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ABSTRACT

In this work we investigate the problem of estimating the percolation centrality of every vertex
in an undirected weighted graph under the light of sample complexity theory. The percolation
centrality measure quantifies the importance of a vertex in a graph that is going through a conta-
gious process. The fastest exact algorithm for the computation of this measure in a graphG with
n vertices and m edges runs in (n3). Let DiamV (G) be the maximum number of vertices in a
shortest path in G. In this paper we present a (m log n DiamV (G)) time randomized approxi-
mation algorithm for the percolation centrality for every vertex of G. The estimation obtained
is within � of the exact value with probability 1 − �, for fixed constants 0 < �, � < 1. The main
idea is a progressive sampling strategy that iteratively builds a sample of shortest paths in G
and computes an estimation for the Rademacher Complexity of this sample. In this analysis, we
observe that since Rademacher Complexity of a sample is sensitive to the input distribution, the
performance of our algorithm also takes advantage of the input distribution (if we assume that
G is chosen from a prescribed random distribution). Furthermore, even if we have assumption
about such distribution, we show that in the worst case our algorithm performs as well as the
best previous algorithm for the same task of estimation of percolation centrality.

1. Introduction
The importance of a vertex in a graph can be quantified using centrality measures. In this paper we deal with

the percolation centrality, a measure relevant in applications where graphs are used to model a contagious process in
a network (e.g., disease transmission or misinformation spreading). Centrality measures can be defined in terms of
local properties, such as the vertex degree, or global properties, such as the betweenness centrality or the percolation
centrality. The betweenness centrality of a vertex v, roughly speaking, is the fraction of shortest paths containing v as
an intermediate vertex. The percolation centrality generalizes the betweenness centrality by allowing weights on the
shortest paths, and the weight of a shortest path depends on the disparity between the degree of contamination of the
two end vertices of such path.

The study of the percolation phenomenon in a physical system was introduced by Broadbent and Hammersley
(1957) [6] in the context of the passage of a fluid in a medium. In graphs, percolation centrality was proposed by
Piraveenan et al (2013) [15], where the medium are the vertices of a graph G and each vertex v in G has a percolation
state (reflecting the “degree of contamination” of v). The percolation centrality of v is a function that depends on
the topological connectivity and the states of the vertices of G. The best-known algorithms that exactly compute the
betweenness centrality for every vertex of a graph depends on computing all its shortest paths [17] and, consequently,
the same applies to the computation of percolation centrality. The fastest algorithm for this task for weighted graphs,
proposed by Williams (2014) [22], runs in 

(

n3∕2c
√

log n
)

time, for some constant c [23]. Currently it is a central
open problem in graph theory whether this problem can be solved in (n3−c), for any c > 0 and the hypothesis that
there is no such algorithm is used in hardness arguments in some works[1, 2]. In the particular case of sparse graphs,
which are common in applications, the complexity of the exact computation for the betweenness centrality can be
improved to(n2). However, the same is not known to be the true for percolation centrality and no subcubic algorithm
is known even in such restricted scenario.

The present paper follows on steps of Lima et al. (2020) [7] and Riondato and Upfal (2018) [19] in field of sample
complexity theory applied to estimation problems in graphs. A main theme in both of these previous works is the fact
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that for large scale graphs, even algorithms with time complexity that scales quadratically are inefficient in practice
and high-quality approximations obtained with high confidence are usually sufficient in real-world applications. The
authors observe that keeping track of the exact centrality values, which may change continuously, provides little infor-
mation gain. So, the idea is to sample a subset of all shortest paths in the graph so that, for given 0 < �, � < 1, they
obtain values within � from the exact value with probability 1 − � [17].

In this paper we show that the techniques presented in Lima et al. [7] on Pseudo-dimension theory applied to
percolation centrality and the work of Riondato and Upfal on Rademacher Averages applied to betweenness centrality
can be combined and further developed for giving a randomized algorithm for the approximation of the percolation
centrality based on the idea of progressive sampling. More precisely, we show that for any fixed constants 0 < �, � < 1,
the estimation of the percolation centrality can be computed in (m log n DiamV (G)) time, where DiamV (G) is the
maximum number of vertices in a shortest path of G. Note that since many real-world graphs are sparse and have
logarithmic diameter, the time complexity of the algorithm for such graphs is (n log n log log n).

Themain contribution presented in this paper is a progressive sampling algorithm relying on the use of Rademacher
Complexity. The idea is that the algorithm iteratively increases the size of a sample of shortest paths used for the
estimation of the percolation centrality until the desired accuracy is achieved. The stop condition depends on the
Rademacher Averages of the current sample of shortest paths. One of the consequences of our approach based on
Rademacher Averages is that such technique is sensitive to the input distribution, so it can provide tighter bounds for
certain inputs. Additionally, even if no assumption in made on the input distribution, we use a result from [7] based on
Vapnik-Chervonenkis (VC) theory to show that the sample size of our algorithm is always tighter than the ones given
by standard Hoeffding and union-bound techniques and never worse than the sample size given the previous algorithm
given in [7] for the estimation of percolation centrality.

