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Abstract
In this paper we are interested in a version of the All-pairs Shortest Paths problem (APSP) that fits
neither in the exact nor in the approximate case. We define a measure of centrality of a shortest path,
related to the “importance” of such shortest path in the graph, and propose an algorithm that, for
any fixed constants 0 < ε, δ < 1, given an undirected graph G with non-negative edge weights, outputs
with probability 1 − δ the (exact) distance and the shortest path between every pair of vertices
(u, v) that has centrality at least ε in expected time O(lg DiamV (G) ·max(m+ n logn,DiamV (G)2),
where DiamV (G) is the vertex diameter of G. The algorithm progressively samples shortest paths in
G making use of Rademacher Averages for deciding the point at which it should stop. Additionally,
when the sample size reaches an upper bound of size d c

ε
b2 lgDiamV (G)+1c ln( 1

ε
)+ln 1

δ
e the algorithm

stops unconditionally. We use VC-dimension theory to show that a sample of this size suffices. We
note that this bound for the sample size is exponentially smaller than bounds obtained by other
standard techniques when the input graph has logarithmic vertex diameter, which is a common case
for real-world graphs.
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1 Introduction

The All-pairs Shortest Path (APSP) is the problem of computing a path with the minimum
length between every pair of vertices in a weighted graph. The APSP problem is very well
studied and there has been recent results for a variety of assumptions for the input graph
(directed/undirected, integer/real edge weights, etc) [6,7,10,24]. In this paper we assume
that the input is an undirected graph G with n vertices and m edges with non-negative
weights.

In our scenario, the fastest known exact algorithms are the algorithm proposed by Williams
(2014) [24], which runs in O

(
n3

2c
√

logn

)
time, for some constant c > 0, and by Pettie and

Ramachandram (2002) [18] for the case of sparse graphs, which runs in O(mn logα(m,n))
time, where α(m,n) is the Tarjan’s inverse-Ackermann function. If no assumption is taken
about the sparsity of the graph, it is an open question whether the APSP problem can be
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solved in O(n3−c), for any c > 0 even when the edge weights are natural numbers. The
hypothesis that there is no such algorithm for such task is used in hardness arguments in
some works [1, 2].

The three fastest approximation algorithms for the problem depend on the approximation
guarantees as well as the sparsity of the input graph. Elkin et al. (2019) [11] proposed an
approximation that runs in O(n2) time and has multiplicative factor 1 + ε and an additive
term β(G), where β(G) depends on the edge weights. Baswana and Kavitha (2010) [4]
proposed two algorithms, one that runs in Õ(m

√
n + n2) time and other that runs in

Õ(m2/3n+ n2) time, depending on the required approximation factor. There has also been
recent development on approximation algorithms when assumptions for the input graph are
not the same as ours [5, 25].

In this paper, we deal with a version of the problem that fits neither in the exact nor in
the approximate case. For every pair of vertices u, v our algorithm either outputs a shortest
path Pu,v between u and v of exact size or it does not compute any shortest path between u
and v, depending on a certain measure of the “importance” of the shortest path P , which
we call the centrality of P . The intuition behind this measure is that the centrality of P is
higher when a large number of shortest paths in a certain canonical set (in particular, this
set contains a shortest path between every pair of vertex of G) has P as a subpath. The
precise definition of this centrality measure is given in Section 2.1.

Let DiamV (G) be the vertex-diameter of the input graph (i.e., the maximum number
of vertices in a shortest path in G). In this paper we present a O(lg DiamV (G) ·max(m+
n logn,DiamV (G)2) expected running time randomized algorithm for computing the shortest
path between every pair of vertices that has shortest path centrality higher than certain
fixed constant. This is particularly interesting for sparse graphs with logarithmic vertex
diameter (this is the case for many real word graphs). The central idea is to sample shortest
paths starting at the roots of a shortest paths trees. The main contribution of this paper is
a bound on the sample size that is exponentially smaller in graphs with logarithmic vertex
diameter than bounds given by standard Hoeffding and union-bound techniques.

