
1

Distributed Systems (ICE 601)
Replication & Consistency - Part 2

Dongman Lee
ICU

Distributed Systems - Replication&Consistency(Part2)

Class Overview
• Introduction
• Replication Model
• Request Ordering
• Consistency Models
• Consistency Protocols
• Case study

– Transactions with Replicated Data
– Lazy replication
– ISIS

2

Distributed Systems - Replication&Consistency(Part2)

Data-Centric Consistency Models
• Consistency models

– Definition
a contract between processes and the data store

– Models
Strict
Sequential
Causal
FIFO
Weak
Release
Entry

Distributed Systems - Replication&Consistency(Part2)

Strict Consistency
• Description

– A read always returns the result of the most recent write
Existence of absolute global time and strict consistent data store are
assumed

• Issues
– Impossible to achieve absolute global time
– No guarantee that at most a single operation be performed at a give

time interval
Multiple operations can be performed simultaneously at a give time
interval

Linearizability relaxes the absolute global time by using loosely
synchronized clocks

3

Distributed Systems - Replication&Consistency(Part2)

Sequential Consistency
• Description

– For any execution there is some interleaving of the series of
operations issued by all processes that satisfies the followings:

SC1: the interleaved sequence of operations is such that if R(x)a
occurs in the sequence, then either the last write operation that occurs
before it in the interleaved sequence is W(x)a, or no write operation
occurs before it and a is the initial value of x – data coherence
SC2: the order of operations in the interleaving is consistent with the
program order in which each process executed them

• Consistency is enforced by the program order and
coherence

Distributed Systems - Replication&Consistency(Part2)

Sequential Consistency (cont.)
• Four valid execution sequences for three concurrent

processes

y = 1;
x = 1;
z = 1;
print (x, z);
print (y, z);
print (x, y);

Prints: 111111

Signature:
111111

y = 1;
z = 1;
print (x, y);
print (x, z);
x = 1;
print (y, z);

Prints: 010111

Signature:
110101

x = 1;
y = 1;
print (x, z);
print (y, z);
z = 1;
print (x, y);

Prints: 101011

Signature:
101011

x = 1;
print ((y, z);
y = 1;
print (x, z);
z = 1;
print (x, y);

Prints: 001011

Signature:
001011

Process 3
z = 1;
print (x, y);

Process 2
y = 1;
print (x,z);

Process 1
x = 1;
print (y, z);

4

Distributed Systems - Replication&Consistency(Part2)

Sequential Consistency (cont.)
• Issues

– Changing the protocol to improve read performance makes write
performance worse, and vice versa

Based on Lipton and Sanberg’s proof: r + w >= t

Distributed Systems - Replication&Consistency(Part2)

Causal Consistency
• Description

– Sequential consistency is only applied to causally related operations
Writes that are potentially casually related must be seen by all
processes in the same order
Concurrent writes may be seen in a different order on different
machines

• Consistency is enforced by operation dependency
– Vector timestamp is a way to support it

5

Distributed Systems - Replication&Consistency(Part2)

FIFO Consistency
• Description

– Writes done by a single process are seen by all other processes in
the order in which they were issued

– Writes from different processes may be seen in a different order by
different processes

• Consistency is enforced by
– Tag each write operation with a (process, sequence number) pair
– Perform writes per process in the order of their sequence number

Distributed Systems - Replication&Consistency(Part2)

FIFO Consistency (cont.)
• A key difference between sequential and FIFO consistency

– Sequence consistency works as long as all processes agree the order
of execution though it is non deterministic

– FIFO consistency allows different processes to see the operations in
a different order

6

Distributed Systems - Replication&Consistency(Part2)

Weak Consistency

• Description
– Only the final result of data in a critical section is required to all

replicas
No need to propagate intermediate results to all replicas in order
Synchronization variable is used for this

• Properties
– Accesses to synchronization variables associated with a data store

are sequentially consistent
All processes see all operations on synchronization variables in the
same order

– No operation on a synchronization variable is allowed to be
performed until all previous writes have been completed
everywhere

All writes at local copies are forced to be done
– No read or write operation on data items are allowed to be

performed until all previous operations to synchronization variables
have been performed

A process can be sure of getting the most recent values

Distributed Systems - Replication&Consistency(Part2)

Weak Consistency (cont.)

• Key points
Enforces consistency on a group of operations, not on individual
reads and writes

useful when most accesses come in cluster
Limit only time when consistency holds, rather than limiting the
form of consistency

sequential consistency is enforced between groups of operations
with weak consistency

7

Distributed Systems - Replication&Consistency(Part2)

Weak Consistency (cont.)

a) A valid sequence of events for weak consistency.
b) An invalid sequence for weak consistency.

Distributed Systems - Replication&Consistency(Part2)

Release Consistency

• Description
– It’s difficult to tell the difference between entering a critical section

and leaving one in weak consistency
Two synchronization operations, acquire and release, instead of one

• Basics
– Barrier

A synchronization mechanism that prevents any process from starting
phase n+1 of a program until all processes have finished phase n
When a process arrives at a barrier, it must wait until all other processes
get there as well

departure from barrier on an acquire
arrival at barrier on a release

8

Distributed Systems - Replication&Consistency(Part2)

Release Consistency (cont.)

• Distributed data store is release consistent if it obeys the
followings
– Before a read or write operation on shared data is performed, all

previous acquires done by the process must have completed
successfully.

– Before a release is allowed to be performed, all previous reads
and writes by the process must have completed

– Accesses to synchronization variables are FIFO consistent
(sequential consistency is not required)

• Lazy release consistency
– Relax the update until necessary

Distributed Systems - Replication&Consistency(Part2)

Entry Consistency

• Description
– Synchronization variables are required to be associated with shared

data items, not the entire share data
• Conditions

– An acquire access of a synchronization variable is not allowed to
perform with respect to a process until all updates to the guarded
shared data have been performed with respect to that process

At acquire, all remote changes to the guarded date must be visible
– Before an exclusive mode access to a synchronization variable by a

process is allowed to perform with respect to that process, no other
process may hold the synchronization variable, not even in
nonexclusive mode

Before updating, a process must enter a critical section
– After an exclusive mode access to a synchronization variable has

been performed, any other process's next nonexclusive mode access
to that synchronization variable may not be performed until it has
performed with respect to that variable's owner

For nonexclusive mode access, a process has to check with the sync
owner

9

Distributed Systems - Replication&Consistency(Part2)

Entry Consistency (cont.)
• Example

Distributed Systems - Replication&Consistency(Part2)

Summary of Consistency Models

a) Consistency models not using synchronization operations.
b) Models with synchronization operations.

(b)

Shared data pertaining to a critical region are made consistent when a critical region is
entered.

Entry

Shared data are made consistent when a critical region is exitedRelease

Shared data can be counted on to be consistent only after a synchronization is doneWeak

DescriptionConsistency

(a)

All processes see writes from each other in the order they were used. Writes from
different processes may not always be seen in that orderFIFO

All processes see causally-related shared accesses in the same order.Causal

All processes see all shared accesses in the same order. Accesses are not ordered in
timeSequential

All processes must see all shared accesses in the same order. Accesses are
furthermore ordered according to a (non-unique) global timestampLinearizability

Absolute time ordering of all shared accesses matters.Strict

DescriptionConsistency