2. Preliminaries
In this section, we present the definitions, notation and results that are the groundwork of our proposed algorithms.

In all results of this paper, we assume w.l.o.g. that the input graph G is connected, since the algorithms can be applied
separately to each of its connected components. Since our work build on some of the techniques developed in [7], in
Sections 2.1 and 2.2 we maintain similar notation and definitions that appeared in [7].

2.1. Graphs and Percolation Centrality
Given an undirected weighted graph G = (V ,E), the percolation states xv for each v ∈ V and (u,w) ∈ V 2, let

Suw be the set of all shortest paths from u to w, and �uw = |Suw|. For a given path puw ∈ Suw, let Int(puw) be the
set of internal vertices of puw, that is, Int(puw) = {v ∈ V ∶ v ∈ puw and u ≠ v ≠ w}. We denote �uw(v) as the
number of shortest paths from u to w that v ∈ V is internal to. Let Pu(w) = {s ∈ V ∶ (s,w) ∈ Epuw} be the set
of (immediate) predecessors of w in puw ∈ Suw, where Epuw is the set of edges of puw. We call the diameter of G
as the largest shortest path in G. Let 0 ≤ xv ≤ 1 be the percolation state of v ∈ V . We say v is fully percolated if
xv = 1, non-percolated if xv = 0 and partially percolated if 0 < x < 1. We say that a path from u to w is percolated
if xu − xw > 0. The percolation centrality is defined below.

Definition 1 (Percolation Centrality). Let R(x) = max{x, 0}. Given a graph G = (V ,E) and percolation states
xv,∀v ∈ V , the percolation centrality of a vertex v ∈ V is defined as

p(v) = 1
n(n − 1)

∑

(u,w)∈V 2

u≠v≠w

�uw(v)
�uw

R(xu − xw)
∑

(f,d)∈V 2

f≠v≠d

R(xf − xd)
.

The definition originally presented in [15] does not have the normalization factor 1
n(n−1) , introduced in this paper

with the purpose of defining a proper probability distribution in Section 3. This normalization preserves the original
relation among the vertices centralities.

2.2. Sample Complexity and Pseudo-dimension
In sampling algorithms, typically the estimation of a certain quantity observing parameters of quality and confi-

dence is desired. The sample complexity analysis relates the minimum size of a random sample required to estimate
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results that are consistent with such desired parameters (e.g., in our case a minimum number of shortest paths that must
be sampled). An upper bound to the Vapnik-Chervonenkis Dimension (VC-dimension) of a class of binary functions,
a central concept in sample complexity theory, is especially defined in order to model the particular problem that one
is dealing. There is, an upper bound to the VC-dimension of the sampling problem at hand is also an upper bound to
the sample size which respects the desired quality and confidence parameters. Generally speaking, the VC-dimension
measures the expressiveness of a class of subsets defined on a set of points [17].

For the problem presented in this work, however, the class of functions that we need to deal are not binary. Hence,
we use the pseudo-dimension, which is a generalization of the VC-dimension for real-valued functions. An in-depth
exposition of the definitions and results presented below can be found in the books of Anthony and Bartlett [4], Mohri
et. al. [12], Shalev-Schwartz and Ben-David [21] and Mitzenmacher and Upfal [11].

Definition 2 (Range Space). A range space is a pair  = (U,), where U is a domain (finite or infinite) and  is a
collection of subsets of U , called ranges.

For a given S ⊆ U , the projection of  on S is the set S = {S ∩ I ∶ I ∈ }. If |S | = 2|S| then we say S is
shattered by . The VC-dimension of a range space is the size of the largest subset S that can be shattered by , as
presented by the following definition.

Definition 3 (VC-dimension). The VC-dimension of a range space = (U,), denoted by VCDim(), is VCDim() =
max{k ∶ ∃S ⊆ U such that |S| = k and |S | = 2k}.

Let  be a family of functions from some domain U to the range [0, 1]. ConsiderD = U × [0, 1]. For each f ∈  ,
there is a subset Rf ⊆ D defined as Rf = {(x, t) ∶ x ∈ U and t ≤ f (x)}.

Definition 4 (Pseudo-dimension (see [4], Section 11.2)). Let = (U, ) and′ = (D,+) be range spaces, where
+ = {Rf ∶ f ∈ }. The pseudo-dimension of , denoted by PD(), corresponds to the VC-dimension of ′, i.e.,
PD() = V CDim(′).

