
International Journal of Artificial Intelligence in Education (1997), 8, 284-316

284

Authoring Simulation-Centered Tutors with RIDES

Allen Munro, Mark C. Johnson, Quentin A. Pizzini, David S. Surmon,
Douglas M. Towne, James L. Wogulis

e-mail: munro@usc.edu, mjohnson@usc.edu, pizzini@usc.edu,
surmon@usc.edu, dtowne@usc.edu, wogulis@usc.edu,

University of Southern California
Behavioral Technology Lab

250 No. Harbor Drive, Suite 309
Redondo Beach, CA 90277

Abstract. RIDES is an application for authoring and delivering interactive
graphical simulations and tutorials in the context of those simulations.
Some types of instruction can be generated automatically by exploiting
structured simulation data. RIDES technology plays an important part in a
number of related research and development projects. RIDES introduces
innovations in the human-computer interface (HCI) of simulation-centered
tutorial authoring systems, including support for constraint and event
authoring, enforcing the primacy of reference, and permitting the authoring
of procedure tutorials by interactive demonstration. RIDES simulations
provide low level automatic support for detecting student operations and
observations and are well-suited for teaching procedures. Authoring use
has revealed a number of additional design considerations that should be
taken into account in the development of future tutor authoring systems.
Foremost among these is the need for an open architecture that supports
collaboration among tutor components, including collaboration with types
of tutor components that have not yet been developed.

INTRODUCTION

Intelligent tutoring systems (ITSs) often include interactive graphical
simulations. For many types of tutoring, the use of an interactive graphical
simulation helps to assure that what students learn is relevant to actual
tasks that they must learn to perform, in a way that a primarily textual
approach to learning interactions cannot. Interactive simulations can help to
ensure that performance skills--as opposed to mere test-taking skills--are
acquired as a result of tutoring. To date, most research projects on
intelligent tutoring systems that have incorporated simulations have relied
on low level tools (i.e., programming languages) to develop both the ITSs
and the simulations. Reliance on such low-level development techniques

 Authoring Simulation-Centered Tutors with RIDES

285

naturally makes simulation-centered tutoring extremely expensive. It can
also make it very difficult to determine what features of particular tutor are
responsible for its efficacy (or lack thereof). The details of the craft of low-
level development using programming languages can overwhelm the
effects of the general principles that are followed in a particular tutor. An
authoring system, by ensuring a uniform quality of low-level instructional
interaction and by providing easily edited and modifiable tutorials (and
simulations), can make it possible for developers to experiment with
different high-level approaches to tutoring in a given domain.

RIDES is an X-Windows-based Unix application for interactively
authoring graphical simulations and simulation-centered tutorials. RIDES
(and a version of RIDES that lacks authoring features, called sRides--for
Student RIDES) delivers simulation-centered tutoring to students. Because
the simulation authoring system is designed to support tutorials, many
types of instruction can be very rapidly authored, and many high quality
instructional interactions are generated automatically.

Many tutors have now been built using RIDES, including two large
tutors (and many smaller ones) that have been produced in our lab. Many
more tutors have been developed at other sites. Developers at Armstrong
Laboratory have created a large number of RIDES tutors, covering a wide
range of subjects, including the operation of medical devices, the
nomenclature and theory of orbital mechanics, the human circulatory
system, and a wide range of tutors on the operation and maintenance of
particular devices. RIDES has also played a role in a number of other
research projects, as described below. Our experiences in collaboration
with other tutoring projects lead us to believe that a more componential
approach to tutorial delivery would significantly enhance the value of
authored components such as RIDES simulations and RIDES procedure
tutorials.

Background

The field of simulation in intelligent tutoring systems (ITS) research is a
large and rapidly growing one, and this paper would be much larger if it
were to review all the widely relevant work. On the other hand, the field of
simulation-based tutor authoring systems is a very much smaller one. In
this section, we briefly discuss several authoring systems for the
development of simulations for learning.

In the past, many ITS research projects developed isolated intelligent
tutors that were created using a variety of general-purpose tools, especially
programming environments. There are several reasons why there are few
exemplars of simulation-based tutor authoring systems. One of these is that
the development of a usable authoring system for simulation-based tutors is

Munro, Johnson, Pizzini, Surmon, Towne and Wogulis

286

a very large task. A good authoring system must have a very large number
of quite different, easy-to-use authoring interfaces, or editors. It must be
possible to draw (or import) and edit graphic objects, to specify the
behavior of the objects, to enter tutorial information about the objects, to
build complete lessons in the context of simulations, to build courses, to
search for authored data, to debug simulations and lessons, and so on. The
development effort is similar to that required to produce several different
types of commercial software applications, such as a word processor, a
spreadsheet, and a presentation system, and bind them all together in an
integrated application suite. It is simply too arduous and expensive an
undertaking to be undertaken casually as a part of a project to produce a
tutor. It can only be justified if it can then be used to produce scores or
thousands of different tutors at significantly lower cost than would be
possible using less task-specific tools, such as programming languages.

STEAMER (Williams, Hollan, and Stevens, 1981; Hollan, Hutchins,
and Weitzman, 1984) provided a direct manipulation simulation for
students learning about a steam propulsion plant. The STEAMER project is
an important spiritual ancestor of RIDES. It offered a discovery world for
students and a demonstration platform for instructors, but it did not provide
authoring tools for the development and delivery of instruction to the
learner. Furthermore, simulations had to be written as conventional
computer programs. An authoring tool was then used to link simulation
values to STEAMER graphic objects. As the simulation values changed, so
did the states of the STEAMER graphics.

Forbus (1984) developed an extension of STEAMER called the
feedback minilab, which could be used to produce interactive graphical
simulations without first writing separate simulation programs. This early
authoring system provided a set of predefined components (such as valves
and switches). Composing a device of these components determined the
behavior of the simulated system as a whole.

IMTS (Towne and Munro, 1988, 1992) provided tools for authoring
interactive graphical simulations of electrical and hydraulic systems, but
the model authoring approach was limited. A library of graphic behaving
objects could be composed, but the external effects of these objects had to
be of either electrical, mechanical, or hydraulic type. IMTS supported
troubleshooting assistance by a generic expert called Profile (Towne,
1984), but it could not be used to develop or deliver other kinds of
instruction.

An early approach to direct manipulation instructional authoring was
Dominie (Spensley and Elsom-Cook, 1989). That system, however, did not
support the independent specification of object behaviors; the specification
of simulation effects was confounded with the specification of instruction.

 Authoring Simulation-Centered Tutors with RIDES

287

RAPIDS (Towne and Munro, 1991) and RAPIDS II (Coller, Pizzini,
Wogulis, Munro, and Towne, 1991) were descendants of IMTS that
supported direct manipulation authoring of instructional content in the
context of graphical simulations. These systems provided a much more
constrained simulation authoring system than is found in RIDES, and they
did not offer authors low level control over instructional presentations. Like
IMTS, these programs were available only on specialized AI workstations.

