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CS603: Distributed Systems

Lecture 4: Overcoming
failures in distributed

systems
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Things go very wrong…

CLIENT

CLIENT

CLIENT

CLIENT

CLIENT

BACKUP

PRIMARY

I am the new 
Primary !!!!

I am still the
Primary

 Swich to backup

Oops, no
Service !
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Outline

   Processes do not have the same ‘view’
of the system, some perceived ‘primary
down’, some perceived ‘primary up’

l Order of events in
distributed systems

l Failure detection

l Membership
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THE BAD NEWS

l We can not detect failures in a trustworthy,
consistent manner

l We can not reach a state of “common
knowledge” concerning something not
agreed upon in the first place

l We can not guarantee agreement on things
(election of a leader, update to a replicated
variable) in a way certain to tolerate failures

CAN WE DO ANYTHING?
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System Model Dimensions

l Non-deterministic processes
l Communication is through messages
l Network can be a clique or a graph, not every

machine can connect to every other machine
l Network packets can be lost, duplicated, delivered

very late or out of order, spied upon, replayed,
corrupted, source or destination address can lie

l Communication can be authenticated or not
l Execution model can be
ß Asynchronous: no synchronized clocks or time-bounds on

message delays.
ß Synchronous: execution is partitioned in rounds, all

messages send in a round are delivered in that round
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Execution, Configuration, Events

l Set of processes pi, each process with a
state si

l Configuration Ct: set of state of each process
at some moment

l Events: send and deliver, events can change
the state at a process

l Execution: sequence of configuration and
events
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Safety and Liveness

l Safety: a condition that must hold in
every finite prefix of a sequence (from an
execution)

“nothing bad happens”

l Liveness: a condition that must hold a
certain number of times

“something good happens”
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Ordering of Events

l Order of events, particularly causality helps in
reasoning or analyzing a system

l Single process: follow the sequence of events,
each event has a timestamp and the causality
relation between events is given by time

l Distributed processes: many events generated
at different processes, how to order events?

l Time is essential for ordering events in a
distributed system
ß Physical time: local clock; global clock
ß Logical time: partial ordering, total ordering
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From Theory to Practice

l What does it take to synchronize many
computers across several networks?

l NTP

l How does NTP protocols relate to the
protocols described before?

l A good source is:
l www.eecis.udel.edu/~mills/database/brief/overview/overview.ppt
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From Theory to Practice

l Consider a sensor network

l Communication is expensive (even if a
node does not have any data to receive,
just listening consumes power)

l Power is limited

l Synchronization is important because
ß Nodes can sleep and save battery

ß Communication may be avoided
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From Physical Clocks to Logical Clocks

l Synchronized clocks are great if we have
them, but

l Why do we need the time anyway?

l In distributed systems we care about
‘what happened before what’
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``HAPPENED BEFORE’’

p2

p3

p1

p4

l If events a and b take place at the
same process and  a occurs before b
     a Æ b

l If a is send event at p1 and b is deliver
event at p2, p1 ≠ p2
     a Æ b

l If  a Æ b  and   b Æ c then  a Æ c
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Logical Clocks: Lamport Clocks

l Each process maintains his own clock Ci (a counter)
l Clock Condition: for any events a and b in process pi

              if a Æ b then Ci(a)  <  Ci(b)

l Implementation:
ß each process  pi increments Ci between any successive events
ß on send event a, attach to the message m local clock

Tm = Ci(a)
ß on receive of message m process Pk sets Ck to

Ck = max(Ck ,Tm) + 1
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Lamport Clocks: Total Order

l Logical Clocks only provide partial order
l Create Total Order by breaking the ties
l Example to break ties, use process identifiers,

have on order on process identifiers:
If a is event in pi and b is event in p  then
                                 a Æ b    iff

Ci(a) < Cj(b)   or
Ci(a) = Cj(b)  and pi < pj
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Lamport Clocks: Example

p1

p2

p3

1

2 3 6 7 8

4 5 6 9

8

7
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Reminder: Partial and Total Order

l Definition: A relation R over a set S is a partial
order iff for each a, b, and c in S:

aRa (reflexive).
aRb Ÿ bRa fi a = b (antisymmetric).

aRb Ÿ bRc fi aRc (transitive).

l Definition:  A relation R over a set S is total order if
for each distinct a and b in S, R is antisymmetric,
transitive and either aRb or bRa.
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Concurrent Events

l Concurrent events:
If a Æb and b Æa then

       a and b are concurrent

l Logical clocks assigns order to events that are
causally independent, in other words events that
are causally independent appear as if they
happened in a certain order

l We need a ‘vector time’
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Vector Clocks

l Each process maintains a vector Ci  initially [0, 0, ...,
0].

