protocol approach
token holder sends a request with a temporary id to all replicas
each replica (site i) replies with a new id of max(temp id, id) + 1 + i/N;
token holder selects largest id among proposed id from all replicas and
uses it as the agreed id
token holder notifies all replicas of the final id; replica readjusts the
message’s position at hold-back queue

9

Distributed Systems - Replication&Consistency (Part1)

Request Ordering (cont.)
• Causal ordering implementation

– requires a mechanism to enable causally related requests to be
ordered

– vector timestamp approach
all replicas pi initializes VTi (vector time) to zeros
when pi generates a new event, it increments VTi[I] by 1; it attaches
the value vt = VTi on outgoing messages
when pj handles a request with timestamp vt, it updates it vector clock
such as Vtj = merge (Vtj, vt)