RIDES provides much more robust simulation authoring tools
(described below) and instructional editing facilities than were to be found
in RAPIDS and RAPIDS II. The RIDES system has some features in
common with the SMISLE system (de Jong, van Joolingen, Scott, deHoog,
Lapied, and Valent, 1994; Van Joolingen and De Jong, 1996), but is less
restrictive about how simulations can be structured. SMISLE authors must
separately specify an inner, ’real’ level of behavior and one or more surface
depictions of the behaving system. Similar effects can be achieved using
RIDES, but they are not required. The SMISLE system also contains
facilities for supporting student hypothesis formation, but lacks the
unconstrained simulation authoring and instruction authoring capabilities of
RIDES.

RIDES: A TUTOR DELIVERY AND DEVELOPMENT SYSTEM

RIDES is an integrated software environment for developing and delivering
computer based tutorial instruction and practice that is based on graphical
simulations. Using RIDES, authors can build interactive graphical models
of devices or other complex systems and then swiftly build interactive
lessons in the context of those graphical models. Students use RIDES to
interact with the authored tutorials. If the author chooses, students can be
allowed to explore graphical simulations in a free play mode, but, in
addition, many types of structured tutorials can also be productively
authored and delivered using RIDES.

Model Based Instruction

One of the key concepts in RIDES is that instruction takes place in the
context of an authored graphical model of the particular domain. For
example, if the domain is the operation of a certain item of medical
equipment, then the appearance, behavior, and proper usage of that
equipment is the domain to be learned. Figure 1 shows a student
environment with two windows open. The lower window is the student
instruction window, where instructional text and remedial directions are
displayed. The upper window is one of several windows in this simulation
that contain depictions of the domain of interest--here, a pulse oximeter.

Munro, Johnson, Pizzini, Surmon, Towne and Wogulis

288

Simulation scenes, such as the one with the title "Pulse Oximeter" in the
figure, consist of a set of graphical objects in a window. Such scenes
provide the context for all instruction in RIDES. Many elements of
instruction can be automatically generated by RIDES because they are
developed in the context of a structured domain model.

Figure 1. A Student View of Instruction in the Context of a Graphical
Model

Authors can build complex graphical models by copying library objects
and pasting them into their scenes. They can also draw objects directly onto
the scenes, using a palette of drawing tools, and can specify rules that
control the values of object attributes. The finger in the figure above is one
such object. Authors can open an object data view of the object, such as the
one shown in the figure below. An object data view of an object shows its
name, together with a list of its attributes with their values and their rules,
if they have any. In this figure, there is a rule for the attribute named pulse.

 Authoring Simulation-Centered Tutors with RIDES

289

The present value of this attribute is determined by the rule, which refers to
the attribute of another object.

Figure 2. Object Data View for a Graphical Object

Some attributes directly control the appearance of graphical objects.
When the values of such attributes are changed, objects may disappear,
move, stretch, rotate, or undergo other visible changes.

RIDES has lesson-building tools that can exploit the information in a
graphical model. For example, students can be taught the names of objects,
because the simulation author gave the objects names that can be used by
RIDES lessons. More interestingly, an instruction author can ’record’ a
procedure that students must learn, simply by carrying out the procedure.
During tutoring, the student will be prompted to carry out the correct
sequence of actions.

Because RIDES is an integrated development system for producing
simulations and instruction presented in the context of those simulations,
many aspects of the lesson-authoring process have been automated or
streamlined.

Development with RIDES

RIDES offers a number of advantages to authors, to students, and to
managers in comparison with other technologies for developing interactive
graphical tutoring systems.

Munro, Johnson, Pizzini, Surmon, Towne and Wogulis

290

Simulation Based on Behaving Graphical Objects
At the simulation level, students don’t merely interact with ’hot spots’

on a screen, but rather with objects. This has numerous advantages.

• For the student
More robust, more realistic simulations
Support for free play immersive learning

• For the developer
Potential for the reuse of objects
Ease in developing more robust, flexible, and realistic simulations
than can be achieved with the ’hot spot’ approach

RIDES provides a range of graphic primitives, including lines, ellipses,
rectangles, poly-lines, text, splines, and colored bitmaps. The inclusion of
structured graphic types (as opposed to a bitmap-only approach found in
some CBT authoring systems) makes it computationally practical to carry
out operations such as scaling or stretching objects and rotation under
simulation control. Such operations would be slower, jerkier, and visually
less appealing if only bitmap objects were supported. In addition to
encouraging the development of responsive and flexible simulations, non-
bitmap graphical objects often have smaller memory requirements than
bitmaps of the same size.

A number of aspects of the RIDES implementation of graphical objects
enhance the authoring and maintenance of simulation behavior. In most
cases, for example, an author can find out why an object behaves as it does
by selecting the object, opening its data view, and looking at its rules. The
binding of behavior to objects makes it easy for authors to debug and/or
modify behavior in a simulation.

Instruction Grounded in Simulation
The instruction-authoring features of RIDES exploit the structure of

simulations to make the authoring of certain types of lessons fast, accurate,
and easily maintainable. Authors cannot direct students to put the
simulation model into ’impossible’ or internally inconsistent states, for
example. Procedure training can be authored simply by carrying out a
procedure.

Textual information can be entered in knowledge units that can be
associated with model objects. Some types of lessons can be generated
from textual discussions and from other types of information stored in these
knowledge units.

Lessons can be played to students in three modes with differing levels
of user responsibility. In demo mode, students only pace the progress of a
lesson. In practice mode, students are required to carry out the actions of

 Authoring Simulation-Centered Tutors with RIDES

291

the lesson, but are given remediation when they fail to perform an action
correctly. In test mode, students are not given remediation when they mis-
perform a step during a learning sequence. It is not necessary to author
these three types of lessons separately; all of them are created at once when
the lesson is authored.

A number of highly structured kinds of instruction--called patterned
exercises in RIDES--are authored quickly and directly from simulation data
and a few specifications from instructional authors. The generated lessons
can be customized and new, innovative lesson types can be built using
more detailed instruction authoring tools that also interact directly with the
authored simulation.

Courses Based on Objectives
A RIDES course is a set of learning objectives that must be realized by

a student. Each objective is associated with a lesson for teaching that
objective. A model of the knowledge of each student is based on the
objectives of the course. Decisions about what lesson to present next are
controlled by the relationships that hold among course objectives and by
the state of the student model.

A Supportive, Highly Integrated Authoring Interface
The RIDES simulation-development environment is very natural for

most authors with previous experience using window-based application
software. To find out why an object is behaving in a certain way, the author
can select the object and open a view that displays the rules that govern the
object’s behavior. (This can be done while the simulation is running or
when it is paused.) An author can modify simulations on-the-fly, even as
the simulations are running. Authored changes in attribute values, relations,
and events are reflected immediately in a running simulation. Similarly,
direct manipulations of simulation objects that modify those objects’ values
are immediately reflected in data views of those objects. The authoring
system is designed to be highly transparent and consistent.

