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Abstract. The empirical study of large real-world networks in the last 20 years
showed that a variety of real-world graphs are power-law. There are evidence
that optimization problems seem easier in these graphs; however, for a given
graph, classifying it as power-law is a problem in itself. In this work, we propose
using machine learning algorithms (KNN, SVM, Gradient Boosting and Random
Forests) for this task. We suggest a graph representation based on [Canning
et al. 2018], but using a much simplified set of structural properties of the
graph. We compare the proposed representation with the one generated by the
graph2vec framework. The experiments attained high accuracy, indicating that
a reduced set of structural graph properties is enough for the presented problem.

1. Introduction

Large real-world graphs, also commonly called complex networks, occur in applications
based on natural and social phenomena. Many of these networks have a power-law dis-
tribution in their vertex degree sequence, which can be informally described as a function
that decreases exponentially in x as x grows large for fixed exponent k > 0 and a propor-
tionality constant α, i.e, f(x) = αx−k. These networks, called power-law graphs in this
paper, have few vertices with large degree, and many others vertices with small degree
(Figure 1). The empirical study of large real-world networks in the late 1990’s and early
2000’s [Faloutsos et al. 1999,Barabasi and Albert 1999,Kleinberg et al. 1999,Broder et al.
2000,Kumar et al. 2000,Kleinberg and Lawrence 2001,Guelzim et al. 2002,Siganos et al.
2003, Eubank et al. 2004] showed that a number of real-world graphs are power-law.

From a computer science perspective, a key point is that there is evidence that
optimization problems seem easier in power-law graphs compared to general graphs. In
particular, some problems from this class have the expected factor of approximation re-
duced when the instance is a power-law graph [Vignatti and da Silva 2016, Silva et al.
2013,Gast and Hauptmann 2014,Gast et al. 2015,Gast et al. 2012]. However, the task of
classifying whether a graph is power-law before submitting it as input to an optimization
problem requires some effort.

One common and simple way to know if some sequence follows a power-law
distribution consists on the log-log plot test, i.e., setting both the horizontal and vertical
axis to logarithmic scales. A power-law distribution appears as a straight line in this new
plotting, since the function that describes this distribution turns to a linear equation in
log-log plot (Figure 2). The main disadvantage of this approach, though, is the fact that
other distributions (such as the log-normal) also appear as a straight line in this test.



Figure 1. Example of a power-law graph [Grandjean 2014].

The work of [Clauset et al. 2009] consists in a statistical method to quantify
the power-law behavior into a given distribution. The authors conclude that for many
of the cases of the given datasets (both synthetic and real-world applications), a power-
law distribution turns out to be a reasonable description. However, for some of these
cases, log-normals and stretched exponential distributions are also compatible. In other
cases, such as the distribution of earthquakes, for example, the power-law hypothesis is
compatible if an exponential cutoff in the extreme tail of the distribution is assumed.

Figure 2. A log-log plot for the power-law distribution of a graph that represents
the web, where the vertices are the pages and the edges are the links be-
tween them [Broder et al. 2000].

In this work, we propose machine learning techniques to distinguish power-law
graphs among real and synthetic complex networks, including data with log-normal dis-
tribution. The field of machine learning looks to develop algorithms that learn from data,
and such algorithms are used in many applications including natural language process-
ing, handwritting recognition, and graph classification, what is relevant to our work (in
Section 2, we present some recent development in this topic) [Mitchell 1997].

We consider using structural properties related to the degree of the vertices of the
given graph, as suggested by [Canning et al. 2018], to represent the feature vector. In



order to compare our proposed approach against approaches that require a more complex
graph representation, we use the graph2vec framework [Narayanan et al. 2017] to gener-
ate feature vectors for the graphs used in the experiment. This framework is a recent tool
for graph classification by machine learning algorithms that allows us to apply general
purpose classification algorithms to data. Our main contribution is showing that a much
simplified set of structural properties of a graph are enough for the desired classification
procedure, even on hard instances.

The text is organized as follows. Section 2 presents related work on power-law
recognition in data and graph classification by machine learning algorithms. Section 3
describes some concepts and definitions used in this work. Section 4 describes the dataset
and the feature extraction configuration. Section 5 discusses the results and finally, Sec-
tion 6 contains the conclusion.

