
1

D
istributed System

s (IC
E 601)

Transactions &
C

oncurrency C
ontrol -Part1

D
ongm

an
Lee

IC
U

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (1/2)

C
lass O

verview
�•

Transactions
�•

W
hy C

oncurrency C
ontrol

�•
C

oncurrency C
ontrol Protocols

�–
pessim

istic
�–

optim
istic

�–
tim

e-based

2

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (1/2)

Transactions
�•

D
efinition

�–
a sequence of one or m

ore operations on one or m
ore resources

that isA
tom

ic: all or nothing
C

onsistent: takes system
 from

 one consistent state to another
Isolated: interm

ediate states invisible to others (serializable)
D

urable: once com
pleted (com

m
itted), changes are perm

anent

�•
Prim

itives
�–

B
eginTransaction

start transaction and get an ID
�–

EndTransaction
com

m
it (m

ake all w
rites durable) or abort (discard all changes m

ade
by w

rites) transaction
�–

A
bortTransaction

�–
R

ead, W
rite, ...D

istributed System
s -Transactions &

 C
oncurrency C

ontrol (1/2)

Transactions (cont.)
�•

Issues w
ith aborts

�–
dirty reads

a transaction com
m

its read operations on a value that another
transaction w

rote but aborted later
�–

cascading aborts
all the related transactions abort together in a cascading fashion

�–
prem

ature w
rites

a value w
ritten by one transaction becom

es nullified by the restored
value that is restored by a recovery of other transaction after its abort

�•
R

ecoverability of transactions
�–

a transaction that has a possibility of �“dirty reads�”
should delay its

com
m

it until the affecting transaction com
m

its
�–

any read operation m
ust be delayed until other transactions that

applied a w
rite operation to the sam

e object have com
m

itted or
aborted (stronger than recoverability)

�–
w

rite operations m
ust be delayed until earlier transactions that

updated the sam
e objects have either com

m
itted or aborted

�–
strict execution &

 tentative versions

3

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (1/2)

N
ested Transactions

�•
R

ules for com
m

itm
ent of nested transactions

�–
a transaction m

ay com
m

it or abort only after its child transactions
have com

pleted
�–

w
hen a sub-transaction com

pletes, it m
akes an independent

decision either to com
m

it provisionally or to abort. Its decision to
abort is final

�–
w

hen a parent aborts, all of its sub-transactions are aborted
�–

w
hen a sub-transaction aborts, the parent can decide w

hether to
abort or not

T : top-level transaction
T

1
= openS

ubTransaction
T

2
= openS

ubTransaction

openS
ubTransaction

openS
ubTransaction

openS
ubTransaction

openS
ubTransaction

T
1

:
T

2 :

T
11

:
T

12
:

T
211

:

T
21

:

prov.com
m

it

prov. com
m

it

abort

prov. com
m

it
prov. com

m
it

prov. com
m

it

com
m

it

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (1/2)

D
istributed Transactions

�•
D

efinition
�–

a transaction in w
hich m

ore than one server is
involved

m
ultiple servers are called by a client (sim

ple
distributed transaction)
a server calls another servers (nested
transaction)

�–
execution of program

 accessing shared data at
m

ultiple sites [Lam
port]

�•
R

equirem
ent

�–
a client requires to get congruent com

m
itm

ent
from

 involved servers due to atom
ic property

of a transaction
�•

R
esolution

�–
coordination

�–
atom

ic com
m

itm
ent protocol

4

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (1/2)

W
hy C

oncurrency C
ontrol?

�•
C

oncurrent access to a shared resource m
ay cause

inconsistency of the resource
�–

inconsistency exam
ples

lost updates
tw

o transactions concurrently perform
 update operation

inconsistent retrievals
perform

ing retrieval operation before or during update operation

Transaction A

balance = read(foo);

w
rite(foo, balance+4);

Transaction B

balance = read(foo);
w

rite (foo, balance-3);

Transaction A

balance = read(foo);
w

rite(foo, balance-10);

balance = read(bar);
w

rite(bar, balance+10);

Transaction B

balance = read(foo);
balance += read(bar);

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (1/2)

B
asic Principle of C

oncurrency C
ontrol

�•
To avoid possible problem

s due to concurrent access,
operations of related transactions m

ust be serialized (one-
at-a-tim

e)
Transaction A

balance = read(foo);
w

rite(foo, balance+4);

Transaction B

balance = read(foo);
w

rite (foo, balance-3);

Transaction A

balance = read(foo);
w

rite(foo, balance-10);
balance = read(bar);
w

rite(bar, balance+10);

Transaction B

balance = read(foo);

balance += read(bar);

�–
stricttw

o-phase locking
lock is obtained (phase 1) before operations and released (phase

2)
after the transaction com

m
its or aborts

granularity is too big!
concurrency control protocols

5

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (1/2)

C
oncurrency C

ontrol Protocols
�•

R
ead and W

rite operation conflict rules
Transaction A

 Transaction B
 C

onflict R
eason

R
ead R

ead N
o

N
o dependency

R
ead W

rite Y
es

D
epends on execution order

W
rite W

rite Y
es

Sam
e as above

�•
Three approaches
�–

Locking
�–

O
ptim

istic m
ethod

�–
Tim

estam
p ordering

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (1/2)