Authoring mistakes can be easily remedied by using the Undo feature,
which supports multiple levels of undo and redo.

Behavior rules are automatically formatted in ways that help authors to
immediately pick out object and attribute references, and that highlight any
errors in such references.

Copying and pasting is well supported. In addition to conventional
copy-and-paste capabilities, RIDES lets an author copy a named graphic
object and paste it in a textual context, such as a behavior rule; the name of
the copied object is placed at the insertion point in the text.

Two approaches for creating instruction are integrated in the RIDES
authoring application: one for rapidly creating certain kinds of structured

Munro, Johnson, Pizzini, Surmon, Towne and Wogulis

292

lessons, called patterned exercises, and one for building custom lessons.
Both permit the author to carry out many aspects of lesson authoring by
directly manipulating the interactive simulation in the same ways that
students will be required to do.

Supplementary Utilities
An integrated debugger lets the author step through simulation

execution, evaluating simulation expressions at the time of rule executions.
A list of any ’erroneous rules’ that have not yet been repaired is

maintained, and authors can directly access the data views for those rules
from that list.

A ’find’ utility lets authors search for named entities or text strings in
RIDES, either unrestrictedly, or searching only in certain types of data.

A ’consistency checker’ can be used to report on the presence of certain
commonly observed possible problems in the RIDES document.

On-line Reporting to the Instructor Console
RIDES reports student progress to an instructor console program, called

RADMIN. Instructors can observe which networked student stations are
currently delivering RIDES instruction, what students are using those
computers, which course and course objective each student is working on,
and how long the student has been on that objective. The RADMIN
program also provides instructor facilities for enrolling students at a
tutoring site, and for setting up classes. The details of RIDES course
administration are described in the RIDES Administration Manual (Munro
and Surmon, 1996)

Overview of the Tutor Development Process

A model of development for RIDES authoring is shown in the Figure 3
below.

Authors must specify the objectives of a tutor, must relate those
objectives to particular elements of instruction, and must develop a model
of the domain of interest that can be used to author the lessons that will
meet the instructional objectives. After the interactive simulation (the
graphical model of the subject matter domain) is developed, the needed
lessons must be built and linked to the objectives of the tutor. One or more
prototype student models must then be built and the tutor can be tested for
effectiveness with students. RIDES provides an integrated set of editors for
carrying out all of the tasks shown in Figure 3.

Using the Course Editor, an author can design the objectives that are to
be met by the tutor. Then the author can build an interactive simulation.
This is often accomplished by a combination of pasting library objects and
drawing and giving behavior to new objects. There are scene editors, object

 Authoring Simulation-Centered Tutors with RIDES

293

editors, attribute and event editors, simulation debuggers and other views
and tools that can be used to develop and test simulations. The RIDES
simulation authoring environment is so powerful and interactive that some
users employ it not to produce tutors, but rather as an application
prototyper or as an application development system.

Figure 3. The Tutor Development Process in RIDES

Once a simulation has been built, the author can construct lessons,
using either the patterned exercise authoring tools, which require only very

Munro, Johnson, Pizzini, Surmon, Towne and Wogulis

294

simple choices, or using the custom authoring tools, which permit greater
control over the instruction process. A combination of both patterned
exercises and custom lessons is often used, and generated patterned
exercises are sometimes edited using the custom instructional editing tools.
Finally, the objectives that were designed in the first step of the tutor
authoring process are linked to the authored lessons. RIDES can then
present the complete authored course to students.

For a step-by-step account of how a simple simulation is authored and
how simple lessons are developed in the context of such a simulation, see
the RIDES QuickStart manual, which is available on-line at

http://btl.usc.edu/rides/documntn/qsMan/

HUMAN-COMPUTER INTERFACE ISSUES FOR INTERACTIVE
TUTOR DEVELOPMENT

The RIDES project has addressed two fundamental research issues for
human-computer interfaces (HCI). The first is, "Which HCI features can
help in the development of behaving interactive graphical simulations?"
The second is, "Which HCI features will best support an author’s
development of performance-oriented tutors in the context of interactive
graphical simulations?"

HCI for Authoring Behaving Graphical Simulations

Figure 4 shows the RIDES graphic tool palette and examples of the nine
primitive graphic types, together with a grouped object.

Any graphical object can be given a name and attributes. In RIDES,
attributes are used to store values associated with objects. Values can be of
six types: number, logical (boolean), text, point, color, and pattern.

Some object attributes are created automatically, while others are
created by authors. For example, an author can add a new number attribute
to an object, give the attribute a name, specify its current value, and, if
desired, write a constraint that prescribes the attribute’s value in terms of
the values of other attributes. Attributes that are explicitly created by the
commands of authors are called authored attributes. Attributes that are
created automatically are called intrinsic attributes.

Most intrinsic attributes control aspects of the appearance of objects.
Every graphical object has the attributes Visibility, Location, Scale, and
Rotation. Each of these attributes controls some aspect of the appearance of
an object. If Visibility is false, the object is not shown on its scene.
Location is a point type value that prescribes the Cartesian coordinates of
the object on the ’page’ that is shown in a scene window. Changing the
value of an object’s Location will cause it to move to a different spot on its

 Authoring Simulation-Centered Tutors with RIDES

295

scene. The Scale attribute is also of type point; it specifies scaling factors
that should be applied to the X and Y dimensions of the object. (Scaling is
with respect to the size that the object had when it was originally drawn or
otherwise created.) Rotation is a number attribute that controls the
orientation of the object. Rotation values express the extent of an object’s
counter-clockwise rotation from its original orientation.

In addition to these four universal attributes, objects of particular
graphic types have other intrinsic attributes. For example, lines have the
additional attributes PenColor, PenStyle, and PenWidth. Filled graphic
primitives, such as rectangles, ellipses, polygons, and splines, have these
plus FillColor and FillPattern. Text primitives have a TextValue attribute
that determines what text is actually displayed by the graphic, and so on.

Figure 4. The RIDES Drawing Environment with Example Primitives (at
top of the scene window)

Simulation authors can view an object’s attributes by selecting the
object and then opening its object data view, such as the one shown below
in Figure 5.

This is a grouped graphical object. (An author creates a grouped object
by selecting a number of graphical objects and then issuing the Group
command.) The PenColor and FillColor attributes of its component
graphics can be observed by opening their object data views.

Attribute values can be changed in any of four ways: an author can
manipulate the object with a tool in a way that changes an attribute value; a
value can be typed into an attribute value cell in a data view; a relational
constraint may change the value of the attribute; or an event statement that
sets the value of the attribute may be executed.