The following combinatorial object, called �-sample, is useful when one wants to intersect ranges of a sufficient
size with respect to the right relative frequency of each range in  within the sample S.

Definition 5 (�-sample). Given 0 < � < 1, a set S is called �-sample w.r.t. a range space  = (U,) and a
probability distribution � on U if ∀I ∈ , |

|

|

Pr�(I) −
|S∩I|
|S|

|

|

|

≤ �.

A more general definition of �-sample (called �-representative) is given below for the context where for a given a
domain U and a set of values of interest, there is a family of functions  from U toℝ∗ such that there is one fℎ ∈ 
for each ℎ ∈ . Let S be a collection of r elements from U sampled with respect to a probability distribution �.

Definition 6. For each fℎ ∈  , such that ℎ ∈ , we define the expectation of fℎ and its empirical average as LU
and LS , respectively, i.e., LU (fℎ) = Eu∈U [fℎ(u)] and LS (fℎ) =

1
r
∑

s∈S fℎ(s).

Definition 7. Given 0 < �, � < 1, a setS is called �-representativew.r.t. some domainU , a set, a family of functions
 and a probability distribution � if ∀fℎ ∈  , |LS (fℎ) − LU (fℎ)| ≤ �.

By the linearity of expectation, the expected value of the empirical averageLS (fℎ) corresponds toLU (fℎ). Hence,
|LS (fℎ) − LU (fℎ)| = |LS (fℎ) − Efℎ∈ [LS (fℎ)]|, and by the law of large numbers, LS (fℎ) converges to its true
expectation as r goes to infinity, since LS (fℎ) is the empirical average of r random variables sampled independently
and identically w.r.t. �. However, this law provides no information about the value |LS (fℎ) −LU (fℎ)| for any sample
size. Thus, we use results from the VC-dimension and pseudo-dimension theory, which provide bounds on the size
of the sample that guarantees that the maximum deviation of |LS (fℎ) − LU (fℎ)| is within � with probability at least
1 − �, for given 0 < �, � < 1.

Theorem 1 states that having an upper bound to the pseudo-dimension of a range space allows to build an �-
representative sample.
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Theorem 1 (see [9], Section 1). Let ′ = (D,+) be a range space (D = U × [0, 1]) with V CDim(′) ≤ d and a
probability distribution � on U . Given 0 < �, � < 1, let S ⊆ D be a collection of elements sampled w.r.t. �, with
|S| = c

�2

(

d + ln 1
�

)

where c is a universal positive constant. Then S is �-representative with probability at least 1−�.

In the work of [10], it has been proven that the constant c is approximately 1
2 . Lemmas 1 and 2, stated and proved

by Riondato and Upfal (2018), present constraints on the sets that can be shattered by a range set +.

Lemma 1 (see [19], Section 3.3). Let B ⊆ D be a set that is shattered by +. Then, B can contain at most one
(d, y) ∈ D for each d ∈ U and for a y ∈ [0, 1].

Lemma 2 (see [19], Section 3.3). Let B ⊆ D be a set that is shattered by +. Then, B does not contain any element
in the form (d, 0) ∈ D, for each d ∈ U .

2.3. Progressive Sampling and Rademacher Complexity
In some problems, finding a bound to the sample size that is tight may be a complicated task. An alternative

to this issue relies on the use of progressive sampling, in which the process starts with a small sample size which
progressively increases until the accuracy can be improved [16]. The use of an appropriate scheduling for the sample
increase combined with an efficient-to-evaluate stopping condition (i.e., knowing when the sample is large enough)
leads to a greater improvement in time for the estimation of the value of interest [19]. A key idea that lies in the core of
statistical learning theory – although having applications that extend the context of learning algorithms [18] – is that
the stopping condition takes into consideration the input distribution, which can be extracted by the use of Rademacher
Complexity (see [11], chapter 14). The main results from this theory that are applied in our algorithms are presented
below.

Consider a sample S and the computation of the maximum deviation of LS (fℎ) from the true expectation of fℎ,
for all fℎ ∈  , that is, supfℎ∈ |LS (fℎ) − LU (fℎ)|. The empirical Rademacher average of  is defined as follows.

Definition 8. Consider a sampleS = {z1,… , zr} and a distribution of rRademacher random variables � = (�1,… , �r),
i.e., Pr(�i = 1) = Pr(�i = −1) = 1∕2 for 1 ≤ i ≤ r. The empirical Rademacher average of a family of functions 
w.r.t. to S is defined as

R̃r( , S) = E�

[

sup
fℎ∈

1
r

r
∑

i=1
�ifℎ(zi)

]

.

