
Cristina Nita-Rotaru Lecture 4/ Spring 2006 1

CS603: Distributed Systems

Lecture 4: Overcoming
failures in distributed

systems

Cristina Nita-Rotaru Lecture 4/ Spring 2006 2

Things go very wrong…

CLIENT

CLIENT

CLIENT

CLIENT

CLIENT

BACKUP

PRIMARY

I am the new
Primary !!!!

I am still the
Primary

 Swich to backup

Oops, no
Service !

Cristina Nita-Rotaru Lecture 4/ Spring 2006 3

Outline

 Processes do not have the same ‘view’
of the system, some perceived ‘primary
down’, some perceived ‘primary up’

l Order of events in
distributed systems

l Failure detection

l Membership

Cristina Nita-Rotaru Lecture 4/ Spring 2006 4

THE BAD NEWS

l We can not detect failures in a trustworthy,
consistent manner

l We can not reach a state of “common
knowledge” concerning something not
agreed upon in the first place

l We can not guarantee agreement on things
(election of a leader, update to a replicated
variable) in a way certain to tolerate failures

CAN WE DO ANYTHING?

Cristina Nita-Rotaru Lecture 4/ Spring 2006 5

System Model Dimensions

l Non-deterministic processes
l Communication is through messages
l Network can be a clique or a graph, not every

machine can connect to every other machine
l Network packets can be lost, duplicated, delivered

very late or out of order, spied upon, replayed,
corrupted, source or destination address can lie

l Communication can be authenticated or not
l Execution model can be
ß Asynchronous: no synchronized clocks or time-bounds on

message delays.
ß Synchronous: execution is partitioned in rounds, all

messages send in a round are delivered in that round

Cristina Nita-Rotaru Lecture 4/ Spring 2006 6

Execution, Configuration, Events

l Set of processes pi, each process with a
state si

l Configuration Ct: set of state of each process
at some moment

l Events: send and deliver, events can change
the state at a process

l Execution: sequence of configuration and
events

Cristina Nita-Rotaru Lecture 4/ Spring 2006 7

Safety and Liveness

l Safety: a condition that must hold in
every finite prefix of a sequence (from an
execution)

“nothing bad happens”

l Liveness: a condition that must hold a
certain number of times

“something good happens”

Cristina Nita-Rotaru Lecture 4/ Spring 2006 8

Ordering of Events

l Order of events, particularly causality helps in
reasoning or analyzing a system

l Single process: follow the sequence of events,
each event has a timestamp and the causality
relation between events is given by time

l Distributed processes: many events generated
at different processes, how to order events?

l Time is essential for ordering events in a
distributed system
ß Physical time: local clock; global clock
ß Logical time: partial ordering, total ordering

Cristina Nita-Rotaru Lecture 4/ Spring 2006 13

From Theory to Practice

l What does it take to synchronize many
computers across several networks?

l NTP

l How does NTP protocols relate to the
protocols described before?

l A good source is:
l www.eecis.udel.edu/~mills/database/brief/overview/overview.ppt

Cristina Nita-Rotaru Lecture 4/ Spring 2006 14

From Theory to Practice

l Consider a sensor network

l Communication is expensive (even if a
node does not have any data to receive,
just listening consumes power)

l Power is limited

l Synchronization is important because
ß Nodes can sleep and save battery

ß Communication may be avoided

Cristina Nita-Rotaru Lecture 4/ Spring 2006 15

From Physical Clocks to Logical Clocks

l Synchronized clocks are great if we have
them, but

l Why do we need the time anyway?

l In distributed systems we care about
‘what happened before what’