Munro, Johnson, Pizzini, Surmon, Towne and Wogulis

296

1. Tool Manipulation. If an author manipulates an object with graphical
tools or commands, corresponding attributes will be changed.

2. Value Editing. An object data view (shown in Figure 5, below) lists
all the attributes of an object. Here the author can change the names of
attributes and can enter new values. Changes to intrinsic attributes, such as
Location or Rotation, have immediate graphic effects.

3. Constraint Evaluation. To the right of the value cell on each attribute
line is a constraint expression cell. An author can enter a relation here that
determines the value of the attribute. Figure 5, shows an object data view in
which the Rotation attribute has a constraint. This constraint specifies that
if the user holds the mouse button down while pointing to this object
(named SpringLever) then its rotation will be 16 degrees; otherwise, its
rotation will be 0.

Figure 5. An Object Data View with a Constraint on the Value of the
Rotation Attribute

The value of attributes can be expressed by relations. For example, in

.S.MainSpring.Rotation * 2

the value of an attribute with this constraint will be twice the Rotation of
the MainSpring object on scene S.

Constraints are written as expressions. Whenever any value that is
referred to in a constraint expression changes, the expression is evaluated
and a new value for the attribute is determined. It is not necessary to
explicitly state that the expression above must be re-evaluated whenever

 Authoring Simulation-Centered Tutors with RIDES

297

the Rotation of the SpringLever on scene S changes. Authors need not
concern themselves with when a value needs to be recomputed if that value
is determined by a constraint.

There is an alternative way of viewing relational constraints in RIDES.
An author can select an attribute row in an object data view, such as those
shown in Figure 5, and can then open a more detailed attribute data view.
Figure 6 shows the attribute data view for the Rotation attribute in Figure 5.

Figure 6. An Attribute Data View

This view includes a code editor sub-window--the frame labeled ’Rule
Expression’ in Figure 6. In code editor views, relational expressions are
displayed with reserved words in bold and with automatic indenting. Object
references (such as the self in this expression) are shown in a special object
reference font and color. References to attributes are also shown in a
distinctive color and font.

4. Event Definition. An alternative way of prescribing behavior is to
write events that set attribute values and carry out other actions when
triggered by some condition. In RIDES, an event consists of such a
conditional expression, together with a delay expression, and an event
body, which is a list of statements. When an event’s conditional expression
is evaluated and found to be true, the delay expression is evaluated to
determine when the event statements should be carried out. In most cases
the delay expression of an event is 0, so the event body is carried out as
soon as the event is triggered. Figure 7 shows a simple event data view.

It is possible to create events which belong to certain objects. Other
events are global in nature and are simply stored in a list of unattached
events.

Munro, Johnson, Pizzini, Surmon, Towne and Wogulis

298

Both types of behavior specification, constraints and events, have their
uses. Constraint-based specifications promote a focus on results or effects.
Event-based specifications promote a focus on causes. Constraint-based
behavior specifications do not require expertise in controlling the flow of
effects, and are therefore easier for many authors to make use of. Certain
simulation effects, however, can only be achieved through event
specifications.

Figure 7. An Event Data View

The Primacy of Reference. Another important element of the RIDES
HCI for simulation behavior authoring is the primacy of reference.

• Correct references in code are displayed in a distinctive font and text
color. Correct object references are shown in one color and correct
attribute references are shown in a different color.

• Reference failures are also made self-evident in code views.
Incorrect object references are shown in one distinctive font and
color and incorrect attribute references are shown in the same font
but with a different color.

• Objects can be selected and copied in any view; then, if a Paste
action is carried out in any text editing view, an unambiguous name
of the object is pasted in that context.

 Authoring Simulation-Centered Tutors with RIDES

299

• If the name of an object or an attribute is changed, then any rule that
referred to that object or attribute now refers to the new name.

These features were designed to help authors to better understand and
edit behavior specifications in the constraints and events that they develop.

HCI for Authoring Procedure Tutorials

Authoring by Doing. RIDES provides a very simple interface for creating
instructional vignettes that have one of a number of constrained structures,
or patterns. Instructional units created using this interface are called
patterned exercises. Figure 8 and Figure 9, below, show a patterned
exercise being created. In Figure 8, the window at the left displays a
simulation scene, while the window at the right shows the patterned
exercise editor when the author has specified that a new exercise about
operational setup (called "Procedure") should be created.

Figure 8. Beginning the Authoring of a Procedure Patterned Exercise

In Figure 9, the author has carried out several operations by clicking on
the mouse-sensitive graphical objects, such as the power cord and switches.
As each such control object is clicked, its name appears in the Controls list
in the patterned exercise editor. At the same time that the actions are being
recorded in the patterned exercise editor, they are generating graphical
simulation effects in the simulation scene--switches change position, lights
change colors or begin flashing, and so on. These graphical effects are
brought about by the execution of previously authored simulation rules that
determine the values of attributes of the graphical objects.

Munro, Johnson, Pizzini, Surmon, Towne and Wogulis

300

Figure 9. During the Authoring of a Procedure Patterned Exercise

By carrying out the sequence of actions that a student will be required
to carry out, an author creates a specification of the exercise. When the
author clicks the "Save Exercise" button, then a detailed instructional
vignette is actually built and can be stored for later presentation to students.

Tutorial Modes. Instructional vignettes, such as the operational setup
exercise (named "Procedure") specified in Figure 9, can be presented to
students in any of three modes: a demonstration mode, a practice mode,
and a test mode. This feature is an extension of a similar approach in our
earlier RAPIDS II system (Towne and Munro, 1991). In each of these
modes, essentially the same sequence of steps is undertaken, but with
different levels of required student interaction and with different prompts
presented to students. In the demonstration mode, each control action such
as throwing a switch is taken automatically by RIDES. The student merely
paces the presentation of text and actions by clicking a mouse button. See
Figure 10.

In the practice mode, students are prompted to carry out certain actions.
If a student fails to perform correctly, the simulation is reset to its prior
state and the student is given another chance. After a specified number of
attempts, the object that must be manipulated is highlighted and the student
clicks the mouse to perform the action. The exercise then continues to the
next required action. See Figure 11.

In the test mode of a procedure instructional vignette, students are told
to carry out the next action in a sequence. If an action is not done correctly,
then the correct action is carried out by RIDES and the student is told to
carry out the next action. Student performance measures are recorded in the
perform and test modes of instructional presentation.

 Authoring Simulation-Centered Tutors with RIDES

301

Figure 10. Instructional Presentation in Demonstrate Mode

Figure 11. Automatic Student Remediation During Tutoring

Munro, Johnson, Pizzini, Surmon, Towne and Wogulis

302

Customizing Generated Tutorials. A good deal of instructional presentation
can be easily generated using the procedure patterned exercise authoring
interface. Exercises that can be presented in all three modes are generated
in about the same amount of time that it takes to simply do the procedure.
This is a highly productive approach to generating computer-based
tutorials. In addition to being fast, the patterned exercise interface to
procedure authoring has the advantage that it does not require extensive
training for authors. Any subject matter expert who knows how a procedure
should be performed can build an exercise. The author simply starts the
procedure mode of the patterned exercise authoring tool by issuing the
Procedure command from the Operations menu (see Figure 8) and then
carries out the actions of the procedure.