l When pi executes an event, it increments Ci[i]

l When pi sends a message m to pj, it piggybacks Ci

on m.

l When pi receives a message m,
" j: 1 £ j £ n, j ≠ i: Ci[j] = max(Ci[j], m.C[j])
Ci[i] = Ci[i] + 1.
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Vector Clocks: Example

p1

p2

p3

0 1 0

0 0 0

2 1 1

0 0 0

0 0 0

1 1 0 2 1 0

2 1 2

3 1 2

2 1 3

2 2 3

4 1 2 5 1 2

4 3 3

5 1 4
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How to Order with Vector Clocks

l Given two events a and b,   a Æ b if and only if

l  b has a counter value for the process in which a occurred
greater than or equal to the value of that process at event a
inclusive, and

l  a has a counter value for the process in which b occurred
strictly less than the value of that process at event b inclusive.

b Æ a ≡ " i: 1 £ i £ n: V(b)[i] £ V(a)[i]
 Ÿ $ i: 1 £ i £ n: V(b)[i] < V(a)[i]

b || a ≡ $ i: 1 £ i £ n: V(b)[i] < V(a)[i]
Ÿ $ i: 1 £ i £ n: V(a)[i] < V(b)[i]
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Using Ordering…: Consistent Cuts

l There is no outside observer that can look at the
system and detect problems, for example a deadlock

l Cut: n-vector (k0, … kn-1) of positive integers

l Consistent cut: if for all i, j, (ki + 1) event at process
pi did not ‘happened before’ kj event at pj

p2

p1
1

1 2

2

3

43

4

Consistent cut Inconsistent cut
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Detecting failures

l Impossibility result: it is impossible to design an
asynchronous fault-tolerant consensus algorithm,
even when only one process can crash. (FLP85)

l Proof Idea: It is shown how an infinite sequence of
events can be constructed such that the algorithm
never terminates (stays indecisive forever).

l The impossibility comes from the fact that in an
asynchronous system, it is impossible to
distinguish between a faulty-process and a slow
process.
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Failure Detectors as an Abstraction

l Failure detector: distributed oracle that
makes guesses about process failures

l Accuracy: the failure detector makes no
mistakes when labeling processes as faulty.

l Completeness: the failure detector “eventually”
(after some time) suspects every process that
actually crashes.

l Classified based on their properties

l Used to solve different distributed systems
problems
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l Strong Completeness: There is a time after
which every process that crashes is
suspected by EVERY correct process.

l Weak Completeness: There is a time after
which every process that crashes is
permanently suspected by SOME correct
process.

Completeness
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l Strong Accuracy: No process is suspected before it
crashes.

l Weak Accuracy: Some correct process is never
suspected. (at least one correct process is never
suspected)

l Eventual Strong Accuracy: There is a time after which
correct processes are not suspected by any correct
process.

l Eventual Weak Accuracy: There is a time after which
some correct process is never suspected by any correct
process.

Accuracy
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Perfect Failure Detector

l A perfect failure detector has strong
accuracy and strong completeness

l THIS IS AN ABSTRACTION

l IT IS IMPOSSIBLE TO HAVE A
PERFECT FAILURE DETECTOR

l We have to live with … unreliable
failures detectors…
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l Unreliable failure detectors can make mistakes
l A process is suspected that it was faulty, that can be

true or false, if false the list of alive processes is
modified.

l Failure detectors can add/remove processed from
the list of suspects; different processes have
different lists.

l The assumptions are that:
ß After a while the network becomes stable so the failure

detector does not make mistakes anymore.
ß In the unstable period, the failure detector can make

mistakes.

Unreliable Failure Detectors
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l Push: processes keep sending
heartbeats “I am alive” to the monitor. If
no message is received for awhile from
some process, that process is suspected
as being dead.

l Pull:  monitor asks the processes “Are
you alive?”, and process will respond
“Yes, I am alive”. If no answer is
received from some process, the
process is suspected as being dead.

l What are advantages and disadvantages
of these two models?

Failure Detection Implementation
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ß Detection time
ß Mistake recurrence time
ß Mistake duration
ß Average mistake rate
ß Query accuracy probability
ß Good period duration
ß Network load

Metrics for Failure Detectors
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Failure Detectors Implementation

l Every process must know about who
failed

l How to disseminate the information

l How about if not every node can
communicate directly with another node?
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