Cristina Nita-Rotaru Lecture 4/ Spring 2006 16

``HAPPENED BEFORE’’

p2

p3

p1

p4

l If events a and b take place at the
same process and a occurs before b
 a Æ b

l If a is send event at p1 and b is deliver
event at p2, p1 ≠ p2
 a Æ b

l If a Æ b and b Æ c then a Æ c

Cristina Nita-Rotaru Lecture 4/ Spring 2006 17

Logical Clocks: Lamport Clocks

l Each process maintains his own clock Ci (a counter)
l Clock Condition: for any events a and b in process pi

 if a Æ b then Ci(a) < Ci(b)

l Implementation:
ß each process pi increments Ci between any successive events
ß on send event a, attach to the message m local clock

Tm = Ci(a)
ß on receive of message m process Pk sets Ck to

Ck = max(Ck ,Tm) + 1

Cristina Nita-Rotaru Lecture 4/ Spring 2006 18

Lamport Clocks: Total Order

l Logical Clocks only provide partial order
l Create Total Order by breaking the ties
l Example to break ties, use process identifiers,

have on order on process identifiers:
If a is event in pi and b is event in p then
 a Æ b iff

Ci(a) < Cj(b) or
Ci(a) = Cj(b) and pi < pj

Cristina Nita-Rotaru Lecture 4/ Spring 2006 19

Lamport Clocks: Example

p1

p2

p3

1

2 3 6 7 8

4 5 6 9

8

7

Cristina Nita-Rotaru Lecture 4/ Spring 2006 20

Reminder: Partial and Total Order

l Definition: A relation R over a set S is a partial
order iff for each a, b, and c in S:

aRa (reflexive).
aRb Ÿ bRa fi a = b (antisymmetric).

aRb Ÿ bRc fi aRc (transitive).

l Definition: A relation R over a set S is total order if
for each distinct a and b in S, R is antisymmetric,
transitive and either aRb or bRa.

Cristina Nita-Rotaru Lecture 4/ Spring 2006 21

Concurrent Events

l Concurrent events:
If a Æb and b Æa then

 a and b are concurrent

l Logical clocks assigns order to events that are
causally independent, in other words events that
are causally independent appear as if they
happened in a certain order

l We need a ‘vector time’

Cristina Nita-Rotaru Lecture 4/ Spring 2006 22

Vector Clocks

l Each process maintains a vector Ci initially [0, 0, ...,
0].

l When pi executes an event, it increments Ci[i]

l When pi sends a message m to pj, it piggybacks Ci

on m.

l When pi receives a message m,
" j: 1 £ j £ n, j ≠ i: Ci[j] = max(Ci[j], m.C[j])
Ci[i] = Ci[i] + 1.

Cristina Nita-Rotaru Lecture 4/ Spring 2006 23

Vector Clocks: Example

p1

p2

p3

0 1 0

0 0 0

2 1 1

0 0 0

0 0 0

1 1 0 2 1 0

2 1 2

3 1 2

2 1 3

2 2 3

4 1 2 5 1 2

4 3 3

5 1 4

Cristina Nita-Rotaru Lecture 4/ Spring 2006 24

How to Order with Vector Clocks

l Given two events a and b, a Æ b if and only if

l b has a counter value for the process in which a occurred
greater than or equal to the value of that process at event a
inclusive, and

l a has a counter value for the process in which b occurred
strictly less than the value of that process at event b inclusive.

b Æ a ≡ " i: 1 £ i £ n: V(b)[i] £ V(a)[i]
 Ÿ $ i: 1 £ i £ n: V(b)[i] < V(a)[i]

b || a ≡ $ i: 1 £ i £ n: V(b)[i] < V(a)[i]
Ÿ $ i: 1 £ i £ n: V(a)[i] < V(b)[i]

Cristina Nita-Rotaru Lecture 4/ Spring 2006 25

Using Ordering…: Consistent Cuts

l There is no outside observer that can look at the
system and detect problems, for example a deadlock

l Cut: n-vector (k0, … kn-1) of positive integers

l Consistent cut: if for all i, j, (ki + 1) event at process
pi did not ‘happened before’ kj event at pj

p2

p1
1

1 2

2

3

43

4

Consistent cut Inconsistent cut

Cristina Nita-Rotaru Lecture 4/ Spring 2006 26

Detecting failures

l Impossibility result: it is impossible to design an
asynchronous fault-tolerant consensus algorithm,
even when only one process can crash. (FLP85)

l Proof Idea: It is shown how an infinite sequence of
events can be constructed such that the algorithm
never terminates (stays indecisive forever).

l The impossibility comes from the fact that in an
asynchronous system, it is impossible to
distinguish between a faulty-process and a slow
process.