2. Related Work
This Section is divided in two parts: (1) recognition of power-law distribution in data and
(2) graph classification by machine learning algorithms.

The most known approaches for recognizing power-law distributions in data are
the log-log plot test and the statistical framework from [Clauset et al. 2009]. As already
mentioned, a power-law distribution appears as a straight line in a log-log plot. Despite its
simplicity, the condition of being straight in a log-log plot is necessary but not sufficient,
since other distributions such as the log-normal also appear as straigth.

The statistical method proposed by [Clauset et al. 2009], which uses hypothesis
test, not only fits a given distribution into a power-law model, but also quantifies the
power-law behavior by estimating its parameters. The authors addressed, though, the
difficulty of distinguishing a power-law distribution from a log-normal one, since some
datasets well fit in both distributions. They highlight the fact that extremely large datasets
are required in these cases.

On the other hand, when it comes to general graph classification problem, many
recent machine learning approaches have emerged. A recent survey from [Ghosh et al.
2018] describes graph kernels. These methods measure the similarity between pairs of
graphs by decomposing each graph into its atomic substructures, such as random walks,
paths and rooted trees. Graph kernels allow kernel-based algorithms such as support
vector machines (SVM) to work directly on graphs without feature extraction, but they
become unusable for other general purpose learning algorithms. Hence, neural networks
approaches [Bonner et al. 2016, Tixier et al. 2017, Pham et al. 2017] have been proposed
as a way around.

A recent work from [Canning et al. 2018] represents graphs as arrays where their
features form a combination of structural properties, e.g., density; maximum, minimum
and average degree; assortativity coefficient; total, maximum and average triangles; av-
erage and global clustering coefficient; maximum k-core and a lower bound for the max-
imum clique. The authors conclude that real complex networks have distinct structural
properties, which ensure machine learning algorithms to have high accuracy in classifica-
tion and clustering problems on these graphs, even if simple features are used to represent
each graph. They also conclude that is possible to classify with high accuracy not only
whether a graph is synthetic or not, but also the network model that generates it.



From the aforementioned work, though, no results about the power-law graph
classification problem by machine learning algorithms have been found. This work, so,
intends to investigate the performance of this type of algorithms applied to the referred
problem, especially in the case where data contains graphs with log-normal distribution.

3. Theoretical Foundation
Sections 3.1, 3.2 and 3.4 describes the definitions used in this work. Section 3.3 introduces
graph2vec, a neural network based framework that generates the feature vector of a graph.

3.1. Distributions

We use the following definitions for the power-law and log-normal distributions.

Definition 1 A function that satisfies

f(x) = αx−k

is said to follow a power-law distribution, for constant values k > 0 and α > 0.

Definition 2 A continuous probability distribution of a non-negative random variable
X follows a log-normal distribution if its logarithm is normally distributed, that is, for
Y = lnX ,

g(y) =
1√
2πσ

e−(y−µ)
2/2σ2

where µ is the mean, σ is the standard deviation and −∞ < y <∞ (Figure 3).

Figure 3. Probability density function of some log-normal distributions with dif-
fering σ.

3.2. Graph Definitions

In this Section, we define the structural properties used in our proposed feature vectors.

Let G = (V (G), E(G)) be a graph where V (G) is a finite set (the vertices of
G) and E(G) ⊆

(
V (G)
2

)
(the edges of G). Two vertices u and v are neighbors in G if

{u, v} ∈ E(G). The degree of a vertex v in G is the number of neighbors of v in G and
is denoted by dG(v). The maximum and minimum degrees of a vertex in G are denoted
by ∆(G) and δ(G), respectively. The average degree of the vertices in G is defined as



davg = 1
|V (G)|

∑
v∈V (G) dG(v). The density of a graph is the ratio of the edges in the graph

to the amount of all possible edges, that is, |E(G)|/|
(
V (G)
2

)
|.

The induced subgraph of G by a set S ⊆ V (G) is denoted by G[S]. For a vertex
v, let X ⊆ V (G) be a set where every y ∈ V (G[X]) is reachable from v with distance up
to d, for d ∈ N. Then G[X] denotes a rooted subgraph of G of degree d.

