
1

Distributed Systems (ICE 601)
Transactions & Concurrency Control - Part1

Dongman Lee
ICU

Distributed Systems - Transactions & Concurrency Control (1/2)

Class Overview
• Transactions
• Why Concurrency Control
• Concurrency Control Protocols

– pessimistic
– optimistic
– time-based

2

Distributed Systems - Transactions & Concurrency Control (1/2)

Transactions
• Definition

– a sequence of one or more operations on one or more resources
that is

Atomic: all or nothing
Consistent: takes system from one consistent state to another
Isolated: intermediate states invisible to others (serializable)
Durable: once completed (committed), changes are permanent

• Primitives
– BeginTransaction

start transaction and get an ID
– EndTransaction

commit (make all writes durable) or abort (discard all changes made
by writes) transaction

– AbortTransaction
– Read, Write, ...

Distributed Systems - Transactions & Concurrency Control (1/2)

Transactions (cont.)
• Issues with aborts

– dirty reads
a transaction commits read operations on a value that another
transaction wrote but aborted later

– cascading aborts
all the related transactions abort together in a cascading fashion

– premature writes
a value written by one transaction becomes nullified by the restored
value that is restored by a recovery of other transaction after its abort

• Recoverability of transactions
– a transaction that has a possibility of “dirty reads” should delay its

commit until the affecting transaction commits
– any read operation must be delayed until other transactions that

applied a write operation to the same object have committed or
aborted (stronger than recoverability)

– write operations must be delayed until earlier transactions that
updated the same objects have either committed or aborted

– strict execution & tentative versions

3

Distributed Systems - Transactions & Concurrency Control (1/2)

Nested Transactions
• Rules for commitment of nested transactions

– a transaction may commit or abort only after its child transactions
have completed

– when a sub-transaction completes, it makes an independent
decision either to commit provisionally or to abort. Its decision to
abort is final

– when a parent aborts, all of its sub-transactions are aborted
– when a sub-transaction aborts, the parent can decide whether to

abort or not
T : top-level transaction

T1 = openSubTransaction T2 = openSubTransaction

openSubTransaction openSubTransactionopenSubTransaction

openSubTransaction

T1 : T2 :

T11 : T12 :

T211 :

T21 :

prov.commit

prov. commit

abort

prov. commitprov. commit

prov. commit

commit

Distributed Systems - Transactions & Concurrency Control (1/2)

Distributed Transactions
• Definition

– a transaction in which more than one server is
involved

multiple servers are called by a client (simple
distributed transaction)
a server calls another servers (nested
transaction)

– execution of program accessing shared data at
multiple sites [Lamport]

• Requirement
– a client requires to get congruent commitment

from involved servers due to atomic property
of a transaction

• Resolution
– coordination
– atomic commitment protocol

4

Distributed Systems - Transactions & Concurrency Control (1/2)

Why Concurrency Control?
• Concurrent access to a shared resource may cause

inconsistency of the resource
– inconsistency examples

lost updates
two transactions concurrently perform update operation

inconsistent retrievals
performing retrieval operation before or during update operation

Transaction A

balance = read(foo);

write(foo, balance+4);

Transaction B

balance = read(foo);
write (foo, balance-3);

Transaction A

balance = read(foo);
write(foo, balance-10);

balance = read(bar);
write(bar, balance+10);

Transaction B

balance = read(foo);
balance += read(bar);

Distributed Systems - Transactions & Concurrency Control (1/2)

Basic Principle of Concurrency Control
• To avoid possible problems due to concurrent access,

operations of related transactions must be serialized (one-
at-a-time)

Transaction A

balance = read(foo);
write(foo, balance+4);

Transaction B

balance = read(foo);
write (foo, balance-3);

Transaction A

balance = read(foo);
write(foo, balance-10);
balance = read(bar);
write(bar, balance+10);

Transaction B

balance = read(foo);

balance += read(bar);

– strict two-phase locking
lock is obtained (phase 1) before operations and released (phase 2)
after the transaction commits or aborts
granularity is too big!

concurrency control protocols

5

Distributed Systems - Transactions & Concurrency Control (1/2)

Concurrency Control Protocols
• Read and Write operation conflict rules

Transaction A Transaction B Conflict Reason

Read Read No No dependency
Read Write Yes Depends on execution order
Write Write Yes Same as above