Cristina Nita-Rotaru Lecture 4/ Spring 2006 27

Failure Detectors as an Abstraction

l Failure detector: distributed oracle that
makes guesses about process failures

l Accuracy: the failure detector makes no
mistakes when labeling processes as faulty.

l Completeness: the failure detector “eventually”
(after some time) suspects every process that
actually crashes.

l Classified based on their properties

l Used to solve different distributed systems
problems

Cristina Nita-Rotaru Lecture 4/ Spring 2006 28

l Strong Completeness: There is a time after
which every process that crashes is
suspected by EVERY correct process.

l Weak Completeness: There is a time after
which every process that crashes is
permanently suspected by SOME correct
process.

Completeness

Cristina Nita-Rotaru Lecture 4/ Spring 2006 29

l Strong Accuracy: No process is suspected before it
crashes.

l Weak Accuracy: Some correct process is never
suspected. (at least one correct process is never
suspected)

l Eventual Strong Accuracy: There is a time after which
correct processes are not suspected by any correct
process.

l Eventual Weak Accuracy: There is a time after which
some correct process is never suspected by any correct
process.

Accuracy

Cristina Nita-Rotaru Lecture 4/ Spring 2006 30

Perfect Failure Detector

l A perfect failure detector has strong
accuracy and strong completeness

l THIS IS AN ABSTRACTION

l IT IS IMPOSSIBLE TO HAVE A
PERFECT FAILURE DETECTOR

l We have to live with … unreliable
failures detectors…

Cristina Nita-Rotaru Lecture 4/ Spring 2006 31

l Unreliable failure detectors can make mistakes
l A process is suspected that it was faulty, that can be

true or false, if false the list of alive processes is
modified.

l Failure detectors can add/remove processed from
the list of suspects; different processes have
different lists.

l The assumptions are that:
ß After a while the network becomes stable so the failure

detector does not make mistakes anymore.
ß In the unstable period, the failure detector can make

mistakes.

Unreliable Failure Detectors

Cristina Nita-Rotaru Lecture 4/ Spring 2006 32

l Push: processes keep sending
heartbeats “I am alive” to the monitor. If
no message is received for awhile from
some process, that process is suspected
as being dead.

l Pull: monitor asks the processes “Are
you alive?”, and process will respond
“Yes, I am alive”. If no answer is
received from some process, the
process is suspected as being dead.

l What are advantages and disadvantages
of these two models?

Failure Detection Implementation

Cristina Nita-Rotaru Lecture 4/ Spring 2006 33

ß Detection time
ß Mistake recurrence time
ß Mistake duration
ß Average mistake rate
ß Query accuracy probability
ß Good period duration
ß Network load

Metrics for Failure Detectors

Cristina Nita-Rotaru Lecture 4/ Spring 2006 34

Failure Detectors Implementation

l Every process must know about who
failed

l How to disseminate the information

l How about if not every node can
communicate directly with another node?

Cristina Nita-Rotaru Lecture 4/ Spring 2006 36

REQUIRED READING

l Leslie Lamport for "Time, Clocks, and
the Ordering of Events in a Distributed
System," Communications of the ACM,
July 1978, 21(7):558-565.

l Michael J. Fischer, Nancy A. Lynch,
and Michael S. Paterson for
"Impossibility of Distributed Consensus
with One Faulty Process," Journal of
the ACM, April 1985, 32(2):374-382.

l Unreliable Failure Detectors for Reliable
Distributed Systems, T. Chandra and S.
Toueg. 1996.

