Distributed Systems (ICE 601)

Distributed Transactions

Dongman Lee
ICU

pistributed lransactions

¢ Definition
— atransaction in which more than one server is involved

+ multiple servers are called by a client (simple distributed transaction)
* aserver calls another servers (nested transaction)

— execution of program accessing shared data at multiple sites [Lamport]

Distributed Systems - Distributed Transactions

Class Overview

Distributed Transactions
Atomic Commit Protocol
Distributed Deadlock

Distributed Transactions - example

openTransaction
closeTransactio

join participant

A m a.withdraw(4);

BranchX

participant

B m b.withdraw(3);
T = openTransaction

a.withdraw(4); BranchY

c.deposit(4); .

b.withdraw(3); icipan m .
d.deposit(3); c c.deposit(4);
closeTransaction

D m d.deposit(3);

Note: the coordinator is in one of the servers, e.g. BranchX BranchZ




AtomiICIty 1n Distributed lransaction

* Requirement

— aclient requires to get congruent commitment from involved
servers due to atomic property of a transaction

¢ Resolution
— Coordination

— Atomic commitment protocol

Distributed Systems - Distributed Transactions

Atomic Commit Frotocol

e Atomic commitment problem [Babaoglu & Toueg]
— bring a transaction to a globally consistent conclusion despite
failures
+ commit: all participants will make the transaction’s update permanent
= decision is based on unilateral agreement among all participants

+ abort: none will

= atomic commit protocol that should satisfy these properties
+ all participants that decide reach the same decision

+ if any participant decides commit, then all participants must have
voted yes

+ if all participants vote yes and no failure occur, the all participants
decide commit

+ each participant decides at most once (i.e. decision is not reversible)

Distributed Systems - Distributed Transactions

Coordination in Distributed Transaction

¢ How it works

— one of servers become a coordinator and the others workers
+ who becomes a coordinator
= simple transaction: first server
= nested transaction: top-level server

— each transaction should be globally identifiable (server id + unique #)

— coordinator
+ maintains a list of participating servers

+ collects results from workers and makes a decision to guarantee
congruent commitment of transaction

— workers
+ aware of coordinator’s existence

¢ reports its result to the coordinator and follows a decision from it

Atomic Commit Protocol (cont.)

* Broadcast property

— (validity) if a coordinator broadcasts a message m, the all
participants eventually receive m

— (integrity) for any message m, each participant receives m at most
once and only if a coordinator actually broadcasts m

— (timeliness) there exists a known constant d such that broadcast of
m is initiated at real-time t, no participant receives m after real-
time t + d




Atomic Commit Frotocol (cont.)

¢ QGenerals Paradox

— There is no fixed-length protocol that will allow the generals to
agree on a common time to attack

Distributed Systems - Distributed Transactions

1 wo rnase commit (ZFC) Frotocol

Mechanism

— commit process consists of two message passing phases

+ phase 1: voting
+ phase 2: completion of voting result

coordinator

collect replies
from workers

commit

Distributed Systems - Distributed Transactions

Why Multiple Phase Atomic Commit Protocol?

* Example: one phase atomic commit

— mechanism

+ coordinator keeps sending workers a commit or abort request until all
of them acknowledged that they had carried it out

— does not allow a coordinator to make a unilateral decision to abort
a transaction when a client requests a commit

¢ there’s no room for servers to have decision consensus process among
themselves

+ it is caused mainly by concurrency control
< allow one or more preparation phases before making a
final decision
— two phase commit protocol is most widely used
+ general and inexpensive
+ window of time during which servers are not allowed to abort the

trancanrtinn ic ecmall

2PC Protocol (cont.)

Phase 1 e Phase 2

coordinator coordinator

+ if “ready” message was received
from every worker

+ send “prepare (CanCommit?)”
message to each worker

. i i .
wait until = send “commit” message to
= aresponse (“ready” or “no” is each worker
received from each worker, or = otherwise, send “abort”

= timeout occurs message to each worker

workers * wait until

¢ wait until “prepare” message is = acknowledgement is received
received from coordinator from each worker

workers

¢ if transaction is ready to commit
+ wait until “commit” or “abort”
coordinator message is received from
= otherwise, send “no” message coordinator
to coordinator and abort

= then, send “ready” message to

¢ do appropriate work according
to the message

+ send acknowledeement




2FPC Protocol ror Nested lransactions

* Why extra care?
— sub-transactions can make an independent decision to commit
provisionally or to abort

— transaction can commit only if all of its provisionally committed
child transactions can commit

* Extra steps

— assumption
+ servers for sub-transactions record information regarding what sub-
transactions have committed provisionally or aborted => top-level
will get a list of all sub-transactions with their status
— phase 1
+ if worker has any provisionally committed sub-transactions
= then, check whether they do not have aborted ancestors
» if yes, send “no” and abort
» otherwise, send “yes”
= otherwise, send “no”

Distributed Systems - Distributed Transactions

l11meout 1n 2ZrC Frotocol (cont.)

* Worker timeout
— coordinator failed to send “ready” message
+ workers unilaterally abort
— coordinator failed to send decision
+ workers send a coordinator a probing message (GetDecision) or

= sub-transaction can ask its parent in case of nested transaction

+ workers cooperatively obtain a decision

¢ Coordinator timeout

— workers failed to send “yes” messages

+ coordinator decides to abort transaction

Distributed Systems - Distributed Transactions

Timeout in 2PC Protocol

* Objective
— make 2PC protocol non-blocking in the presence of
¢ coordinator failure

* worker failure

* Additional properties
— atomic commit protocol properties

+ every correct participant that executes atomic commit protocol
eventually decides

— broadcast properties

¢ (uniform agreement) if any participant (correct or not) receives a
message m, then all correct participants eventually receive m

Concurrency Control in Distributed Transactions

* Locking
— distributed deadlock may occur
e Timestamp ordering concurrency control
— if two transactions access the same data items on various servers,
they must commit them in the same order
+ to achieve this, servers should agree on the ordering of their
timestamp using synchronized physical clock

* Optimistic concurrency control
— parallel validation

+ resolve commitment deadlock




pistributed peadlock

Centralized deadlock detection

— each server sends its local wait-for graph and the central deadlock
detector checks a cycle by global wait-for graphs
— phantom deadlocks

+ happens when one of transactions that holds a lock (and creates
deadlock) will have aborted during deadlock detection phase

Distributed Systems - Distributed Transactions

pistriobuted peadlock (cont.)

WoU—-> VoW Waits for

Deadlock c B
detected L

Z
Initiation

Waits
for

Held by Waits for

Distributed Systems - Distributed Transactions

Distributed Deadlock (cont.)

Distributed deadlock detection
— called edge chasing or path pushing
— no global wait-for graph
— mechanism

+ lock manager informs the coordinator when transactions start waiting
and when they become active again
+ three phases
= jnitiation
» if transaction A starts waiting for transaction B waiting to access a data item at
another server, transaction B’s server sends a probe containing the wait-for

relationship to the server of data item where transaction B is blocked and all the
servers in which transactions share lock with transaction B

= detection

» if the data item is hold by another transaction (by consulting with coordinator),
add this relationship to the probe and forward the probe in the same manner as
above

= resolution
» when cycle is detected, a transaction in a cycle is aborted to break the deadlock