The reason that so little instructional presentation authoring needs to be
carried out is that the patterned exercise authoring tool exploits data that
were created during prior simulation authoring. During the simulation
authoring process, authors give names to objects. These names are used in
composing text presentations to the student. In addition, if an object is one
that the student can manipulate (by clicking or by dragging in it, for
example), then the simulation author will mark one of its attributes as a
Control attribute. The instructional presentations can then describe the state
or ’value’ of a control in terms of the values of the Control attribute. If the
Control attribute of an on-off switch takes on the values "on" and "off"
under the control of simulation rules, then the automatically generated
instruction will tell the author to set the switch to "on" or to "off".

Another interface is also available for authoring instruction about
procedures. This interface--which is called the instructional unit editor--
can be used to build a complete instructional vignette from scratch, or it
can be used to edit a lesson that was built using the patterned exercise
editor.

Figure 12 shows the instructional unit editor being used to edit the
procedure lesson that was generated in Figure 8 (using the patterned
exercise authoring tool). In this view of the instructional unit, a tree
structure displays the elements of the lesson. Two main types of nodes are
found in an instructional tree: group nodes (the colored rectangles) and
terminal nodes. The terminal nodes represent elementary instructional
presentations of different types. For example, the first terminal node in the
tree--the one labeled "text_explanation", at the top of the window--is a
generated text presentation. This element contains the first text presentation
that is shown in Figure 10, above. An instructional author can customize
this instructional item. Double-clicking on this node opens a dialog in
which the message can be customized, as in Figure 13, below. (In that
figure, the author has already replaced canned text of the form "we will

 Authoring Simulation-Centered Tutors with RIDES

303

demonstrate Procedure" with "we’ll demonstrate standard operational setup,
which....")

Figure 12. Viewing a Generated Lesson in the Instructional Unit Editor

Many instructional items specify more than textual presentations. The
nodes that specify the control actions that a student is to take in carrying
out a procedure are called Control instructional items. They, too, can be
edited. Figure 14 shows a view of one of the control items in Figure 12, the
one named "set_PwrSwtch1_on". In this dialog, an author can specify not
only the textual prompts that should be given to students, but also what
attribute value is the goal of the control item and even what object is the
control.

A number of other instructional control aspects are also available to
authors in these and other instructional item dialogs. These include whether
and when an instructional item should time-out, how many attempts should
be permitted before the answer is presented, how to weight the item’s score,
and whether to present the item in various lesson presentation modes.
These are described fully by Munro and Pizzini (1996).

In addition to being able to edit the instructional items of a lesson,
authors can delete, cut, copy, and paste these items. Their order can be
altered by dragging them to new positions. Whole groups, as well as
individual item nodes can be subjected to these operations.

Munro, Johnson, Pizzini, Surmon, Towne and Wogulis

304

Figure 13. Editing an Instructional Text Presentation

Figure 14. Editing a Control Item Specification

 Authoring Simulation-Centered Tutors with RIDES

305

New instructional items can be added to a lesson in the instructional
item editor. Some types of items can be specified by issuing menu
commands. Many of these commands automatically open dialogs such as
those shown in Figure 13 and Figure 14 where authors can provide detailed
item specifications. Other types of instructional items are created by
choosing a ’tool’ and carrying out an action (such as clicking on an object)
in the simulation scenes. The instructional authoring tools are Perform
Control, Read Indicator, and Find Object. If a graphical object is
manipulated with the Set Control tool, then a Control instructional item is
created. Clicking with the Read Indicator tool creates a type of instructional
item that requires that a student tell what value an object is displaying. If
the Find Object tool is used on an object, it generates an item that requires
students to click on the object when its name is presented.

Just as in the case of the procedure patterned exercise editor, using the
Set Control tool in the instructional unit editor can automatically create a
series of steps in a procedure that students will be required to perform. As
the instructional author carries out the actions, the simulation scenes update
and new Control item nodes appear in the tree displayed in the instructional
unit editor.

A glance at the custom authoring environment, shown in Figures 13-15
above, suggests that its use is significantly more complex than the use of
the patterned exercise authoring environment, which is shown in Figure 8
and Figure 9. In fact, this is so. Instructional authors cannot make
productive use of the custom instructional authoring interfaces unless they
have a fairly robust understanding of the uses of the three instructional
modes--demonstrate, practice, and test--and of the nature of the different
types of elementary instructional presentations. (There are twenty-five such
elementary instructional item types, including the text presentation type--
shown in Figure 13--and the control item type--shown in Figure 14.) Full
productivity with the custom authoring of certain types of items even
requires an understanding of the same kinds of authored rule expressions
that are used to build simulations.

In summary, one RIDES instructional authoring environment, the
patterned exercise editor, requires no understanding of the structure of
instructional specification. It can be used by authors with almost no
technical understanding of the RIDES authoring system. A second
instruction authoring environment, the instructional unit editor and its item
dialogs, requires that authors understand more about the structure of
simulations and simulation-based training specifications, but it offers
customizable instruction authoring. In the RIDES instruction authoring
environment, the tradeoff between ease of use and power has been resolved
by providing two different kinds of instructional authoring tools. Because
the data generated by the easy-to-use tool can be edited with the custom

Munro, Johnson, Pizzini, Surmon, Towne and Wogulis

306

authoring tool, authors who choose to begin an instructional specification
using the easier approach are not restricted from enhancing their
specifications later in an environment that offers them more control.

INTEGRATION OF RIDES WITH OTHER RESEARCH EFFORTS

RIDES has played a major role in a number of other research efforts.
Several such efforts are briefly described in this section.

REACT

In the REACT project, members of the research staff at the Jet Propulsion
Laboratory collaborated with USC researchers in our lab to integrate
RIDES with software developed at JPL. The JPL staff showed that RIDES
could be used to carry out knowledge acquisition for complex domains
(Hill, Fayyad, Santos, and Sturdevant, 1994; Hill, Chien, Smyth, Fayyad,
and Santos, 1994). Their work studied the use of RIDES for knowledge
acquisition about complex domains in the context of a simulation of Deep
Space Network (DSN) subsystems. A special SunOS version of RIDES
was developed that permits communication with the DSN monitor and
control system. This made it possible to develop RIDES behavioral
simulations for testing the advanced monitor and control system knowledge
base.