At the heart of our algorithm, the stopping condition for the progressive sampling depends on the Rademacher
Complexity of the sample. However, the exact computation of this measure is expensive, so we use the bound of
Boucheron et al. [5] to relate the empirical Rademacher average with the value of supfℎ∈ |LS (fℎ) − LU (fℎ)|. We
are aware that more refined bounds than the one used in this work are available, as the ones presented by Oneto et al.
[13, 14] and Riondato andUpfal [19], if the sample is created under a uniform distribution. We note that such adaptation
is possible in the current work, since we could modify our sample space from shortest paths to pair of vertices (note
that sampling pair of vertices uniformly can be easily done), but that would lead to a looser VC-Dimension bound.

Theorem 2. (see [5], Theorem 3.2) With probability at least 1 − �,

sup
fℎ∈

|LS (fℎ) − LU (fℎ)| ≤ 2R̃r( , S) +
√

2 ln(2∕�)
r

.

The exact computation of R̃r( , S) depends on an extreme value, i.e., the supremum of deviations for all functions
in  , which can be, as we have mentioned previously, expensive over a large (or infinite) set of functions [11]. Even
a Monte Carlo simulation to estimating R̃r( , S) is expensive to be extracted in this case; hence, we use the bound
given by Theorem 3, which is a variant of the Massart’s Lemma (see Theorem 14.22, [11]) that is convex, continuous
in ℝ+ and can be efficiently minimized by standard convex optimization methods.

Consider the vector vfℎ = (fℎ(z1),… , fℎ(zm)) for a given sample of m elements, denoted by S = {z1,… , zm},
and let S = {vfℎ , fℎ ∈ }.
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Theorem 3. (Riondato and Upfal [19]) Let w ∶ ℝ+ → ℝ+ be the function

w(s) = 1
s
ln

∑

vfℎ∈S

exp

(

s2||vfℎ ||
2
2

2m2

)

.

Then R̃r( , S) ≤ mins∈ℝ+ w(s).

3. Pseudo-dimension and percolated shortest paths
In this section we model the percolation centrality in terms of a range set of the percolated shortest paths. That is,

for a given a graphG = (V ,E) and the percolation states xv for each v ∈ V , let = V , with n = |V |, and letU = SG,
where SG =

⋃

(u,w)∈V 2∶u≠w
Suw. For each v ∈ V , there is a set �v = {p ∈ U ∶ v ∈ Int(p)}. For a pair (u,w) ∈ V 2 and

a path puw ∈ SG, let fv ∶ U → [0, 1] be the function fv(puw) =
R(xu−xw)

∑

(f,d)∈V 2∶f≠v≠d
R(xf−xd )

1�v (puw).

The function fv gives the proportion of the percolation between u and w to the total percolation in the graph if
v ∈ Int(puw). We define  = {fv ∶ v ∈ V }.

Let D = U × [0, 1]. For each fv ∈  , there is a range Rv = Rfv = {(puw, t) ∶ puw ∈ U and t ≤ fv(puw)}. Note
that each range Rv contains the pairs (puw, t), where 0 < t ≤ 1 such that v ∈ Int(puw) and t ≤

R(xu−xw)
∑

(f,d)∈V 2∶f≠v≠d
R(xf−xd )

.

We define + = {Rv ∶ fv ∈ }.
Each puw ∈ U is sampled according to the function �(puw) = 1

n(n−1)
1
�uw

. In order to see that this is a valid
probability distribution, note that

∑

puw∈U
�(puw) =

∑

puw∈U

1
n(n − 1)

1
�uw

=
∑

u∈V

∑

w∈V
w≠u

∑

p∈Suw

1
n(n − 1)

1
�uw

=
∑

u∈V

∑

w∈V
w≠u

1
n(n − 1)

�uw
�uw

= 1
n(n − 1)

∑

u∈V

∑

w∈V
w≠u

1 = 1
n(n − 1)

∑

u∈V
(n − 1) = 1.

In [7], Lima et al. showed that E[fv(puw)] = p(v) for all v ∈ V . We state this result in the next theorem.

Theorem 4. (Lima et al. [7]) For fv ∈  and for all puw ∈ U , such that each puw is sampled according to the
probability function �(puw), E[fv(puw)] = p(v).

Let S = {(puiwi , 1 ≤ i ≤ r)} be a collection of r shortest paths sampled independently and identically from U .
Next, we define p̃(v), the estimation to be computed by the algorithm, as the empirical average from Definition 6:

p̃(v) = LS (fv) =
1
r

∑

puiwi∈S
fv(puiwi ) =

1
r

∑

puiwi∈S

R(xui − xwi )
∑

(f,d)∈V 2

f≠v≠d

R(xf − xd)
1�v (puiwi ).