3.3. The graph2vec Framework

This framework is a recent unsupervised representation learning technique for graphs pro-
posed by [Narayanan et al. 2017]. It consists of a neural network embedding that learns
representations of arbitrary sized graphs. It is based on the well-known doc2vec frame-
work [Le and Mikolov 2014] that is used in natural language processing for documents
representation learning.

The main idea of the graph2vec framework is to generate similar representations
to similar instances by finding all rooted subgraphs around each vertex (up to a certain
degree) of the graphs in the whole dataset. Hence, graphs that have close subgraphs on
their structures will have close embeddings. More details can be checked in [Narayanan
et al. 2017].

3.4. Feature Normalization

The values of each feature vector are rescaled to the [0,1] range, since the graphs in
database have different ranges in the number of vertices. We use min-max normalization,
where for each n-dimensional array x and for all i ∈ [1, n], the normalized array x′ is
obtained as follows:

x′[i] =
x[i]−min(x)

max(x)−min(x)

Similar results were observed for other normalizations.

4. Experiments

The algorithms are implemented in Python 2.7 using the NetworkX1 and the scikit-learn2

libraries. All experiments were performed on a GNU/Linux (Ubuntu 14.04) with the
following hardware configurations: (i) Processor: Intel(R) Xeon E5 v3 (Haswell) 2.50
GHz, x86_64 architecture, 4 cores and 8 vCPUs. (ii) Cache memory: 32KB x 4 L1
Instruction cache; 32KB x 4 L1 Data cache; 256KB x 4 L2 cache; 30MB L3 cache. (iii)
RAM: 52GB.

We describe our dataset structure and the feature extraction approaches used in
this work.

4.1. Dataset

The dataset contains synthetic and real-world graphs from different sizes, applications
and classes, totalizing 3145 instances, where 1236 of them are power-law. All synthetic
graphs were artificially generated by computational models available in NetworkX library.
The artificial power-law instances were obtained by the models proposed by [Barabasi

1https://networkx.github.io/
2https://scikit-learn.org



and Albert 1999], [Holme and Kim 2002] and [Bollobás et al. 2003], which simulate
power-law complex networks. The remaining synthetic instances include graphs from
different classes that do not follow a power-law on their vertex degree distribution, such
as complete, grid and log-normal graphs.

The real-world instances used in this work, which model instances from the real-
world, as the name itself suggests, are available in the Network Repository3 and the Stan-
ford Large Network Dataset Collection4.

Table 1 summarizes the structure of the dataset, where the graphs highlighted in
italics have power-law degree distribution. Since the generated log-normal distributions
have decimal values, then each value was rounded up to its closest integer. So, graphs
with these distributions are approximately log-normal.

Table 1. Dataset structure

Description # of graphs highest # of vertices

Synthetic
graphs

Barabasi-Albert [Barabasi and Albert 1999] 599 10000
Holme-Kin [Holme and Kim 2002] 300 100000

Directed scale-free [Bollobás et al. 2003] 200 10000
General graphs 1003 10000

Log-normal graphs 300 10000

Real-world
networks

CAIDA AS Relationships Datasets [Leskovec et al. 2005] 122 26475
Gnutella peer-to-peer networks [Foster et al. 2002] 9 10876

EuroSis web-mapping 5 1 1285
Enzymes [Narayanan et al. 2017] 600 95

Brain networks [Rossi and Ahmed 2015] 6 2000
Physics Collaboration Networks [Leskovec et al. 2005] 3 18772
Amazon Products Co-purchasing [Leskovec et al. 2007] 1 403394

EU Email Communication Network [Leskovec et al. 2005] 1 265214

4.2. Feature Extraction

We represent each graph as a feature vector of some of its structural properties, based in
the idea of [Canning et al. 2018]. We call our proposed feature vector as struct_vector,
which has the following properties: a) maximum degree, b) minimum degree, c) density,
d) average degree, e) number of vertices that have the maximum degree and f) number of
vertices that have the minimum degree. The chosen properties are related to the degrees
of the vertices, as the degree distribution of a graph is a sufficient condition to classify it
as power-law. In power-law graphs, this kind of representation will set a small value for
feature e), a large value for feature f) and a small value for feature c), since graphs from
this class are sparse.

