Distributed Systems (ICE 601)

Fault Tolerance

Dongman Lee
ICU

Class Overview

* Introduction
e Failure Model

* Fault Tolerance Models
— state machine
— primary-backup

Distributed Systems - Fault Tolerance

Introduction

« Dependability
— availability
— reliability
— safety
— maintainability

* Fault
— failure, error, & fault
— system is considered faulty once its behavior is no longer

consistent with its specification [Schneider]
+ Separation property of distribution systems lead to partial

failure property
— components that one component depends on may fail to respond due to
various reasons
¢ system or network failure
+ system or network overload

Distributed Systems - Fault Tolerance

Failure Model

* Failure semantics
— description of the ways in which a service may fail

4,
® @

— recovery actions depends on the likely failure behavior of the
server when its failure is detected
— designers should ensure that the behavior of the server conforms to
a specified failure semantics
¢ c.g. network with omission/time failure semantics
= need to guarantee detection of message corruption such as checksum
+ stronger failure semantics costs more in general
— adequacy of failure semantics would require preliminary stochastic
analyses

Distributed Systems - Fault Tolerance

Failure Model (cont.)

Representative faulty behavior

Byzantine failures

¢ system exhibits arbitrary and malicious behavior which may collude
with other systems

fail-stop failures

¢ when system fails, it changes to a state that allows others to detect its
failure and then stops

Distributed Systems - Fault Tolerance

Failure Model (cont.)

Failure classification [Cristian]

omission failure

timing failure (performance failure)
response failure

crash failure

Distributed Systems - Fault Tolerance

Failure Model (cont.)

Failure classification : omission failure

— aserver omits to respond to an input
¢ fail to perform actions a process or communication channel is
supposed to do
— communication omission failures
¢ fail to transport a message from a sender’s outgoing buffer to a
receiver’s incoming buffer
¢ possible causes
= buffer overflow and/or transmission error
¢ derived failures
= send-omission failure
= channel failures

= receive-omission failures

Distributed Systems - Fault Tolerance

Failure Model (cont.)

Failure classification: timing failure (performance failure)
— aserver responds correctly but not in time (early or late)

— applicable only in synchronous systems

¢ time limits are set on process execution, message delivery, and clock
drift rate

— clock failures
¢ exceeding the bounds on clock drift rate

performance failures

* exceeding the bounds on the interval between two processing steps or
message transmission

Distributed Systems - Fault Tolerance

Failure Model (cont.)

* Failure classification: response failure (arbitrary failure)

— the term arbitrary or Byzantine to describe the worst possible
failure semantics (cf. omission and timing failures are called
benign) -> a server responds incorrectly

— aprocess arbitrarily omits intended steps or takes unintended steps
-> set or return wrong values

¢ value failure: incorrect output
¢ state transition failure: incorrect state transition
¢ can’t detect by timeout

— communication arbitrary failures

* message contents corruption or delivery of non-existent messages and
duplicate messages

¢ detect by checksums or sequence numbers

Distributed Systems - Fault Tolerance

Failure Model (cont.)

* Failure classification: crash failure
— a server repeatedly fails to respond to inputs: process omission
failures
¢ crash: halt and remain halted

¢ aprocess crash is fail-stop if other processes can detect certainly that
the process has crashed

= detection by timeout in synchronous systems
= cf. asynchronous systems
— failure management depends on server state at restart
¢ amnesia crash: no record of state at crash; reset to initial state
¢ partial amnesia crash: partially recorded
¢ pause crash: restart in state before crash
¢ halting crash: no restart

Distributed Systems - Fault Tolerance

Failure Model (cont.)

* Masking failures
— by hiding failures or by converting them into a more acceptable
type of failures (e.g., checksums)
¢ retransmission - masking communication omission failures
¢ replication - masking process crashes
— reliable communication (masking communication omission
failures)
¢ validity: any message is eventually delivered
+ integrity: the identical message is delivered exactly once

= duplicate checking by sequence numbers

= security measures against spurious message and replaying or tampering
with messages

Distributed Systems - Fault Tolerance

Fault-Tolerant Approaches

* Fault tolerance

— can detect a fault and either fail predictably or mask the fault from
users

— hiding the occurrence of errors in system components and
communications

< incorporate redundant processing component to achieve fault
tolerance
* k-resilient/fault-tolerant

— aset of systems satisfies its specification if no more than k systems
become faulty
— ks chosen based on statistical measures of system reliability
¢ Byzantine failure: 2k+1
¢ fail-stop failure: k+1

Distributed Systems - Fault Tolerance

Fault-Tolerant Approaches (cont.)

* Two approaches to support fault tolerance (fault masking)

— hierarchical masking
¢ hierarchical failure and recovery management
= error detection in layered communication protocols
= various levels of error abstraction in OS

— group failure masking
¢ state-machine approach
¢ primary-backup approach
* Fault tolerance support can be done
— hardware
¢ stable storage
— software
* replicated servers

Distributed Systems - Fault Tolerance

State-Machine Approach

* Requirements for k fault-tolerant state machine

— all replicas receive and process the same sequence of requests
¢ agreement: every non-faulty replica receives every request
= specify the interaction behavior of a client with state machine replicas
= relaxed for read-only request in fail-stop failures
¢ order: every non-faulty replica processes requests it receives in the
same relative order

= specify the behavior of state machine replicas in term of how to process
requests from clients

= relaxed for commutative requests

Distributed Systems - Fault Tolerance

State-Machine Approach (cont.)

* Agreement requirement
— to satisfy agreement requirement, state-machines should support a
message broadcasting protocol which conforms to
¢ IC1: all non-faulty processors agree on the same value

¢ IC2: if sender of request is non-faulty, then all non-faulty processors
use its value as the one on which they agree

— message broadcasting protocol is called Byzantine agreement
protocol or reliable broadcast protocol

Distributed Systems - Fault Tolerance

State-Machine Approach (cont.)

