
1

Distributed Systems (ICE 601)
Fault Tolerance

Dongman Lee
ICU

Distributed Systems - Fault Tolerance

Class Overview
• Introduction
• Failure Model
• Fault Tolerance Models

– state machine
– primary-backup

2

Distributed Systems - Fault Tolerance

Introduction
• Dependability

– availability
– reliability
– safety
– maintainability

• Fault
– failure, error, & fault
– system is considered faulty once its behavior is no longer

consistent with its specification [Schneider]
• Separation property of distribution systems lead to partial

failure property
– components that one component depends on may fail to respond due to

various reasons
system or network failure
system or network overload

Distributed Systems - Fault Tolerance

Failure Model
• Failure semantics

– description of the ways in which a service may fail

C S
d p

– recovery actions depends on the likely failure behavior of the
server when its failure is detected

– designers should ensure that the behavior of the server conforms to
a specified failure semantics

e.g. network with omission/time failure semantics
need to guarantee detection of message corruption such as checksum

stronger failure semantics costs more in general
– adequacy of failure semantics would require preliminary stochastic

analyses

3

Distributed Systems - Fault Tolerance

Failure Model (cont.)
• Representative faulty behavior

– Byzantine failures
system exhibits arbitrary and malicious behavior which may collude
with other systems

– fail-stop failures
when system fails, it changes to a state that allows others to detect its
failure and then stops

Distributed Systems - Fault Tolerance

Failure Model (cont.)
• Failure classification [Cristian]

– omission failure
– timing failure (performance failure)
– response failure
– crash failure

4

Distributed Systems - Fault Tolerance

Failure Model (cont.)
• Failure classification : omission failure

– a server omits to respond to an input
fail to perform actions a process or communication channel is
supposed to do

– communication omission failures
fail to transport a message from a sender’s outgoing buffer to a
receiver’s incoming buffer
possible causes

buffer overflow and/or transmission error
derived failures

send-omission failure
channel failures
receive-omission failures

Distributed Systems - Fault Tolerance

Failure Model (cont.)
• Failure classification: timing failure (performance failure)

– a server responds correctly but not in time (early or late)
– applicable only in synchronous systems

time limits are set on process execution, message delivery, and clock
drift rate

– clock failures
exceeding the bounds on clock drift rate

– performance failures
exceeding the bounds on the interval between two processing steps or
message transmission

5

Distributed Systems - Fault Tolerance

Failure Model (cont.)
• Failure classification: response failure (arbitrary failure)

– the term arbitrary or Byzantine to describe the worst possible
failure semantics (cf. omission and timing failures are called
benign) -> a server responds incorrectly

– a process arbitrarily omits intended steps or takes unintended steps
-> set or return wrong values

value failure: incorrect output
state transition failure: incorrect state transition
can’t detect by timeout

– communication arbitrary failures
message contents corruption or delivery of non-existent messages and
duplicate messages
detect by checksums or sequence numbers

Distributed Systems - Fault Tolerance

Failure Model (cont.)
• Failure classification: crash failure

– a server repeatedly fails to respond to inputs: process omission
failures

crash: halt and remain halted
a process crash is fail-stop if other processes can detect certainly that
the process has crashed

detection by timeout in synchronous systems
cf. asynchronous systems

– failure management depends on server state at restart
amnesia crash: no record of state at crash; reset to initial state
partial amnesia crash: partially recorded
pause crash: restart in state before crash
halting crash: no restart

6

Distributed Systems - Fault Tolerance

Failure Model (cont.)
• Masking failures

– by hiding failures or by converting them into a more acceptable
type of failures (e.g., checksums)

retransmission - masking communication omission failures
replication - masking process crashes

– reliable communication (masking communication omission
failures)

validity: any message is eventually delivered
integrity: the identical message is delivered exactly once

duplicate checking by sequence numbers
security measures against spurious message and replaying or tampering
with messages

Distributed Systems - Fault Tolerance

Fault-Tolerant Approaches
• Fault tolerance

– can detect a fault and either fail predictably or mask the fault from
users

– hiding the occurrence of errors in system components and
communications
incorporate redundant processing component to achieve fault
tolerance

• k-resilient/fault-tolerant
– a set of systems satisfies its specification if no more than k systems

become faulty
– k is chosen based on statistical measures of system reliability

Byzantine failure: 2k+1
fail-stop failure: k+1

7

Distributed Systems - Fault Tolerance

Fault-Tolerant Approaches (cont.)
• Two approaches to support fault tolerance (fault masking)

– hierarchical masking
hierarchical failure and recovery management

error detection in layered communication protocols
various levels of error abstraction in OS

– group failure masking
state-machine approach
primary-backup approach

• Fault tolerance support can be done
– hardware

stable storage
– software

replicated servers

Distributed Systems - Fault Tolerance

State-Machine Approach
• Requirements for k fault-tolerant state machine

– all replicas receive and process the same sequence of requests
agreement: every non-faulty replica receives every request

specify the interaction behavior of a client with state machine replicas
relaxed for read-only request in fail-stop failures

order: every non-faulty replica processes requests it receives in the
same relative order

specify the behavior of state machine replicas in term of how to process
requests from clients
relaxed for commutative requests

8

Distributed Systems - Fault Tolerance

State-Machine Approach (cont.)
• Agreement requirement

– to satisfy agreement requirement, state-machines should support a
message broadcasting protocol which conforms to

IC1: all non-faulty processors agree on the same value
IC2: if sender of request is non-faulty, then all non-faulty processors
use its value as the one on which they agree