To compare our representation with another one which uses more complex fea-
tures of the graph, we generate graph embeddings by the graph2vec framework. As we
already mentioned, this framework consists on a deep neural network that creates similar
representations to graphs that have similar rooted subgraphs on its structure. Each graph
embedding in our experiments is a 128-dimension array.

3http://networkrepository.com/
4https://snap.stanford.edu/data/



4.3. Classification Algorithms

We compare prediction results for the following algorithms implemented in scikit-learn
library: k-nearest neighbors (KNN), support vector machine (SVM), gradient boosting
and random forest, since these algorithms have been used by previous work in graph
classification by machine learning algorithms. We use hold-out validation, and we divide
the dataset separating 2/3 of it for training and the remaining part for testing. The graphs
selected to compose the training set are selected uniformly at random. The instances of
each set are shuffled.

5. Results

In Table 2, we report the best parameters6 found by grid search that lead to the results
with higher accuracy. Although our database is balanced in respect to the amount of
power-law and non-power-law instances, we use precision, recall and f1-score metrics to
measure the occurrences of false positives, that is, the non-power-law graphs that were
incorrectly classified as power-law. We report the results for these metrics in Table 3.
Class 0 and Class 1 denote negative (not a power-law graph) and positive (power-law
graph), respectively.

Table 2. Best parameters for the classifiers

Algorithm Graph representation Best parameters Accuracy

KNN struct_vector neighbors = 3 99.34%
graph2vec 90%

SVM struct_vector
C = 1000
γ = 1

99.53%

graph2vec
C = 10
γ = 0.1

99.14%

Gradient
Boosting

struct_vector
estimators = 50

learning rate = 0.1
max. depth = 3

99.91%

graph2vec
estimators = 100

learning rate = 0.5
max. depth = 3

97.05%

Random
Forest

struct_vector
estimators = 100
max. depth = 5 99.91%

graph2vec
estimators = 50
max. depth = 9 96.86%

We achieve high accuracy in both representations and all the classification al-
gorithms, although the struct_vector was slightly better to this problem. We highlight
that while our approach generates the feature vectors in approximately 10 minutes, the
graph2vec framework performed the graph feature extraction in 5398 minutes (which
corresponds to approximately 3.75 days).

The ensemble algorithms, i.e., gradient boosting and random forests, got the best
performance in the classification task. It is aligned with the state-of-the-art, since the
work of [Canning et al. 2018] already achieved good performance on graph classification

6For KNN, we set number of neighbors={3, 5, 11}. For SVM, we set C = {1, 10, 100, 1000}
and γ = {0.001, 0.01, 0.1, 1}. For the other classifiers, the parameters configuration are: number of
estimators={50, 100, 200}, learning rate={0.01, 0.1, 0.5} and maximum depth={3, 5, 9, 10}.



