
1

Distributed Systems (ICE 601)
Concurrency Control - Part2

Dongman Lee
ICU

Distributed Systems - Transactions & Concurrency Control (2/2)

Class Overview
• Transactions
• Why Concurrency Control
• Concurrency Control Protocols

– pessimistic
– optimistic
– time-based

2

Distributed Systems - Transactions & Concurrency Control (2/2)

Optimistic Concurrency Control
• Principle

– transaction proceeds without checking conflict with others and
prior to commit, validates its change by checking to see if data
items have changed by committed transactions

– each transaction has three phases
Read phase

committed version of data items for read - read set
tentative version of data items for write - write set

Validation phase
starts with EndTransaction request
validate its change by checking to see if data items have changed by
other transactions
if no conflicts, commit; otherwise, abort

Write phase
make changes permanent

Distributed Systems - Transactions & Concurrency Control (2/2)

Optimistic Concurrency Control (cont.)
• Validation test rule

– Tj is serializable with respect to overlapping Ti if their operations
conform to the following rules

– transaction # is sequentially assigned when validation phase starts

• Validation mechanisms
– backward validation
– forward validation

Ti Tj Rule
Read Write 1. Ti must not read data items written by Tj
Write Read 2. Tj must not read data items written by Ti
Write Write 3. Ti must not write data items written by Tj and

Tj must not write data items written by Ti
(Assumption: Ti always preceeds Tj if i < j and Ti overlaps with Tj)

3

Distributed Systems - Transactions & Concurrency Control (2/2)

Optimistic Concurrency Control (cont.)

• Backward validation
– algorithm

checks transaction in validation phase with other preceding
overlapping transactions that have entered validation phase

Write operations are ok since Read operations of earlier transactions are
done already (Rule1)
check if Read operations have any conflict with Write operations of
earlier overlapping transactions (Rule 2) => if yes, abort transaction

Valid := True;
for Ti := startTn + 1 to finishTn
do

if read set of Tj intersects write set of Ti
Valid := False;

end

– no check is needed for transaction with only Write operations

Distributed Systems - Transactions & Concurrency Control (2/2)

Optimistic Concurrency Control (cont.)

Earlier committed
transactions

Working Validation Update

T1

Tv
Transaction
being validated

T2

T3

Check if read set of Tv conflicts with
the write sets of the preceding
overlapping transactions that have
entered validation phase

• Backward validation example

4

Distributed Systems - Transactions & Concurrency Control (2/2)

• Forward validation
– algorithm

checks transaction in validation phase with other overlapping active
transactions

Read operations are ok since later transactions do not write until the Tj is
done (Rule 2)
check if Write operations have any conflict with Read operations of
overlapping active transactions (Rule 1) => if yes, abort transaction

Optimistic Concurrency Control (cont.)

Valid := True;
for Ti := active1 to activeN
do

if write set of Tj intersects read set of Ti
Valid := False;

end

– no check is needed for transaction with only Read operations
– other options than aborting the current transaction

defer validation until conflicting transaction is done
abort conflicting transaction instead

Distributed Systems - Transactions & Concurrency Control (2/2)

Optimistic Concurrency Control (cont.)

Tv
Transaction
being validated

Later active
transactions

active1

active2

• Forward validation example

Check if write set of Tv conflicts with
the read sets of the overlapping
active transactions

5

Distributed Systems - Transactions & Concurrency Control (2/2)

• Issues in optimistic concurrency control
– Overhead

Backward validation
if there exists long transaction, retention of old write sets of data item
may be a problem

Forward validation
a new transaction can start during the validation process -> increase
chances by which the current transaction is forced to abort or delay

– Starvation
prevention of a transaction ever being able to commit

Optimistic Concurrency Control (cont.)

Distributed Systems - Transactions & Concurrency Control (2/2)

Timestamp Ordering
• Assumption

– each transaction is given a unique timestamp when it starts
– there is only one version of data item and only one transaction can

access it at a time => multiple tentative versions of data to increase
concurrency

• Rule
– Write operation is valid only if the data was last read and written

by earlier transaction
Rule1: Tj must not write data item read by any Ti where Ti > Tj (i.e. Tj >=
max read time stamp of data item)
Rule 2: Tj must not write data item written by any Ti where Ti > Tj (i.e. Tj >
max write time stamp of committed data item)

– Read operation is valid only if the data was last written by earlier
transaction

Rule 3: Tj must not read data item written by Ti where Ti > Tj (i.e. Tj > write
time stamp of committed data item)

6

Distributed Systems - Transactions & Concurrency Control (2/2)

Timestamp Ordering (cont.)
• Write operations and time stamp

if (Tc ≥ maximum read timestamp on D &&
Tc > write timestamp on committed version of D)

perform write operation on tentative version of D with write timestamp Tc

else /* write is too late */
Abort transaction Tc

(a) write write

(c) T3 write
object produced by
transaction Ti (with
write timestamp Ti)

(b) T3 T3

write(d) T3

T1<T2<T3<T4

Time

Before

After

T2

T2 T3

Time

Before

After

T2

T2 T3

T1

T1

Time

Before

After

T1

T1

T4

T3 T4

Time

Transaction
abortsBefore

After

T4

T4

Tentative

Committed

Ti

Ti

Key:

Distributed Systems - Transactions & Concurrency Control (2/2)

Timestamp Ordering (cont.)
• Read operations and time stamp

if (Tc > write timestamp on committed version of D) {
let Dselected be the version of D with the maximum write timestamp ≤ Tc
if (Dselected is committed)

perform read operation on the version Dselected
else

Wait until the transaction that made version Dselected commits or aborts
then reapply the read rule

} else
Abort transaction Tc

7

Distributed Systems - Transactions & Concurrency Control (2/2)

Timestamp Ordering (cont.)
• Read operations and time stamp - example

Time

read
proceeds

Selected

T2

Time

read
proceeds

Selected

T2 T4

Time

read waits

Selected

T1 T2

Time

Transaction
abortsT4

Key:

Tentative

Committed

Ti

Ti

object produced
by transaction Ti
(with write timestamp Ti)
T1 < T2 < T3 < T4

(a) T3 read

(c) T3 read (d) T3 read

(b) T3 read

Distributed Systems - Transactions & Concurrency Control (2/2)

Timestamp Ordering (cont.)
• Multi-version timestamp ordering

– keep old versions of committed data as well as tentative versions
read operation is always allowed; may need to wait for earlier
transactions to complete
no conflict between write operations since each transaction writes its
own committed version (remove rule 2)

– write rule
if read time stamp (most recent version) <= Tj then perform write
operation on a tentative version with write time stamp Tj

8

Distributed Systems - Transactions & Concurrency Control (2/2)

Timestamp Ordering (cont.)
• Multi-version timestamp ordering - example

Time

T4 write;T5 read;T3 write;T3 read;

T2
T3 T5

T1
T3

T1 < T2 < T3 < T4 < T5

Key:

TentativeCommitted

Ti TiTk Tk
object produced by transaction
Ti (with write timestamp Ti and
read timestamp Tk)

Distributed Systems - Transactions & Concurrency Control (2/2)

Comparison
• Locking vs. timestamp ordering

– both are pessimistic
– dynamic vs static ordering
– write-dominated vs. read-dominated

• Optimistic
– efficient when there are few conflicts

• New requirements to concurrency control
– multi-user applications

immediate notification of change (relaxed isolation)
need to be able to access uncommitted data item

– co-operative CAD/CAM
co-operations of users to resolve data conflicts