– message broadcasting protocol is called Byzantine agreement
protocol or reliable broadcast protocol

Distributed Systems - Fault Tolerance

State-Machine Approach (cont.)
• Order requirement

– to implement order requirement requires
assignment of unique identifier to each message
stability (a request is ready to be delivered once all the previous
requests have been delivered) test

– assumptions on order requirement
O1: requests issued by a single client to a given state machine sm are
processed by sm in the order they were issued
O2: if the fact that a request r was made to a state machine sm by a
client c could have caused a request r’ to be made by a client c’ to sm,
then sm processes r before r’

– three approaches
logical clock-based
synchronized real-time clock-based
replica-generated identifiers-based

9

Distributed Systems - Fault Tolerance

State-Machine Approach (cont.)
• Order requirement: logical clock-based

– only for fail-stop failures
– unique id assignment: logical clock

LC1: timestamp is incremented after each event at p
LC2: upon receipt of a message with timestamp t, process p resets its
timestamp Tp to max(Tp, t)+1

– stability test
a request is stable at replica smi if a request with larger timestamp has
been received by smi from every client running on a non-faulty
processor

messages between a pair of processors are delivered in the order sent
processor p detects that a failstop process q has failed only after p has
received q’s last message sent to p

Distributed Systems - Fault Tolerance

State-Machine Approach (cont.)
• Order requirement: synchronized physical clock-based

– unique id assignment
no client makes two or more requests between successive clock ticks
=> every message will have greater timestamp than its previous
message (satisfies O1)
degree of clock synchronization is better than minimum message
delivery time => timestamps of two causally related messages issued
by two clients will be such that earlier one should have lower
timestamp than later one (satisfies O2)

– stability test tolerating Byzantine failures
request r is stable if local clock reads T and uid(r) < T-d (d: worst
case message delivery time)
request r is stable if a request with larger uid has been received from
every client

10

Distributed Systems - Fault Tolerance

State-Machine Approach (cont.)
• Order requirement: replica-generated identifiers-based

– 2 phases are used
phase 1: replicas propose uid as part of agreement protocol (SEEN)
phase 2: one of candidates is selected and becomes uid (ACCEPTED)

– stability test
request r that has been accepted by smi is stable if there is no request
that has

been seen by smi,
not been accepted by smi, and
for which cuid(smi, r) <= uid(r) holds
where cuid(smi, r) = max (SEENi, ACCEPTi) + 1 + i
SEENi: largest cuid(smi, r) assigned to any request r so far seen by smi

ACCEPTi: largest uid(r) assgined to any request r so far accepted by smi

uid(r) = maxsmj∈NF (cuid(smj, r)) where NF be the set of replicas from
which candidate unique identifiers(cuid’s) were received

Distributed Systems - Fault Tolerance

State-Machine Approach (cont.)
• Order requirement: replica-generated identifiers-based (cont.)

– stability test for Byzantine failure
smi uses timeout for agreement protocol for disseminating cuid
if smi determines that smj timeout has happened, broadcast “smj timeout”
to all replicas
decision group is a set of replicas except any replica which k+1 or more
replicas have determined was timeout

11

Distributed Systems - Fault Tolerance

Primary-Backup Approach
• Cost metrics of primary-backup protocols

– degree of replication
of servers for fault tolerance

– blocking time
worst cast period between a request and its response in any failure-
free execution

– failover-time
worst-case period during which requests can be lost because there is
no primary

⇒Smallest degree of replication, blocking time, failover-time for k-
fault-tolerance?

Distributed Systems - Fault Tolerance

Primary-Backup Approach (cont.)
• Protocol properties

– Pb1: there is at most one server whose state satisfies a condition
being a primary

no more than one server is the primary at a time
– Pb2: each client maintains a server identity to which the client can

send a message
a client sends a request to the service by sending it to the server it
believes to be the primary

– Pb3: if a client request arrives at a server that is not a primary, then
that request is not enqueued (thus, not processed)

messages to a backup are ignored
– Pb4: there exist fixed value k and ∆ such that the service behaves

like a single (k, ∆)-bofo server*
* (k, ∆)-bofo server (bounded outage, finitely often) : all server failures
can be grouped into at most k intervals of time with each interval having
length at most ∆

12

Distributed Systems - Fault Tolerance

Primary-Backup Approach (cont.)
• Simple primary-backup protocol

– assumption
one primary server p1 and one backup server p2, connected via a
communication link (message delivery time upper bound: δ)
operations when p1 receives a request from a client

processes the request and updates its state
send update info to p2 (a state update message)
send a response to the client without waiting for ack from p2

p1 sends a dummy message every τ seconds; If p2 receives a dummy message
for τ + δ seconds, p2 becomes a primary

δ

c

p1

p2

τ 1

2

3
4

– spec conformance
Pb1: (p1 has not crash) ^ (p2 has not received a
message from p1 for τ + δ)=false

Failover time: τ+2δ
Pb2: client c sends a message to p1

Pb3: requests are not sent to p2 until after p1 has
failed
Pb4: a single (1, τ+4δ)-bofo server

Distributed Systems - Fault Tolerance

State-machine vs. Primary-backup
• Comparison

State-machine Primary-backup

Arbitrary
Failure support

Request loss

Failure handling

Request copy

Yes

Failover

Overall cost

No

Voting

as many servers
as k-resilience
suffices

expensive

Only to primary

cheap

No

Possible

2k+1 replication
for k-resilience

Loss happens when
a primary fails

Primary-backup approach
is more popular in
commercial applications

Remarks

2k+1 for arbitrary
k+1 for failstop