Locking
�•

Tw
o types of locks

�–
read locks: shared locks

m
ore than one transaction can share it

�–
w

rite locks: exclusive locks
one at a tim

e
w

ait until the lock is released

�•
O

peration conflict rules

Lock requested
Lock already set Read W

rite

Read O
K

 W
ait*

W
rite W

ait* W
ait*

* w
ait until the transaction com

m
its or aborts

prevent inconsistent
retrieval

prevent lost update

6

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (1/2)

Locking (cont.)
�•

Lock prom
otion

�–
to escalate the level of exclusiveness

�–
rulesprom

ote a read lock to a w
rite lock w

hen the transaction attem
pts to

update the data that it has retrieved
if a read lock is shared, it can�’t be prom

oted; instead, request a w
rite

lock

�•
Lock m

anager
�–

responsible for m
anaging a table of locks each entry of w

hich
includes

transaction id
data id
lock type
condition variable

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (1/2)

Locking (cont.)
�•

Locking rules for nested transactions
�–

Locks set by children are inherited by their parents
�–

Parents are not allow
ed to run concurrently w

ith their children
�–

Sub-transactions at the sam
e level are allow

ed to run concurrently
�–

W
hen a subtransaction acquires a read lock on an object, no other

transaction except only its parent can get a w
rite lock on the sam

e
object

�–
W

hen a subtransaction acquires a w
rite lock on an object, no other

transaction except only its parent can get a read or w
rite lock on

the sam
e object

�–
W

hen a subtransaction com
m

its, its locks are inherited by its
parent

�–
W

hen a subtransaction aborts, its locks are discarded but its parent
continue to retain the locks if the parent already has them

7

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (1/2)

Locking (cont.)
�•

Tw
o-version locking [G

ifford]
�–

allow
s m

ore concurrency by deferring w
rite locks till com

m
it tim

e
read operations are allow

ed w
hile w

rite operation is being perform
ed

w
rite operation is done on a tentative version of data item

s
read operation is done on com

m
itted version

�–
three types of locks: read, w

rite, &
 com

m
it locks

Lock to be set
Lock already set

Read W
rite C

om
m

it
Read O

K
 O

K
 W

ait
W

rite O
K

 W
ait -

C
om

m
it

W
ait W

ait -

�–
vs. ordinary read-w

rite locking
pro: read operation is only delayed during com

m
it phase instead of

entire phases
con: read operation can cause delay in com

m
itting other transactions

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (1/2)

Locking (cont.)
�•

H
ierarchic locks[G

ray]
�–

allow
s m

ixed granularity locks, building a hierarchy of locks
giving ow

ner of lock explicit access to node in hierarchy and im
plicit

access to its children
�–

introduces an additional type of lock: intention-R
ead/W

rite
before a child node is granted a read/w

rite lock, an intention to
read/w

rite lock is set on the parent node
Lock to be set

Lock already set
Read W

rite I-Read I-W
rite

Read O
K

 W
ait O

K
 W

ait
W

rite W
ait W

ait W
ait W

ait
I-Read

O
K

 W
ait O

K
 O

K
I-W

rite
W

ait W
ait O

K
 O

K

�–
vs. ordinary read-w

rite locking
pro: reduce # of locks w

hen m
ixed granularity locking is required

con: locking rules are m
ore com

plicated

8

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (1/2)

Locking (cont.)
�•

Problem
s in locking-based concurrency control

�–
extra overhead to m

anage locking w
hich m

ay not be required
�–

use of lock can give a rise to deadlock
�–

locks cannot be leased until the end of the transaction to avoid
cascading aborts

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (1/2)

D
eadlocks

�•
D

efinition
�–

a state in w
hich each m

em
ber of a group of transactions aw

aits
som

e other m
em

ber to release a lock
exam

ples
transactions T and U

 read the data and both try to prom
ote theirread lock

to w
rite lock

transaction T w
aits for transaction U

 to release a lock on a data item
 A

w

hile transaction U
 w

aits for transaction V
 to release a lock on

a data
item

 bar and transaction V
 w

aits for transaction T to release a lock on a
data item

 C

�•
W

ait-for-graphs
�–

graphical notation to represent w
ait-for relations am

ong
transactions

T
U

T
U

V

9

D
istributed System

s -Transactions &
 C

oncurrency C
ontrol (1/2)

D
eadlocks (cont.)

�•
D

eadlock prevention
�–

locks all of the data item
s at the beginning

hard to predict all the required data item
s at the beginning

�–
requests locks on data item

s in a predefined order
m

ay result in prem
ature locking and reduction in concurrency

�•
D

eadlock detection
�–

lock m
anager checks deadlocks

w
henever a lock request from

 a transaction is given to a data item
 currently

locked by another transaction, or
less frequently to avoid server overhead

�–
lock m

anager does the follow
ing operations to detect a deadlock

finds a cycle in the w
ait-for-graph, and

break the cycle
�–

once detected, one of transactions in a cycle is selected and aborted
based on age and # of cycles it gets involved

�•
D

eadlock resolution
�–

once detected, one of transactions in a cycle is selected and aborted
�–

tim
eouts