For each v ∈ V , the value p̃(v) can be defined as ||vv||1∕r, where

vv = (fv(pu1w1
),… , fv(purwr )).

We denote the set  = {vv, v ∈ V }. Note that || ≤ |V |, since there may be different vertices u′ and v′ with vu′ = vv′ .

AM de Lima et al.: Preprint submitted to Elsevier Page 5 of 11



Percolation Centrality via Rademacher Complexity

4. Estimation for the percolation centrality
We first define the problem in terms of a range space and then we present an algorithm which takes as input an

undirected weighted graph G = (V ,E) with n vertices and m edges, the percolation states xv for each v ∈ V , a sample
schedule (|Si|)i≥1 and the quality and confidence parameters 0 < �, � < 1, assumed to be constants (they do not depend
on the size of G).

Theorem 5 states an upper bound to the VC-Dimension of the range space defined in Section 3 in order to bound
the fixed sample size that guarantees |p̃(v) − p(v)| ≥ � for each v ∈ V with probability at least 1 − �. In remainder of
this paper let DiamV (G) be the vertex-diameter of G, i.e., the maximum number of vertices in a shortest path of G.

Theorem 5. (Lima et al. [7]) Let  = (U, ) and ′ = (D,+) be the corresponding range spaces for the domain
and range sets defined in Section 3, and let DiamV (G) be the vertex-diameter ofG. We have PD() = V CDim(′) ≤
⌊lgDiamV (G) − 2⌋ + 1.

By Theorem 4 and Definition 3,LU (fv) = p(v) andLS (fv) = p̃(v), respectively, for each v ∈ V and fv ∈  . Thus,
|LS (fv) − LU (fv)| = |p̃(v) − p(v)|, and by Theorems 1 and 5, a sample of size ⌈ c

�2
(

⌊lgDiamV (G) − 2⌋ + 1 + ln �
)

⌉

suffices to our algorithm, for given 0 < �, � < 1.
If we had used a Hoeffding bound, we would have Pr(|p̃(v) − p(v)| ≥ �) ≤ 2exp(−2r�2) for a sample of size r

and for each v ∈ V . Applying the union bound for all v ∈ V , the value of r must be 2exp(−2r2)n ≥ �, which leads
to r ≥ 1

2�2 (ln 2 + ln n + ln(1∕�)). Even though DiamV (G) might be as large as n, we note that the bound given in
Theorem 5 is tighter since it depends on the combinatorial structure of G, which gives a sample size tailored for it.
For instance, if DiamV (G) = ln n (which is common in many real-world graphs, in particular power-law graphs), we
have that VCDim() ≤ ⌊lg(ln n) − 2⌋ + 1.In particular, the problem of computing the diameter of G is not known to
be easier than the problem of computing all of its shortest paths [3], however, a bound on DiamV (G) is enough and it
can be efficiently computed [19].

The main idea of the algorithm presented in [7] is that an upper bound for ⌊lg(ln n)−2⌋+1 can efficiently computed.
In the current paper, instead of running the sampling algorithm directly in a sample such fixed size, we build a sampling
schedule that is used in a progressive sampling approach. This schedule is defined as follows: letS1 be the initial sample
size and �1 = �∕2. At this point, the only information available about the empirical Rademacher complexity of S1 is
that R̃r( , S1) ≥ 0. Plugging this with the r.h.s. of the bound in Theorem 11, which has to be at most �, we have

√

2 ln(2∕(2∕�))
|S1|

≤ � ⇒
2 ln(4∕�)
|S1|

≤ �2 ⇒ |S1| ≥
2 ln(4∕�)

�2
. (1)

There is no fixed strategy for scheduling. Provost et al. [16] conjecture that a geometric sampling schedule is
optimal (although we do not need such assumption), i.e., the one that Si = ciS1, for each i ≥ 1 and for a constant
c > 1. In our algorithm we follow this results, as previously indicated by Riondato and Upfal [19].

Given 0 < �, � < 1, let (|Si|)i≥1 be a geometric sampling schedule with starting sample size defined in (1). We
present the outline of the algorithm for estimating the percolation centrality with probability 1 − �. Consider the table
p̃ with the centrality estimation and the set  , that stores the values of vv, for each v ∈ V , without repetition.