Table 3. Classifiers analysis

Algorithm Graph representation Precision Recall F1-Score

KNN struct_vector
Class 0 = 99.2%
Class 1 = 99.5%

Class 0 = 99.7%
Class 1 = 98.7

Class 0 = 99.8%
Class 1 = 99.4%

graph2vec
Class 0 = 85.8%
Class 1 = 100%

Class 0 = 100%
Class 1 = 74.4%

Class 0 = 92.4%
Class 1 = 85.3%

SVM struct_vector
Class 0 = 99.5%
Class 1 = 99.5%

Class 0 = 99.7%
Class 1 = 99.3%

Class 0 = 99.8%
Class 1 = 99.6%

graph2vec
Class 0 = 98.9%
Class 1 = 99.5%

Class 0 = 99.7%
Class 1 = 98.3%

Class 0 = 99.3%
Class 1 = 98.9%

Gradient
Boosting

struct_vector
Class 0 = 100%
Class 1 = 99.8%

Class 0 = 99.8%
Class 1 = 100%

Class 0 = 99.9%
Class 1 = 99.9%

graph2vec
Class 0 = 95.6%
Class 1 = 99.5%

Class 0 = 99.7%
Class 1 = 92.3%

Class 0 = 97.6%
Class 1 = 96.08%

Random
Forest

struct_vector
Class 0 = 100%
Class 1 = 99.8%

Class 0 = 99.8%
Class 1 = 100%

Class 0 = 99.9%
Class 1 = 99.9%

graph2vec
Class 0 = 95.1%
Class 1 = 100%

Class 0 = 100%
Class 1 = 91.9%

Class 0 = 97.5%
Class 1 = 95.8%

using simple arrays with few features. In our problem, this result is convenient, since it is
not necessary to have information about more complex structures of a graph to classify it
as power-law.

The inferior performance of graph2vec to this task can be explained by the fact
that the generated rooted subgraphs of power-law graphs can be very similar to the ones
of other sparse graphs, like the cycle and regular graphs. Although getting slightly smaller
accuracy results to our problem and being more complex, graph2vec seems to be a good
and competitive alternative to the other representation. Even though knowing the sub-
structures of graph is not necessary to our problem, the performance of the framework
in this task indicates that it can be used for other graph classification tasks. This also
answers the question on how power-law graphs are structurally distinct from the other
graphs when information different from the degree distribution are considered. That is,
graphs from diverse domains and applications have distinct structural properties that make
data distinguishable, as [Canning et al. 2018] have already stated.

Surprinsigly, for both types of representation, the errors in prediction results most
happened as false negatives (as Table 3 shows in precision and recall values). This seems
interesting because the main challenge for power-law recognition is the opposite, that is,
the occurrence of false positives.

In fact, the proposed graph representations and the applied algorithms perform
well to distinct power-law graphs from the approximately log-normal ones. In our ex-
periments, only two occurrences of false positives to a graph with this distribution were
found, both for the struct_vector representation. One of them arised in KNN algorithm,
and the other arised in SVM algorithm. Tables 4 and 5 show the confusion matrix of the
testing step for the aforementioned cases.

It indicates that using machine learning algorithms for recognizing power-law
graphs as well as this kind of distribution in other types of data is a powerful and fast
alternative in relation to the other approaches.



Table 4. Confusion matrix of the KNN algorithm using the struct_vector repre-
sentation

Predicted
Non-power-law Power-law

A
ct

ua
l Non-power-law 641 2

Power-law 5 401

Table 5. Confusion matrix of the SVM algorithm using the struct_vector repre-
sentation

Predicted
Non-power-law Power-law

A
ct

ua
l Non-power-law 641 2

Power-law 3 403

6. Conclusion

In this work, the main question to be answered was how accurate a power-law graph can
be predicted by machine learning algorithms using either simple features of a graph or a
more complex approach such as graph2vec. In conclusion, both alternatives give good
results, although the simpler approach is sufficient to the presented problem. We address
the fact that although the work of [Canning et al. 2018] is comparable to our work,
they have not reported results for the task of classification of power-law graphs. Besides,
even though they have used only structural properties that can be efficient calculated,
our approach uses features that can be obtained by looking once at the vertex degree
distribution of a graph. In the work of [Canning et al. 2018], to get the structural property
of the maximum k-core, for example, is necessary to process each vertex neighborhood
more than once.

In comparison to the statistical framework of [Clauset et al. 2009], our approach
does not quantify the scaling and the constant factor of the power-law behavior. However,
for some applications, it may be enough having only the information that a distribution
follows a power-law or not. An advantage of using our approach lies in the fact that it can
distinguish well an approximately log-normal distribution from a power-law one without
having an extremely large dataset, a difficulty addressed by [Clauset et al. 2009] in their
work.

For further research, one can consider analyzing the performance of machine
learning algorithms to distinguish power-law graphs from instances that follow power-
law variants in their vertex degree distribution, such as the power law with exponential
cutoff, curved power-law and broken power-law, since our work did not include these
types of instance in the database.

Additionally, one can consider the creation of an end-to-end classifier for power-
law graphs, in which the embedding is learned alongside the classification, since we fo-
cused on comparing different graph representations for classifiers from the literature in
this work.
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