
This and upcoming lectures?

We�’ll focus on concepts relating to time
Time as it can be �“used�” in systems
Systems that present behaviors best
understood in terms of temporal models
(notably the transactional model)
Event ordering used to ensure consistency
in distributed systems (multicasts that
update replicated data or program state)

What time is it?

In distributed system we need practical
ways to deal with time

E.g. we may need to agree that update A
occurred before update B
Or offer a �“lease�” on a resource that
expires at time 10:10.0150
Or guarantee that a time critical event will
reach all interested parties within 100ms

But what does time �“mean�”?

Time on a global clock?
E.g. with GPS receiver

�… or on a machine�’s local clock
But was it set accurately?
And could it drift, e.g. run fast or slow?
What about faults, like stuck bits?

�… or could try to agree on time

Lamport�’s approach

Leslie Lamport suggested that we
should reduce time to its basics

Time lets a system ask �“Which came first:
event A or event B?�”
In effect: time is a means of labeling
events so that�…

If A happened before B, TIME(A) < TIME(B)
If TIME(A) < TIME(B), A happened before B

Drawing time-line pictures:

p

m

sndp(m)

q
rcvq(m) delivq(m)

D

Drawing time-line pictures:

A, B, C and D are �“events�”.
Could be anything meaningful to the application
So are snd(m) and rcv(m) and deliv(m)

What ordering claims are meaningful?

p

m

A

C

B

rcvq(m) delivq(m)

D

sndp(m)

q

Drawing time-line pictures:

A happens before B, and C before D
�“Local ordering�” at a single process
Write and

p

q

m

A

C

B

rcvq(m) delivq(m)

sndp(m)

BA
p

DC
q

D

Drawing time-line pictures:

sndp(m) also happens before rcvq(m)
�“Distributed ordering�” introduced by a message
Write

p

q

m

A

C

B

rcvq(m) delivq(m)

sndp(m)

)m(rcv)m(snd q

M

p

D

Drawing time-line pictures:

A happens before D
Transitivity: A happens before sndp(m), which
happens before rcvq(m), which happens before D

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

Drawing time-line pictures:

B and D are concurrent
Looks like B happens first, but D has no
way to know. No information flowed�…

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

Happens before �“relation�”

We�’ll say that �“A happens before B�”,
written A B, if

1. A PB according to the local ordering, or
2. A is a snd and B is a rcv and A MB, or
3. A and B are related under the transitive

closure of rules (1) and (2)

So far, this is just a mathematical
notation, not a �“systems tool�”

Logical clocks

A simple tool that can capture parts of
the happens before relation
First version: uses just a single integer

Designed for big (64-bit or more) counters
Each process p maintains LTp, a local
counter
A message m will carry LTm

Rules for managing logical clocks

When an event happens at a process p it
increments LTp.

Any event that matters to p
Normally, also snd and rcv events (since we want
receive to occur �“after�” the matching send)

When p sends m, set
LTm = LTp

When q receives m, set
LTq = max(LTq, LTm)+1

Time-line with LT annotations

LT(A) = 1, LT(sndp(m)) = 2, LT(m) = 2
LT(rcvq(m))=max(1,2)+1=3, etc�…

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

LTq 0 0 0 1 1 1 1 3 3 3 4 5 5

LTp 0 1 1 2 2 2 2 2 2 3 3 3 3

Logical clocks

If A happens before B, A B,
then LT(A)<LT(B)
But converse might not be true:

If LT(A)<LT(B) can�’t be sure that A B
This is because processes that don�’t
communicate still assign timestamps and
hence events will �“seem�” to have an order

Can we do better?

One option is to use vector clocks
Here we treat timestamps as a list

One counter for each process

Rules for managing vector times differ
from what did with logical clocks

Vector clocks

Clock is a vector: e.g. VT(A)=[1, 0]
We�’ll just assign p index 0 and q index 1
Vector clocks require either agreement on the
numbering, or that the actual process id�’s be
included with the vector

Rules for managing vector clock
When event happens at p, increment VTp[indexp]

Normally, also increment for snd and rcv events
When sending a message, set VT(m)=VTp

When receiving, set VTq=max(VTq, VT(m))

Time-line with VT annotations

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

VTq 0
0

0
0

0
0

0
1

0
1

0
1

0
1

2
2

2
2

2
2

2
3

2
3

2
4

VTp 0
0

1
0

1
0

2
0

2
0

2
0

2
0

2
0

2
0

3
0

3
0

3
0

3
0

VT(m)=[2,0]

Could also be [1,0] if we decide not to increment the clock on a
snd event. Decision depends on how the timestamps will be used.