A second contribution of the paper is an analysis relying on the use of Rademacher
Averages in a progressive sampling approach to build an algorithm that iteratively increases
the sample size until the desired accuracy is achieved, or the sample size reached a certain
maximum size. The number of steps in the progressive sampling technique is sensitive to the
probability distribution of the input graph (if we assume that the input is sampled according
to a certain distribution). However, even if we make no assumption on the input graph, we
use the Vapnik-Chervonenkis (VC) theory to give an upper bound for the maximum sample
size that scales with lg(DiamV (G)) (note that a bound given by Hoeffding and union-bound
scales with lg(n)). This upper bound is tighter since VC-dimension theory captures the
combinatorial structure of the input graph and this bound for such graph can be computed
efficiently. More precisely, we show that sampling d cεb2 lgDiamV (G)+1c ln( 1

ε )+ln 1
δ e shortest

paths (and inspecting its subpaths) are enough for finding with probability 1− δ, all shortest
paths with centrality at least ε, where c is a constant around 1

2 .
Some of the techniques used in this paper were developed by Riondato and Kornaropoulos

(2016) and Riondato and Upfal (2018) [20, 21]. In their work, the authors use VC-dimension
theory, the ε-sample theorem and Rademacher averages for the estimation of betweenness
centrality in a graph. More recently Lima et al. (2020) [8, 9] used some of these tools for
the estimation of the percolation centrality using pseudo-dimension theory and Rademacher
averages. In fact, we show two different algorithms in this paper. The first algorithm
outputs with probability 1− δ an estimation for the centrality c(u, v) within ε of the optimal
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value, for any fixed constants 0 < ε, δ < 1. The second algorithm outputs with probability
1 − δ a shortest path between u and v if c(u, v) is at least ε. Both algorithms run in
O(lg DiamV (G) ·max(m+ n logn,DiamV (G)2) expected running time.

2 Preliminaries

The definitions, notation and results which are the theoretical foundation of our work are
presented below.

2.1 Shortest Paths in Graphs
Let G = (V,E) be an undirected graph and a function w : E → R+, where w(e) is the non-
negative weight of the edge e. W.l.o.g. we assume that G is connected, since all results in this
paper can be applied to the connected components of a graph, when a graph is disconnected.
A path is a sequence of vertices p = (v1, v2, . . . , vk) such that, for 1 ≤ i < k, vi 6= vi+1 and
there is (vi, vi+1) ∈ E. Let Ep be the set of edges of a path p. The length of p, denoted by l(p),
corresponds to the sum

∑
e∈EP w(e). For a pair (u, v) ∈ V 2, let Puv be the set of all paths

from u to v. A shortest path is a path puv ∈ Puv where l(puv) = min{l(pu′v′) : pu′v′ ∈ Puv}.
The length of a shortest path is called distance.

A shortest paths tree (SPT) of a vertex u is a spanning tree Tu of G such that the path
from u to every other vertex of Tu is a shortest path in G. Note that there might be many
SPTs for a given vertex. In this paper we are interested in fixing one canonical SPT for
every vertex of G. More precisely, we fix an (arbitrary) ordering of the vertex set V and let
the canonical SPT for a vertex u be the SPT output by Dijkstra’s algorithm and denote
such tree Tu. We also call Tu the Dijkstra tree of u. A shortest path that starts at the
root of a Dijsktra tree is called a branch of G. More formally, given Tu, for every v 6= u,
the shortest path from u to v is a branch, denoted by Bu(v). In addition, every subpath of
Bu(v) = puv is also a shortest path in G, and we denote such set of subpaths (including puv)
as S(puv) or S(Bu(v)) (both notations are used interchangeably, as per convenience). Since
G is undirected, the same applies for paths in reverse order, i.e., every subpath of pvu in Tu
is also a shortest path. Let S(pvu) be such set of shortest paths.

Note that there are exactly n Dijkstra trees for G since Dijkstra’s algorithm is deterministic
and we have a fixed ordering for V . The set of n Dijkstra trees of G is denoted by T . Let
S(Tu) =

⋃
v∈V \{u}(S(puv) ∪ S(pvu)). The canonical set of shortest paths of G (w.r.t. the

ordering) is S(G) =
⋃
u∈V S(Tu). For the sake of convenience in Definition 1 we present the

length of a shortest path (distance) between a pair (u, v) ∈ V 2 in terms of Dijkstra trees.

I Definition 1 (Distance). Given a graph G = (V,E), a function w : E → R+, a pair
(u, v) ∈ V 2, a vertex x and a Dijkstra tree Tx, the distance from u to v is defined as

d(puv) =
∑
e∈ETx

w(e)

where puv ∈ S(Tx) and ETx is the set of edges of puv in Tx.

We define below the shortest path centrality of a pair of vertices (u, v) as the proportion
of branches that contains puv as subpath.