Tactical Decision Making Simulation and Research

Using RIDES, Towne (1995) developed a system that provides a
simulation of a shipboard radar that is tracking surrounding aircraft and
ships. The simulation includes an authoring system for rapidly producing
real-time tactical exercises. It has been utilized as a research tool capable of
generating exercises and recording detailed performance data. Several
features of this system specifically address learning research objectives,
including the automatic generation of exercises, the automatic recording of
the operator’s decisions (and their consequences) throughout a scenario,
and an option for substituting a computer model for the human operator (in
order to support research in machine learning).

VET

The VET project is a joint effort among the Lockheed Martin Artificial
Intelligence Center, Behavioral Technology Laboratories, USC, and
Information Sciences Institute. In the Virtual Environments for Training
(VET) project, a version of the RIDES authoring and tutorial delivery
system called VRIDES has been developed to work with collaborative

 Authoring Simulation-Centered Tutors with RIDES

307

applications, such as Vista, using TScript and the Vista communications
bus. These extensions make it possible to use VRIDES to specify the
behavior of 3D objects owned by Vista. They also make it possible for
VRIDES to carry out some instruction and then to surrender control of
instruction or guidance to Steve, an autonomous agent with procedural
expertise in the modeled domain, as described below. Using VRIDES, we
have developed a free play interactive simulation of the High Pressure Air
Compressor (HPAC) on Arleigh Burke class ships. This simulation
collaborates with a Vista model of the ship (and the HPAC in particular)
and with Steve, an autonomous agent developed at ISI that has an
understanding of HPAC procedures. A new simulation and tutorial on Gas
Turbine Engine operation and inspection is now under development.

VIVIDS

The VIVIDS project seeks to extend RIDES to provide the capability to
cost-effectively author and deliver interactive simulation-based instruction
and training in virtual environments, collaborating with a variety of other
software components. The VIVIDS authoring environment will let authors
build simulations that can control the visual and interactive behaviors of
modeled objects in a virtual environment. VIVIDS will also provide tools
for productively authoring interactive tutorials and delivering them in
virtual worlds. VIVIDS will support mixed-mode instruction, with some
lessons presented using conventional 2-D graphics displays, while other
lessons will require the use of 3D or even 3D-student-immersed
environments. Authors will be able to create a single course that can
control both kinds of lessons: 3D/Immersed and 2-D graphical.

DIAG

DIAG is a system for authoring and delivering instruction on device and
system troubleshooting and maintenance (Towne, 1996, 1997). It is being
developed entirely in RIDES. DIAG supports the development of a
hierarchical model of a complex system. It will provide all the necessary
functions for moving about in that model, for conducting tests, replacing
suspected elements, and for consulting with a built-in diagnostic expert.
During exercises, expert advisement is provided about the normality of
indications, the significance of symptoms, and the implications of the test
outcomes seen by the learner. After exercises, the learner can ask for 1) a
debriefing in which DIAG points out the inferences that were possible from
the learner’s testing sequence, and 2) a demonstration of an expert
troubleshooting strategy for the fault.

Munro, Johnson, Pizzini, Surmon, Towne and Wogulis

308

IETMs and RIDES

The Department of Defense Integrated Electronic Training Manual (IETM)
specification prescribes an application of standard generalized markup
language for the delivery of interactive technical manuals by computer
(Fuller, Holloway, Jorgensen, and Brission, 1992; Jorgensen, 1994;
Jorgensen and Bullard, 1994; Rainey and Fuller, 1994). This project seeks
to integrate RIDES with markup-language-based presentation systems,
such as IETMs. One outcome of this work has been the development of a
facility to direct Netscape Navigator to present web pages to students,
either under the control of RIDES simulation rules, or under the control of
a tutorial. A second product of this work is a Java-based approach to
presenting RIDES instruction in the Netscape Navigator world wide web
browser. RIDES collaborates with an applet running in Netscape: the applet
and Netscape together provide an instructional interface that is an improved
version of the RIDES instructional text window.

FUTURE DIRECTIONS: COLLABORATING COMPONENTS

Two lessons that we have learned as a result of implementing RIDES and
watching others use it to author and deliver tutors is that RIDES is too
monolithic and that it is too restricted as to the platforms that can deliver
authored tutors. These restrictions have, in some cases, made it difficult for
colleagues in the intelligent tutoring systems research community to take
advantage of aspects of RIDES that would have utility for their own
research projects. For example, some researchers have expressed an interest
in making use of the RIDES simulation development and delivery system,
in coordination with a different tutor delivery system from the one provided
by RIDES.

Our work on interacting tutor components has been influenced by
continuing discussions with colleagues in the ITS community, especially at
the ITS 96 workshops on architectures and methods for designing cost-
effective and reusable ITSs and on simulation-based learning technology,
as well as at the workshop on architectures for intelligent simulation-based
learning environments at AI-ED ’97. Ritter and Koedinger (1996) have
described a architecture for plug-in tutor agents that permits tutors to
collaborate with applications that were not originally designed to provide
services to tutors. Our focus is somewhat different, in that we hope to
develop a set of standard services that simulations should be able to
provide in order to support the widest range of useful tutoring interactions.

We envision an open architecture for simulation-centered tutors. Figure
15 shows a simplified schema for one such tutor based on five
collaborating components. The components communicate and provide

 Authoring Simulation-Centered Tutors with RIDES

309

services to each other. (Some tutors would have more or fewer
components. Only a subset of the required communication links is
displayed in the figure.)

Figure 15. Collaborating Components in a Simulation Based Tutor

In this architecture, there can be many tutor components, including a
simulation and interaction engine, one or more student modelers, expert
advisors, procedure presenters, explainers, and so on. No one research or
development group could be expected to produce leading edge versions of
all these tutorial components without the use of higher-level tools. When
every aspect of a tutor is developed using low-level tools by a single group,
it is likely to have some strong and some weak components. This, together
with the (for most practical purposes) monolithic nature of most
experimental tutors, can make it very difficult to judge claims about the
efficacy of the features of a particular type of tutor. The collaborating
components approach would make it possible for a single simulation to be
used with many other tutor components in order to compare the efficacy of
a variety of tutorial approaches.

Student operations and observations. In a simulation environment, students
carry out operations that change the state of the simulation. Certain changes
that take place can be observed by students. In contrast with a generic
simulation composition tool, one designed for use in tutorial systems will
be able to report student operations and observations in a way that is useful
to pedagogical components. The simulation authoring system will provide
easy-to-use mechanisms for identifying simulation attributes and events
that indicate that operations and observations have been conducted.
Simulations built in this fashion will also be able to provide instructional
interventions (at the direction of tutorial components) that require the
students to make observations or to carry out operations, and they will be
able to automatically generate useful textual directives or commentary.

Of course a wide range of other services--in addition to operation- and
observation-based services--must also be provided by a simulation
component for the other components of a tutor. These include putting the
simulation into specified states, freezing and resuming simulation, making
objects visually salient, hiding and displaying objects, and so on. Group
learning support should be provided, so that several students can interact
with the same simulation and yet receive appropriate individual tutoring.