Rules for comparison of VTs

We�’ll say that VTA VTB if
I, VTA[i] VTB[i]

And we�’ll say that VTA < VTB if
VTA VTB but VTA VTB

That is, for some i, VTA[i] < VTB[i]
Examples?

[2,4] [2,4]
[1,3] < [7,3]
[1,3] is �“incomparable�” to [3,1]

Time-line with VT annotations

VT(A)=[1,0]. VT(D)=[2,4]. So VT(A)<VT(D)
VT(B)=[3,0]. So VT(B) and VT(D) are incomparable

p

q

m

A

C

B

rcvq(m) delivq(m)

sndp(m)

D

VTq 0
0

0
0

0
0

0
1

0
1

0
1

0
1

2
2

2
2

2
2

2
3

2
3

2
4

VTp 0
0

1
0

1
0

2
0

2
0

2
0

2
0

2
0

2
0

3
0

3
0

3
0

3
0

VT(m)=[2,0
]

Vector time and happens before

If A B, then VT(A)<VT(B)
Write a chain of events from A to B
Step by step the vector clocks get larger

If VT(A)<VT(B) then A B
Two cases: if A and B both happen at same
process p, trivial
If A happens at p and B at q, can trace the path
back by which q �“learned�” VTA[p]

Otherwise A and B happened concurrently

Introducing �“wall clock time�”

There are several options
�“Extend�” a logical clock or vector clock with
the clock time and use it to break ties

Makes meaningful statements like �“B and D
were concurrent, although B occurred first�”
But unless clocks are closely synchronized such
statements could be erroneous!

We use a clock synchronization algorithm
to reconcile differences between clocks on
various computers in the network

Synchronizing clocks

Without help, clocks will often differ by
many milliseconds

Problem is that when a machine downloads
time from a network clock it can�’t be sure
what the delay was
This is because the �“uplink�” and �“downlink�”
delays are often very different in a network

Outright failures of clocks are rare�…

Synchronizing clocks

Suppose p synchronizes with time.windows.com and notes that 123 ms
elapsed while the protocol was running�… what time is it now?

p

time.windows.com

What time is it?

09:23.02921

Delay: 123ms

Synchronizing clocks

Options?
P could guess that the delay was evenly split, but
this is rarely the case in WAN settings (downlink
speeds are higher)
P could ignore the delay
P could factor in only �“certain�” delay, e.g. if we
know that the link takes at least 5ms in each
direction. Works best with GPS time sources!

In general can�’t do better than uncertainty in
the link delay from the time source down to p

Consequences?

In a network of processes, we must
assume that clocks are

Not perfectly synchronized. Even GPS has
uncertainty, although small

We say that clocks are �“inaccurate�”

And clocks can drift during periods
between synchronizations

Relative drift between clocks is their �“precision�”

Thought question

We are building an anti-missile system
Radar tells the interceptor where it should
be and what time to get there
Do we want the radar and interceptor to
be as accurate as possible, or as precise as
possible?

Thought question

We want them to agree on the time but
it isn�’t important whether they are
accurate with respect to �“true�” time

�“Precision�” matters more than �“accuracy�”
Although for this, a GPS time source would
be the way to go

Might achieve higher precision than we can
with an �“internal�” synchronization protocol!

Real systems?

Typically, some �“master clock�” owner
periodically broadcasts the time
Processes then update their clocks

But they can drift between updates
Hence we generally treat time as having
fairly low accuracy
Often precision will be poor compared to
message round-trip times

Clock synchronization

To optimize for precision we can
Set all clocks from a GPS source or some other
time �“broadcast�” source

Limited by uncertainty in downlink times

Or run a protocol between the machines
Many have been reported in the literature
Precision limited by uncertainty in message delays
Some can even overcome arbitrary failures in a subset of
the machines!

For next time

Read the introduction to Chapter 14 to
be sure you are comfortable with
notions of time and with notation
Chapter 23 looks at clock
synchronization