I Definition 2 (Shortest Path Centrality). Given an undirected weighted graph G = (V,E)
with n = |V |, a pair (u, v) ∈ V 2 and the Dijkstra tree Ta for each a ∈ V , let pab = (a, . . . , b)
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and puv = (u, . . . , v) be shortest paths from a to b and u to v, respectively, such that
pab, puv ∈ S(G). The shortest path centrality of a pair (u, v) ∈ V 2 is defined as

c(u, v) = tuv
n(n− 1)

where tuv =
∑
a,b∈V 2:a 6=b 1τuv(Ba(b)) and τuv = {Bc(d) ∈

⋃
a∈V

⋃
b∈V :b6=a Ba(b) : puv ∈

S(Bc(d))}.

The function 1τuv (Ba(b)) returns 1 if there is some shortest path from u to v as subpath
of the branch Ba(b) ∈ S(Ta) (and 0 otherwise). Clearly the centrality measure depends on
the fixed ordering, however, since we are dealing random sampling note that this ordering is
not relevant.

2.2 Sample Complexity and VC-dimension
In sampling algorithms, typically the aim is the estimation of a certain quantity according
to given parameters of quality and confidence using a random sample of size as small as
possible. A central concept in sample complexity theory is the Vapnik-Chervonenkis Theory
(VC-Dimension), in particular, the idea of finding an upper bound for the VC-dimension
of a class of binary functions related to the sampling problem at hand. In our context, for
instance, we may consider a binary function that takes a branch and outputs 1 if such branch
contains a shortest path for a given set. Generally speaking, from the upper bound for the
given class of binary functions we can derive an upper bound to the sample size for the
sampling algorithm.

We present in this section the main definitions and results from sample complexity
theory used in this paper. An in-depth exposition of the Vapnik-Chervonenkis Theory
(VC-Dimension), the ε-sample and the ε-net theorems can be found in the books of Shalev-
Schwartz and Ben-David (2014) [23], Mitzenmacher and Upfal (2017) [15], Anthony and
Bartlett (2009) [3], and Mohri et al. (2012) [16].

I Definition 3 (Range Space). A range space is a pair R = (U, I), where U is a domain
(finite or infinite) and I is a collection of subsets of U , called ranges.

For a given S ⊆ U , the projection of I on S is the set IS = {S ∩ I : I ∈ I}. If |IS | = 2|S|
then we say S is shattered by I. The VC-dimension of a range space is the size of the largest
subset S that can be shattered by I, i.e.,

I Definition 4 (VC-dimension). The VC-dimension of a range space R = (U, I), denoted by
VCDim(R), is VCDim(R) = max{k : ∃S ⊆ U such that |S| = k and |IS | = 2k}.

The following combinatorial object, called ε-net, is useful when one wants to find a sample
S ⊆ U that intersects every range in I of a sufficient size.

I Definition 5 (ε-net). Given 0 < ε < 1, a set S is called ε-net w.r.t. a range space
R = (U, I) and a probability distribution π on U if

∀I ∈ I, Pr
π

(I) ≥ ε⇒ |I ∩ S| ≥ 1.

The definition of ε-sample is a stronger notion as it not only intersects ranges of a sufficient
size but it also guarantees the right relative frequency of each range in I within the sample
S.
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I Definition 6 (ε-sample). Given 0 < ε < 1, a set S is called ε-sample w.r.t. a range space
R = (U, I) and a probability distribution π on U if

∀I ∈ I,
∣∣∣∣Pr
π

(I)− |S ∩ I|
|S|

∣∣∣∣ ≤ ε.
A more general definition of ε-sample (called ε-representative) is given below for the

context where for a given a domain U and a set of values of interest H, there is a family
of functions F from U to R∗ such that there is one fh ∈ F for each h ∈ H. Let S be a
collection of r elements from U sampled with respect to a probability distribution π.

I Definition 7. For each fh ∈ F , such that h ∈ H, we define the expectation of fh and its
empirical average as LU and LS, respectively, i.e.,

LU (fh) = Eu∈U [fh(u)] and LS(fh) = 1
r

∑
s∈S

fh(s).

I Definition 8. Given 0 < ε, δ < 1, a set S is called ε-representative w.r.t. some domain U ,
a set H, a family of functions F and a probability distribution π if |LS(fh)− LU (fh)| ≤ ε,
∀fh ∈ F .