The following steps are repeated for each i ≥ 1. For the sake of clarity, S0 = ∅.

step 1. Create a sample of k = |Si| − |Si−1| elements of V 2 chosen uniformly and independently (with replacement)
at random;

step 2. For each pair of vertices (u,w) ∈ {Si − Si−1}, compute the set Suw of shortest paths from u to w. Sam-
ple a shortest path puw from Suw with probability 1∕�uw. For each vertex z ∈ Int(puw), increase p̃(z) by

R(xu−xw)
∑

(f,d)∈V 2∶f≠v≠d R(xd−xf )
;

step 3. Compute the bound to R̃r( , Si) by minimizing the function defined in Theorem 3. If it satisfies the stopping
condition defined in Theorem 2, then return the set {p̃(v) = p̃(v)∕|Si|, v ∈ V and p̃(v) > 0}. Otherwise, increase
the size of Si until it has size |Si+1|, increase i and return to step 1.
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Step 1 is trivial and step 2 can be performed by running Dijkstra’s Algorithm in time (m + n log n) in the input
graph G for each sampled pair of vertices (u,w).

The value minus_s[v] =
∑

(f,d)∈V 2∶f≠v≠d
R(xf − xd) for each v ∈ V , which are necessary to compute p̃(v), is

obtained in line 4 by the linear time dynamic programming strategy presented in Algorithm 1. The proof of correctness
of this algorithm appeared originally in [7]. For the sake of completeness we show the proof in Theorem 6.

The storage of each value in  in a sparse way and without repetition and the updating of the map v[v], for each
v ∈ V , are computed by Algorithm 3 in line 19, following the steps of Riondato and Upfal [19].

Theorem 6. For an arrayA of size n, sorted in non-decreasing order, Algorithm 1 returns for sum andminus_sum[k],

respectively, the values
n
∑

i=1

n
∑

j=1
R(A[j] − A[i]) and

n
∑

i=1
i≠k

n
∑

j=1
j≠k

R(A[j] − A[i]), for each k ∈ {1,… , n}.

Proof. By the definition of sum, we have that

sum =
n
∑

i=1

n
∑

j=1
R(A[i] − A[j]) =

n
∑

i=1

n
∑

j=1
R(A[j] − A[i]) =

n
∑

i=1

n
∑

j=1
max{A[j] − A[i], 0}.

Since A is sorted, then max{A[j] −A[i], 0} = 0 if j < i. Hence, if we consider only the j ≥ i, this value becomes

sum =
n
∑

i=1

n
∑

j=i
(A[j] − A[i]).

A similar step can be applied to the values of the array minus_sum, and then for all indices k ∈ {1, ..., n},

minus_sum[k] =
n
∑

i=1
i≠k

n
∑

j=1
j≠k

max{A[j] − A[i], 0} =
n
∑

i=1
i≠k

n
∑

j=i
j≠k

(A[j] − A[i]).

The recurrences below follow directly from lines 5 and 6, where sumk denotes the value of sum at the beginning
of the k-th iteration of the algorithm.

svp[k] =

{

0, if k = 1
svp[k − 1] + A[k − 1], otherwise.

sumk =

{

0, if k = 1
sumk−1 + (k − 1)A[k] − svp[k], otherwise.

The solutions to the above recurrences are, respectively,

svp[k] =
k−1
∑

i=1
A[i] and sumk =

k
∑

i=1
((i − 1)A[i] − svp[i]) .

The value sum is then correctly computed in lines 4–6, since

sum =
n
∑

i=1

n
∑

j=i
(A[j] − A[i]) =

n
∑

i=1

n
∑

j=i
A[j] −

n
∑

i=1

n
∑

j=i
A[i] =

n
∑

i=1

n
∑

j=i
A[j] −

n
∑

i=1
(n − i + 1)A[i]

=
n
∑

j=1

j
∑

i=1
A[j] −

n
∑

i=1
(n − i + 1)A[i] =

n
∑

j=1
jA[j] −

n
∑

i=1
(n − i + 1)A[i] =

n
∑

i=1
iA[i] −

n
∑

i=1
(n − i + 1)A[i]
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=
n
∑

i=1
(i − 1)A[i] −

n
∑

i=1
(n − i)A[i] =

n
∑

i=1
(i − 1)A[i] −

n
∑

i=1

i−1
∑

j=1
A[j]

=
n
∑

i=1

(

(i − 1)A[i] −
i−1
∑

j=1
A[j]

)

=
n
∑

i=1
((i − 1)A[i] − svp[i]) .

Finally, minus_sum is also correctly computed in lines 8 and 9, since

minus_sum[k] =
n
∑

i=1
i≠k

n
∑

j=i
j≠k

(A[j] − A[i]) =
n
∑

i=1

n
∑

j=i
(A[j] − A[i]) −

(k−1
∑

j=1
(A[k] − A[j]) +

n
∑

j=k+1
(A[j] − A[k])

)

= sum −

(k−1
∑

j=1
A[k] −

n
∑

j=k+1
A[k] −

k−1
∑

j=1
A[j] +

n
∑

j=k+1
A[j]

)

= sum −

(

(k − 1)A[k] − (n − (k + 1) + 1)A[k] −
k−1
∑

j=1
A[j] +

n
∑

j=k+1
A[j]

)

= sum −

(

(2k − n − 1)A[k] +
n
∑

j=1
A[j] −

k−1
∑

j=1
A[j] − A[k] −

k−1
∑

j=1
A[j]

)

= sum −

(

(2k − n − 2)A[k] +
n
∑

j=1
A[j] − 2

k−1
∑

j=1
A[j]

)

= sum − (2k − n − 2)A[k] − svp[n + 1] + 2svp[k].