• Three approaches
– Locking
– Optimistic method
– Timestamp ordering

Distributed Systems - Transactions & Concurrency Control (1/2)

Locking
• Two types of locks

– read locks: shared locks
more than one transaction can share it

– write locks: exclusive locks
one at a time
wait until the lock is released

• Operation conflict rules

Lock requested
Lock already set Read Write

Read OK Wait*
Write Wait* Wait*

* wait until the transaction commits or aborts

prevent inconsistent
retrieval

prevent lost update

6

Distributed Systems - Transactions & Concurrency Control (1/2)

Locking (cont.)
• Lock promotion

– to escalate the level of exclusiveness
– rules

promote a read lock to a write lock when the transaction attempts to
update the data that it has retrieved
if a read lock is shared, it can’t be promoted; instead, request a write
lock

• Lock manager
– responsible for managing a table of locks each entry of which

includes
transaction id
data id
lock type
condition variable

Distributed Systems - Transactions & Concurrency Control (1/2)

Locking (cont.)
• Locking rules for nested transactions

– Locks set by children are inherited by their parents
– Parents are not allowed to run concurrently with their children
– Sub-transactions at the same level are allowed to run concurrently
– When a subtransaction acquires a read lock on an object, no other

transaction except only its parent can get a write lock on the same
object

– When a subtransaction acquires a write lock on an object, no other
transaction except only its parent can get a read or write lock on
the same object

– When a subtransaction commits, its locks are inherited by its
parent

– When a subtransaction aborts, its locks are discarded but its parent
continue to retain the locks if the parent already has them

7

Distributed Systems - Transactions & Concurrency Control (1/2)

Locking (cont.)
• Two-version locking [Gifford]

– allows more concurrency by deferring write locks till commit time
read operations are allowed while write operation is being performed

write operation is done on a tentative version of data items
read operation is done on committed version

– three types of locks: read, write, & commit locks
Lock to be set

Lock already set Read Write Commit
Read OK OK Wait
Write OK Wait -
Commit Wait Wait -

– vs. ordinary read-write locking
pro: read operation is only delayed during commit phase instead of
entire phases
con: read operation can cause delay in committing other transactions

Distributed Systems - Transactions & Concurrency Control (1/2)

Locking (cont.)
• Hierarchic locks[Gray]

– allows mixed granularity locks, building a hierarchy of locks
giving owner of lock explicit access to node in hierarchy and implicit
access to its children

– introduces an additional type of lock: intention-Read/Write
before a child node is granted a read/write lock, an intention to
read/write lock is set on the parent node

Lock to be set
Lock already set Read Write I-Read I-Write
Read OK Wait OK Wait
Write Wait Wait Wait Wait
I-Read OK Wait OK OK
I-Write Wait Wait OK OK

– vs. ordinary read-write locking
pro: reduce # of locks when mixed granularity locking is required
con: locking rules are more complicated

8

Distributed Systems - Transactions & Concurrency Control (1/2)

Locking (cont.)
• Problems in locking-based concurrency control

– extra overhead to manage locking which may not be required
– use of lock can give a rise to deadlock
– locks cannot be leased until the end of the transaction to avoid

cascading aborts

Distributed Systems - Transactions & Concurrency Control (1/2)

Deadlocks
• Definition

– a state in which each member of a group of transactions awaits
some other member to release a lock

examples
transactions T and U read the data and both try to promote their read lock
to write lock
transaction T waits for transaction U to release a lock on a data item A
while transaction U waits for transaction V to release a lock on a data
item bar and transaction V waits for transaction T to release a lock on a
data item C

• Wait-for-graphs
– graphical notation to represent wait-for relations among

transactions

T U T U V

9

Distributed Systems - Transactions & Concurrency Control (1/2)

Deadlocks (cont.)
• Deadlock prevention

– locks all of the data items at the beginning
hard to predict all the required data items at the beginning

– requests locks on data items in a predefined order
may result in premature locking and reduction in concurrency

• Deadlock detection
– lock manager checks deadlocks

whenever a lock request from a transaction is given to a data item currently
locked by another transaction, or
less frequently to avoid server overhead

– lock manager does the following operations to detect a deadlock
finds a cycle in the wait-for-graph, and
break the cycle

– once detected, one of transactions in a cycle is selected and aborted
based on age and # of cycles it gets involved

• Deadlock resolution
– once detected, one of transactions in a cycle is selected and aborted
– timeouts