Munro, Johnson, Pizzini, Surmon, Towne and Wogulis

310

Authoring tools and collaborating delivery components. In the
collaborative components approach to tutor development, a series of
authoring tools could be developed for producing the data required for each
type of tutor component. See Figure 16.

Figure 16. Authoring Tools for Tutor Components

The tools used to develop data required by simulation components may
or may not be themselves multi-platform, but robust authoring tools will
typically be larger executables than the multi-platform (typically Java-
based) tutor components that deliver the authored simulations, expertise,
curricula, etc. Figure 17 presents the notion that the authored data will be
used by tutor components to deliver useful presentations or interactions to
students.

Figure 17. Tutor Components Are Responsible for Tutorial Delivery

Communications infrastructure. The current focus of our collaborating
components research is what services should components be able to render
to each other, rather than what communications infrastructure should be
employed. Our preliminary implementations are being carried out in such a
way as to support three approaches to module communication:

• CORBA

• Our own simulation tutor TCP/IP standard

• Java-to-Java function calls

Other groups of researchers, such as the IEEE P1484 working and
study groups, are also working on communications infrastructure issues for
tutoring systems. As new standards emerge, we expect to develop support

 Authoring Simulation-Centered Tutors with RIDES

311

for them. Information about the work of the P1484 group is available at
http://www.manta.ieee.org/P1484/ . The work of the P1484.7 Tool/Agent
Communication Working Group is described at

http://www.manta.ieee.org/P1484/sg-tp.htm .

Figure 18. Authored Simulation Running in Netscape Window

Multi-platform Authored Simulation Delivery. To explore the feasibility
of a platform-independent collaborating components approach, we have
developed an experimental Java-based simulation engine that can deliver
interactive authored RIDES simulations on a wide range of platforms.
Figure 18 shows a RIDES-authored simulation running in a Netscape
Navigator window under the control of a Java-based RIDES player.
Although the JavaRides player supports most of the RIDES simulation
language, it lacks the communication features that would be required for a
full tutorial component. It demonstrates the feasibility of the platform-
independent delivery approach, however.

Munro, Johnson, Pizzini, Surmon, Towne and Wogulis

312

Summary

RIDES is a robust application for authoring highly interactive graphical
simulations and tutorials that are delivered in the context of those
simulations. RIDES supports the composition and delivery of instruction
centered about a detailed model of a device or system of interest. The
authoring system incorporates several innovative advances in human-
computer interfaces (HCI) for tutor authoring systems. These include HCI
features in support of simulation behavior specification and authoring-by-
doing features for the development of instruction.

The RIDES system also provides course composition features, control
over course delivery based on student model data, and support for
centralized administration of courses and students.

RIDES has played an important role in several other research projects.
The REACT project at JPL made use of RIDES in a project on knowledge
acquisition for complex domains. The Tactical Decision Making
Simulation project utilized RIDES to create a scenario authoring system in
support of research on machine and human learning. The VET project
(Virtual Environments for Training) has made use of RIDES to support the
development of interactive behaving simulations in immersive 3D
environments, and to support the delivery of RIDES-authored and
autonomous-agent monitored instruction.

Ongoing and future research and development efforts are also building
on the RIDES project. These include VIVIDS, a project to develop the
capability to cost-effectively author and deliver interactive simulation-
based tutoring in virtual environments on a variety of platforms. The DIAG
project, which is developing a specialized authoring and delivery
environment for troubleshooting training guided by a generic maintenance
expert, makes use of RIDES as its development tool. Recent experimental
developments using Java have shown the potential for creating a cross-
platform tutor delivery system, with optional Internet or Intranet delivery
and browser access.

In addition to many successes in HCI features and in providing low-
level automatic support for simulation-to-tutor communications, the project
has revealed the need for significant differences in the next-generation
authoring system for simulation-based tutors. First, delivery systems should
consist of communicating software components, rather than a monolithic
application. This would make it possible for different types of tutorial
agents, for example, to be used with a single interactive graphical
simulation. Second, the simulation delivery system should be multi-
platform, so that researchers and developers using a wide range of
operating systems and environments can take advantage of the substantial

 Authoring Simulation-Centered Tutors with RIDES

313

investment made in creating an interactive simulation composition system
such as RIDES.

For Further Information

Three major documents on RIDES authoring and administration are
available at

http://btl.usc.edu/rides/documentn/

Many simulations and tutors have been developed using RIDES.
Information about some of these tutors is available on the internet at our
site:

http://btl.usc.edu/rides/examples/

and at this Armstrong Laboratory site:

http://www.brooks.af.mil/HSC/AL/HR/HRT/HRTI/icatt.htm

Acknowledgments

Major funding for this research was provided by the United States Air
Force under contract F33615-90-C-0001. Additional support was provided
by the Office of Naval Research under contracts N00014-93-1-1150 and
F33615-90-C-0001. Our former colleague Lee Coller made design and
implementation contributions to early versions of RIDES. Donna Darling
has provided web page development and administrative support for the
project. We thank the following people for helpful feedback based on their
experiences with and/or analyses of RIDES: Susan Chipman, Albert
Corbett, Michael Crumm, Zuzanna Dobes, Jim Fleming, Randall Hill,
Carol Horwitz, Ken Koedinger, Len Mackie, Tim Miller, Wes Regian,
Trish Santos, Chuck Swanberg, and Rusty Trainor. Many other authors and
students have also made helpful comments and suggestions.

References

Coller, L. D., Pizzini, Q. A., Wogulis, J., Munro, A. & Towne, D. M.
(1991) Direct manipulation authoring of instruction in a model-based
graphical environment. In L. Birnbaum (Ed.), The international
conference on the learning sciences: Proceedings of the 1991
conference, Evanston, Illinois: Association for the Advancement of
Computing in Education.

de Jong, T., van Joolingen, W., Scott, D., deHoog, R., Lapied, L., Valent,
R. (1994) SMILSLE: System for multimedia integrated simulation
learning environments. In T. de Jong and L. Sarti (Eds.) Design and
production of multimedia and simulation based learning material,
Dordrecht: Kluwer Academic Publishers.

Munro, Johnson, Pizzini, Surmon, Towne and Wogulis

314

Forbus, K. (1984) An interactive laboratory for teaching control system
concepts. (Tech. Report 5511). Cambridge, Massachusetts: Bolt
Beranek and Newman Inc.

Fuller, J. J., Holloway, S., Jorgensen, E. L., and Brisson, J. B. (1992)
Military Specification MIL-D-87269 Data Base, Revisable: Interactive
Electronic Technical Manuals, For the Support of, MIL-D-87269 ,
Bethesda, Maryland: Tri-Service Working Group for Interactive
Electronic Technical Manuals, 20 November 1992.

