Distributed Systems (ICE 601)
Replication & Consistency - Part 3

Dongman Lee
ICU

Class Overview

• Introduction
• Replication Model
• Request Ordering
• Consistency Models
• Consistency Protocols
• Case study
 – Transactions with Replicated Data
 – Lazy replication
 – ISIS
Consistency Protocols

- **Description**
 - describe an implementation of a specific consistency model
- **Classification**
 - primary-based protocols
 - remote-write protocols
 - local-write protocols
 - replicated-write protocols
 - active replication
 - quorum-based protocols

Primary-based Remote-Write Protocols

- All write operations are performed at a (remote) fixed server
 - read operations are allowed on a local copy while write operations are forwarded to a fixed primary copy
Primary-based Remote-Write Protocols (cont.)

• Issues
 – update can be a performance bottleneck if implemented as a blocking operation
 • but guarantees sequential consistency (most recent write as the result of a read)
 • if implemented as a non-blocking, the protocol provides no guarantee of sequential consistency and fault tolerance

Primary-based Local-Write Protocols

• All write operations are performed locally and forwarded to the rest of replicas
 – primary copy migrates between processes that wish to perform a write operation
 – Multiple, successive writes can be done locally (via non-blocking protocol)
 – can be exploited in mobile computing
Active Replication

- Each replica performs update operations and propagates them (or the results) to the others
 - requires totally ordered multicast
- Replicated invocation problem

Active Replication (cont.)

- Solutions to the replicated invocation problem
 - group coordinator
 - sender-driven vs. receiver-driven
Quorum-based Protocols

- Require clients to request and acquire the permission of multiple servers before any operation on replicas
 - quorum set
 - \(W > \) half the total votes
 - \(R + W > \) total number of votes for group
 - any pair of read quorum and write quorum must contain common copies, so no conflicting operations on the same copy
 - read operations
 - check if there is enough number of copies \(\geq R \)
 - perform operation on up-to-date copy
 - write operations
 - check if there is enough number of up-to-date copies \(\geq W \)
 - perform operation on all replicas

Quorum-based Protocols (cont.)

- Examples

(a) A correct choice of read and write set
(b) A choice that may lead to write-write conflicts since \(W \leq N/2 \)
(c) A correct choice, known as ROWA (read one, write all)
Transactions with Replicated Data

• Replicated transactions
 – transactions in which a physical copy of each logical data item is replicated at a group of servers (replicas)

• One-copy serializability
 – effects of transactions performed by various clients on replicated data items are the same as if they had been performed one at a time on single data item
 – to achieve this
 • concurrency control mechanisms are applied to all of replicas
 • 2PC protocol becomes two level nested 2PC protocol
 » phase 1
 » a worker forwards “ready” message to replicas and collects answers
 » phase 2
 » a worker forward “commit” message to replicas
 – primary copy replication: concurrency control is only applied to primary

Transactions with Replicated Data (cont.)

• Available copies replication
 – designed to allow for some replicas being allowed unavailable
 – client’s Read operation is performed on any of available copy but Write operation on all of available copies
 – failures and recoveries of replicas should be serialized to support one-copy serializability
 ➔ local validation
 • a transaction checks for any failures (and recoveries) of replica managers of objects it has accessed before it commits
Transactions with Replicated Data (cont.)

- Network partition
 - can separate a group of replicas into subgroup between which communications are not possible
 - assume that partition will be repaired
 - resolutions
 - optimistic approach
 - available copies with validation
 - pessimistic approach
 - quorum consensus
 - virtual partition

Transactions with Replicated Data (cont.)

- Available copies with validation
 - available copies algorithm is applied to each partition
 - after partition is repaired, possibly conflicting transaction is validated
 - version vector can be used to check validity of separately committed data items
 - precedence graphs can be used to detect conflicts between Read and Write operations between partitions
 - only feasible with applications where compensation is allowed
Transactions with Replicated Data (cont.)

• Quorum consensus
 – operations are only allowed when a certain number of replicas (i.e. quorum) are available in the partition
 • possible only one partition can allow operations committed so as to prevent transactions in different partitions from producing inconsistent results
 – performed using Quorum-based protocol

• Virtual partition
 – combination of quorum consensus (to cope with partition) and available copies algorithm (inexpensive Read operation)
 – to support one-copy serializability, a transaction aborts if replica fails and virtual partition changes during progress of transaction
 – when a virtual partition is formed, all the replicas must be brought up to date by copying from other replicas

Transactions with Replicated Data (cont.)

• Virtual partition (cont.)
 – virtual partition creation
 • phase 1
 ▪ initiator sends Join request to each potential replica with logical timestamp
 ▪ each replica compares timestamp of current virtual partition
 » if proposed time stamp is greater than local one, reply yes
 » otherwise, no
 • phase 2
 ▪ if initiator gets sufficient Yes replies to form read and write quora and send confirmation message with list of members
 ▪ each member records timestamp and members