□

Algorithm 1: GETPERCOLATIONDIFFERENCES(A, n)
Data: Array A, sorted in non-decreasing order, and n = |A|.

Result: The value sum =
n
∑

i=1

n
∑

j=1
R(A[j] − A[i]) and the array

{minus_sum[k] =
n
∑

i=1
i≠k

n
∑

j=1
j≠k

R(A[j] − A[i]),∀k ∈ {1, ..., n}}, such that R(z) = max{z, 0}.

1 sum ← 0
2 minus_sum[i] ← 0,∀i ∈ {1,… , n}
3 svp ← (0, 0,… , 0)
4 for i ← 2 to n do
5 svp[i] ← svp[i − 1] + A[i − 1]
6 sum ← sum + (i − 1)A[i] − svp[i]
7 svp[n + 1] ← svp[n] + A[n]
8 for i ← 1 to n do
9 minus_sum[i] ← sum − A[i](2i − n − 2) − svp[n + 1] + 2svp[i]

10 return sum, minus_sum

Theorem 7. Consider a sample Sr = {pu1w1
,… , purwr} of size r, where each puiwi is a shortest path in SG between

the vertices ui and wi, for 1 ≤ i ≤ r, and let �i be the value obtained in line 23 on the i-th iteration. Then �r =

2ws +
√

2 ln(2∕�r)
|Sr|

, where �r = �∕2r, is the value where r is the minimal i ≥ 1 such that �r ≤ � for the input graph

G = (V ,E) and for fixed constants 0 < �, � < 1. Algorithm 2 returns with probability at least 1 − � an approximation
p̃(v) to p(v), for each v ∈ V , such that p̃(v) is within � error.
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Algorithm 2: PERCOLATIONCENTRALITYAPPROXIMATION(G,x,�,�)
Data: Graph G = (V ,E) with n = |V |, percolation states x, accuracy parameter 0 < � < 1, confidence

parameter 0 < � < 1, sample scheduling (Si)i≥1.
Result: Approximation p̃(v) for the percolation centrality of all vertices v ∈ V .

1 v[v] ← ∅, minus_s[v] ← 0, ∀v ∈ V
2 count ← array of size n, initialized with zeros
3 sort x /* after sorted, x = (x1, x2,… , xn) */
4 minus_s← GETPERCOLATIONDIFFERENCES(x, n)
5 |S0| ← 0
6  ← ∅
7 i ← 0
8 do
9 i ← i + 1

10 for l ← 1 to |Si| − |Si+1| do
11 sample u ∈ V with probability 1∕n
12 sample w ∈ V with probability 1∕(n − 1)
13 Suw ← ALLSHORTESTPATHS(u,w)
14 if Suw ≠ ∅ then
15 t ← w
16 while t ≠ u do
17 sample z ∈ Pu(t) with probability

�uz
�ut

18 if z ≠ u then
19 UPDATESETV( , z, v, R(xu−xw)minus_s[z] , count)
20 t← z

21 ws ← mins∈ℝ+
1
s ln

∑

v∈ exp
s2||v||22
2|Si|2

22 �i ← �∕2i

23 � ← 2ws +
√

2 ln(2∕�i)
|Si|

24 while � > �
25 p̃[v] ← ||v[v]||∕|Si|,∀v ∈ V
26 return p̃[v],∀v ∈ V

Algorithm 3: UPDATESETV( ,z,V,FRAC,COUNT)
Data: Set  , vertex z, vector v, real value rz, counter array count.

1 v’ ← v[z]
2 v ← {v[z] ∪ rz}
3 if v ∉  then
4 count[v] ← 1
5  ←  ∪ {v}
6 else
7 count[v] ← count[v] + 1
8 if count[v’] ≥ 1 then
9 count[v’] ← count[v’] − 1

10 if count[v’] = 0 then
11  ←  ⧵ {v’}
12 v[z] ← v[z] ∪ rz
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Proof. Let i ≥ 1 be an iteration of the loop in 8–24 and let Ei be the event where supv∈V |p̃(v) − p(v)| > �i in this
iteration. We need the event Ei occurring with probability at most � for some iteration i. That is, we need

Pr(∃i ≥ 1 s.t. Ei occurs) ≤
∞
∑

i=1
Pr(Ei) ≤ �

where the inequality comes from union bound. Setting Pr(Ei) = �∕2i, we have

∞
∑

i=1
Pr(Ei) = �

∞
∑

i=1

1
2i

= �.