* Order requirement
— to implement order requirement requires
+ assignment of unique identifier to each message

* stability (a request is ready to be delivered once all the previous
requests have been delivered) test

— assumptions on order requirement

¢ O1: requests issued by a single client to a given state machine sm are
processed by sm in the order they were issued

¢ 02: if the fact that a request » was made to a state machine sm by a
client ¢ could have caused a request 7’ to be made by a client ¢’ to sm,
then sm processes r before r’
— three approaches
¢ logical clock-based
¢ synchronized real-time clock-based
¢ replica-generated identifiers-based

Distributed Systems - Fault Tolerance

State-Machine Approach (cont.)

* Order requirement: logical clock-based
— only for fail-stop failures
— unique id assignment: logical clock
¢ LCI: timestamp is incremented after each event at p
¢ LC2: upon receipt of a message with timestamp t, process p resets its
timestamp T, to max(T, t)+1
— stability test

¢ arequest is stable at replica sm; if a request with larger timestamp has
been received by sm;, from every client running on a non-faulty
processor
= messages between a pair of processors are delivered in the order sent

= processor p detects that a failstop process q has failed only after p has
received q’s last message sent to p

Distributed Systems - Fault Tolerance

State-Machine Approach (cont.)

* Order requirement: synchronized physical clock-based

— unique id assignment
* no client makes two or more requests between successive clock ticks
=> every message will have greater timestamp than its previous
message (satisfies O1)
¢ degree of clock synchronization is better than minimum message
delivery time => timestamps of two causally related messages issued
by two clients will be such that earlier one should have lower
timestamp than later one (satisfies O2)
— stability test tolerating Byzantine failures
¢ request r is stable if local clock reads T and uid(r) < T-d (d: worst
case message delivery time)
¢ request r is stable if a request with larger uid has been received from
every client

Distributed Systems - Fault Tolerance

State-Machine Approach (cont.)

* Order requirement: replica-generated identifiers-based
— 2 phases are used
¢ phase 1: replicas propose uid as part of agreement protocol (SEEN)
¢ phase 2: one of candidates is selected and becomes uid (ACCEPTED)
— stability test
¢ request r that has been accepted by sm, is stable if there is no request
that has
= been seen by sm,,
= not been accepted by sm;, and
= for which cuid(sm;, r) <= uid(r) holds
where cuid(sm;, r) = max (SEEN;, ACCEPT,) + 1 +1i
SEEN;: largest cuid(sm;, r) assigned to any request r so far seen by sm;
ACCEPT;: largest uid(r) assgined to any request r so far accepted by sm;

uid(r) = max,,,; vy (cuid(sm;, r)) where NF be the set of replicas from
which candidate unique identifiers(cuid’s) were received

Distributed Systems - Fault Tolerance

State-Machine Approach (cont.)

* Order requirement: replica-generated identifiers-based (cont.)
— stability test for Byzantine failure
¢ sm; uses timeout for agreement protocol for disseminating cuid

¢ if sm, determines that sm;, timeout has happened, broadcast “sm; timeout”
to all replicas

¢ decision group is a set of replicas except any replica which k+1 or more
replicas have determined was timeout

Distributed Systems - Fault Tolerance

Primary-Backup Approach

Cost metrics of primary-backup protocols
— degree of replication
+ # of servers for fault tolerance
— blocking time

¢ worst cast period between a request and its response in any failure-
free execution

— failover-time

¢ worst-case period during which requests can be lost because there is
no primary

= Smallest degree of replication, blocking time, failover-time for k-
fault-tolerance?

Distributed Systems - Fault Tolerance

Primary-Backup Approach (cont.)

Protocol properties
— Pbl: there is at most one server whose state satisfies a condition
being a primary
¢ no more than one server is the primary at a time
— Pb2: each client maintains a server identity to which the client can
send a message

¢ a client sends a request to the service by sending it to the server it
believes to be the primary

— Pb3: if a client request arrives at a server that is not a primary, then
that request is not enqueued (thus, not processed)

* messages to a backup are ignored

— Pb4: there exist fixed value k and A such that the service behaves
like a single (k, A)-bofo server*®
* (k, A)-bofo server (bounded outage, finitely often) : all server failures
can be grouped into at most & intervals of time with each interval having
length at most A

Distributed Systems - Fault Tolerance

Primary-Backup Approach (cont.)

* Simple primary-backup protocol
— assumption
¢ one primary server p, and one backup server p,, connected via a
communication link (message delivery time upper bound: J)

¢ operations when p, receives a request from a client
= processes the request and updates its state
= send update info to p, (a state update message)
= send a response to the client without waiting for ack from p,

¢ p, sends a dummy message every T seconds; If p, receives a dummy message
for T + seconds, p, becomes a primary

— spec conformance
¢ Pbl: (p, has not crash) ” (p, has not received a
message from p, for T + &)=false
= Failover time: T+28

¢ Pb2: client ¢ sends a message to p, ¢
¢ Pb3: requests are not sent to p, until after p, has

failed P— 4
¢ Pb4: asingle (1, T+43)-bofo server P

Distributed Systems - Fault Tolerance

State-machine vs. Primary-backup

+ Comparison

State-machine Primary-backup Remarks
Arbitrary Yes No 2k+1 replication
Failure support for k-resilience
R) . Loss happens when
equest loss No Possible a primary fails
Failure handling | Voting Failover
“Request copy | as many servers | Only to primary | 2kt for arbitrary
as k-resilience k+1 for failstop
suffices
. Primary-backup approach
Overall cost expensive cheap is more popular in
commercial applications

Distributed Systems - Fault Tolerance