Hill, R., Chien, S., Smyth, C., Fayyad, K., and Santos, P. (1994) Planning
for deep space network operations, Pasadena: Jet Propulsion
Laboratory.

Hill, R., Fayyad, K., Santos, P., and Sturdevant, K. (1994) Knowledge
acquisition and reactive planning for the deep space network. In
Working notes of the 1994 fall symposium on planning and learning:
On to real applications, New Orleans: AAAI Press.

Hollan, J. D., Hutchins, E. L., and Weitzman, L. (1984) STEAMER: An
interactive inspectable simulation-based training system, The AI
Magazine, 2.

Johnson, W. L., Rickle, J., Stiles, R. and Munro, A. (1996) Instructional
agents in virtual environments. Submitted to Presence.

Jorgensen, E. L. (1994) DoD Classes of Electronic Technical Manuals,
CDNSWC/TM-18-94/11, Bethesda, Maryland: Carderock Division,
Naval Surface Warfare Center, April 1994.

Jorgensen, E. L., and Bullard, L. (1994) Metafile for Interactive Documents
(MID), Bethesda, Maryland: Carderock Division, Naval Surface
Warfare Center, November.

Munro, A. (1994) Authoring interactive graphical models. In T. de Jong, D.
M. Towne, and H. Spada (Eds.), The Use of Computer Models for
Explication, Analysis and Experiential Learning. Springer Verlag.

Munro, A. (1995) RIDES QuickStart, Los Angeles: Behavioral Technology
Laboratories, University of Southern California.

Munro, A., Johnson, M. C., Pizzini, Q. A., Surmon, D. S., and Wogulis, J.
L. (1996) A Tool for Building Simulation-Based Learning
Environments, in Simulation-Based Learning Technology Workshop
Proceedings, ITS’96, Montreal, Québec, Canada, June 1996.

Munro, A., Johnson, M. C., Surmon, D. S., and Wogulis, J. L. (1993)
Attribute-centered simulation authoring for instruction. In the
Proceedings of AI-ED’93--World Conference on Artificial Intelligence
in Education.

Munro, A. and Pizzini, Q. A. (1996) RIDES Reference Manual, Los
Angeles: Behavioral Technology Laboratories, University of Southern
California.

 Authoring Simulation-Centered Tutors with RIDES

315

Munro, A. and Surmon, D. S. (1996) RIDES Administration Manual, Los
Angeles: Behavioral Technology Laboratories, University of Southern
California.

Northrop Corporation. (1994) Technical manual general system on-
equipment maintenance: Landing gear B-2A aircraft, TO 1B-2A-2-
32GS-00-1, Los Angeles: Northrop Corporation.

Pizzini, Q. A., Munro, A., Wogulis, J. L., and Towne, D. M. (1996) The
Cost-Effective Authoring of Procedural Training, in Architectures and
Methods for Designing Cost-Effective and Reusable ITSs Workshop
Proceedings, ITS’96, Montreal, Québec, Canada, June 1996.

Rainey, S. C., and Fuller, J. J. (1994) Navy Interactive Electronic Technical
Manual (IETM) Acquisition Guide, Initial Draft, CDNSWC/TM-18-
95/01, Bethesda, Maryland: Carderock Division, Naval Surface
Warfare Center, October 1994.

Rigney, J. W., Towne, D. M., King, C. A., and Moran, P. J. (1978) Field
Evaluation of the Generalized Maintenance Trainer-Simulator: I. Fleet
Communications System. (Technical Report 89) Los Angeles:
Behavioral Technology Laboratories, University of Southern
California.

Ritter, S. and Koedinger, K.R. (1996) An architecture for plug-in tutor
agents, International Journal of Artificial Intelligence in Education, 7,
315-348.

Towne, D. M. (1984) A generalized model of fault-isolation performance.
In Proceedings, Artificial Intelligence in Maintenance: Joint Services
Workshop.

Towne, D. M. (1995) ONR final report: A configurable task environment
for learning research. Los Angeles: Behavioral Technology
Laboratories, University of Southern California, August 1995.

Towne, D. M. (1996) DIAG: Diagnostic instruction and guidance--
application guide. Los Angeles: Behavioral Technology Laboratories,
University of Southern California, October 1996.

Towne, D. M. (1997) Approximate Reasoning Techniques for Intelligent
Diagnostic Instruction, International Journal of Artificial Intelligence
in Education, 8, 261-283.

Towne, D. M. & Munro, A. (1981) Generalized maintenance trainer
simulator: Development of hardware and software. (Technical Report
No. 81-9) San Diego: Navy Personnel Research and Development
Center.

Towne, D. M. & Munro, A. (1984) Preliminary design of the advanced
ESAS System. (Technical Report No. 105) Los Angeles: Behavioral
Technology Laboratories, University of Southern California, December
1984.

Munro, Johnson, Pizzini, Surmon, Towne and Wogulis

316

Towne, D. M. & Munro, A. (1988) The intelligent maintenance training
system. In J. Psotka, L. D. Massey, and S. A. Mutter (Eds.), Intelligent
tutoring systems: Lessons learned (479-530). Hillsdale, NJ: Erlbaum.

Towne, D. M. & Munro, A. (1991) Simulation-based instruction of
technical skills. Human Factors, 33, 325-341.

Towne, D. M. & Munro, A. (1992) Two approaches to simulation
composition for training. In M. Farr and J. Psotka (Eds.), Intelligent
instruction by computer: Theory and practice. London: Taylor and
Francis.

Towne, D. M., Munro, A., Johnson, M. C. (1982) Generalized maintenance
trainer simulator: Test and evaluation. (Technical Report No. 98) Los
Angeles: Behavioral Technology Laboratories, University of Southern
California.

Towne, D. M., Munro, A., Pizzini, Q. A., Surmon, D. S., Coller, L. D., &
Wogulis, J. L. (1990) Model-building tools for simulation-based
training. Interactive Learning Environments, 1, 33-50.

Spensley, F. and Elsom-Cook, M. (1989) Generating domain
representations for ITS. In D. Bierman, J. Breuker, and J. Sandberg
(Eds.), The proceedings of the fourth international conference on
artificial Intelligence in Education. Amsterdam: IOS, 276-280.

Stiles, R., McCarthy, L., Munro, A., Pizzini, Q., Johnson, L., Rickel, J.
(1996) Virtual Environments for Shipboard Training, Intelligent Ship
Symposium, American Society of Naval Engineers, Pittsburgh PA Nov.

Van Joolingen, W.R. and De Jong, T. (1996) Design and implementation of
simulation-based discovery environments: the SMISLE solution,
International Journal of Artificial Intelligence in Education, 7, 253-
276.

Williams, M. D., Hollan, J. D., and Stevens, A. L. (1981) An overview of
STEAMER: an advanced computer-assisted instruction system for
propulsion engineering. Behavior Research methods and
Instrumentation, 13, 85-90.