Let Sr = {pu1w1
,… , purwr} be the final sample obtained after the iteration r in the loop 8–24 where the stopping

condition is satisfied, i.e., �r ≤ �. For each iteration i in 8–24, where 1 ≤ i ≤ r, each pair (ui, wi) is sampled with
probability 1

n(n−1) in lines 11 and 12, and for each pair, the set Suiwi is computed by Dijkstra algorithm (line 13). A

shortest path puiwi is sampled independently inSuiwi (lines 16–20), i.e., with probability
1

�uiwi
, by a backward traversing

starting from wi (Lemma 5 in [17], Section 5.1). Therefore, puiwi is sampled with probability 1
n(n−1)

1
�uiwi

.

The value
R(xui−xwi )
minus_s[z] is added to v[z] (Algorithm 3, line 19), for each z ∈ puiwi reached by the backward traversing

(lines 16–20). To keep track of the set  , Algorithm 3 keeps an array count of size n, such that each value in the array
contains the amount of vertices having the same value in the map v.

The value of minus_s[z] is correctly computed in line 4 as shown in Theorem 6. Let S′ ⊆ S be the set of shortest
paths that z is an internal vertex. Then, at the end of Algorithm 2,

p̃(z) = 1
r

∑

pgℎ∈S′

R(xg − xℎ)
∑

(f,d)∈V 2

f≠z≠d

R(xf − xd)
= 1
r

∑

puiwi∈S

R(xui − xwi )
∑

(f,d)∈V 2

f≠z≠d

R(xf − xd)
1�v (puiwi )

which corresponds to p̃(z) = 1
r

∑

puiwi∈S
fz(puiwi ).

Since �r ≤ �, LS (fv) = p̃(v) and LU (fv) = p(v) (Theorem 4) for all v ∈ V and fv ∈  , then Pr(|p̃(v) − p(v)| ≤
�) ≥ 1 − � (Theorem 2). □

Theorem 8. Given a weighted graphG = (V ,E)with n = |V | andm = |E| and a sample of size r = c
�2 (⌊lg diam(G)−

2⌋ + 1) − ln �), Algorithm 2 has running time (m log2 n).

Proof. We sample the vertices u and w and the shortest path puw in lines 11, 12 and 17, respectively, in linear time.
Sorting the percolation states array x (line 3) can be done in (n log n) time and the execution of Algorithm 1 on

the sorted array x (line 4) has running time (n). As for the loop in lines 16–20, the complexity analysis proceeds as
follows. Once |Pu(w)| ≤ dG(w), where dG(w) denotes the degree of w in G and Pu(w) is the set of predecessors of w
in the shortest paths from u to w, and since this loop is executed at most n times if the sampled path traverses all the
vertices of G, the total running time of these steps corresponds to

∑

v∈V dG(v) = 2m = (m).
Line 21 is executed by an algorithm that is linear in the size of the sample [8]. The loop in lines 8–24 runs at most

r times and the Dijkstra algorithm which is executed in line 13 has running time (m log n), so the total running time
of Algorithm 2 is (n log n + rmax(m,m log n)) = (n log n + r(m log n)) = (r(m log n)) = (m log2 n). □

Corollary 1. Given an unweighted graph G = (V ,E) with n = |V | and m = |E| and a sample of size r =
c
�2 (⌊lg diam(G) − 2⌋ + 1) − ln �), Algorithm 2 has running time ((m + n) log n).

Proof. The proof is analogous to the one of Theorem 8, with the difference that the shortest paths between a sampled
pair (u,w) ∈ V 2 will be computed by the BFS algorithm, which has running time (m + n). □

We observe that, even though it is an open problem whether there is a(n3−c) algorithm for computing all shortest
paths in weighted graphs, in the unweighted case there is a (n2.38) (non-combinatorial) algorithm for this problem
[20]. However, even if this algorithm could be adapted to compute betweenness/percolation centrality (what is not
clear), our algorithm obtained in Corollary 1 is still faster.
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5. Conclusion
We presented a sampling based algorithm to accurately estimate the percolation centrality of every vertex of a

weighted graph with high probability. The proposed algorithm has running time (m log2 n), and the estimation is
within � of the exact value with probability 1−�, for fixed constants 0 < �, � < 1. The running time of the algorithm is
reduced to ((m + n) log n) if the input graph is unweighted. Since many large scale graphs, in practical applications,
are sparse and have small diameter (typically of size log n), our algorithm provides a fast approximation for such graphs
(more precisely running in (n log n log log n) time).
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