The expectation of the empirical average LS(fh) corresponds to LU (fh), by linearity of
expectation, therefore |LS(fh)− LU (fh)| = |LS(fh)− Efh∈F [LS(fh)]|. By the law of large
numbers, LS(fh) converges to its true expectation as r goes to infinity, since LS(fh) is the
empirical average of r random variables sampled independently and identically w.r.t. π.
Since this law provides no information about the value |LS(fh) − LU (fh)| for any sample
size, we use results from VC-dimension theory, which provide bounds on the size of the
sample that guarantees that the maximum deviation of |LS(fh)− LU (fh)| is within ε with
probability at least 1− δ, for given 0 < ε, δ < 1.

An upper bound to the VC-dimension of a range space allows to build an ε-net and an
ε-representative sample, as stated in Theorem 9.

I Theorem 9 (see [12], Theorem 2.12). Given 0 < ε, δ < 1, let R = (U, I) be a range space
with VCDim(R) ≤ k, a probability distribution π on the domain U and let c be a universal
positive constant.
1. A collection of elements S ⊆ U sampled w.r.t. π with |S| = c

ε2

(
k + ln 1

δ

)
is ε-representative

with probability at least 1− δ.
2. A collection of elements S ⊆ U sampled w.r.t. π with |S| = c

ε

(
k ln 1

ε + ln 1
δ

)
is an ε-net

with probability at least 1− δ.

As pointed by Löffler and Phillips (2009) [14], c is around 1
2 , but in this paper we leave c

as an unspecified constant.

2.3 Progressive Sampling and Rademacher Averages
Finding a bound to the sample size that is tight may be a complicated task depending on the
problem. Hence, making use of progressive sampling, in which the process starts with a small
sample size which progressively increases until the accuracy improves, becomes an alternative
to this issue [19]. The combination of an appropriate scheduling for the sample increase with
an efficient-to-evaluate stopping condition (i.e., knowing when the sample is large enough)
leads to a greater improvement in time for the estimation of the value of interest [21]. A key
idea is that the stopping condition takes into consideration the input distribution, which can
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be extracted by the use of Rademacher Averages ( [15], chapter 14). This theory lies in the
core of statistical learning theory, although their applications extend beyond the context of
learning algorithms [22].

Consider the computation of the maximum deviation of LS(fh) from the true expectation
of fh, for all fh ∈ F , that is, supfh∈F |LS(fh)−LU (fh)|. The empirical Rademacher average
of F is defined as follows.

I Definition 10. Consider a sample S = {z1, . . . , zr} and a distribution of r Rademacher
random variables σ = (σ1, . . . , σr), i.e., Pr(σi = 1) = Pr(σi = −1) = 1/2 for 1 ≤ i ≤ r. The
empirical Rademacher average of a family of functions F w.r.t. to S is defined as

R̃r(F , S) = Eσ

[
sup
fh∈F

1
r

r∑
i=1

σifh(zi)
]
.

In this work, we use the bound previously introduced by Riondato and Upfal [21] for the
connection of the empirical Rademacher average with the value of supfh∈F |LS(fh)−LU (fh)|,
which extended the bound of Oneto et al. [17] to the supremum of its absolute value to
functions with codomain in [0, 1].

I Theorem 11. With probability at least 1− δ,

sup
fh∈F

|LS(fh)− LU (fh)| ≤ 2R̃r(F , S) +
ln 3

δ +
√

(ln 3
δ + 4rR̃r(F , S)) ln 3

δ

r
+

√
3
δ

2r .

The exact computation of R̃r(F , S) depends on an extreme value, i.e., the supremum
of deviations for all functions in F , which can be expensive over a large (or infinite) set of
functions [15]. Even a Monte Carlo simulation to estimating R̃r(F , S) is expensive to be
extracted in this case; hence, we use the bound given by Theorem 12, which is a variant of
the Massart’s Lemma (see Theorem 14.22, [15]) that is convex, continuous in R+ and can be
efficiently minimized by standard convex optimization methods.

Consider the vector vfh = (fh(z1), . . . , fh(zm)) for a given sample of m elements, denoted
by S = {z1, . . . , zm}, and let VS = {vfh , fh ∈ F}.

I Theorem 12. (Riondato and Upfal [21]) Let w : R+ → R+ be the function

w(s) = 1
s

ln
∑

vfh∈VS

exp
(
s2||vfh ||22

2m2

)
.

Then R̃r(F , S) ≤ mins∈R+ w(s).

3 Estimation for the Shortest Path Centrality and the All-pairs
Shortest Path Problem

We first define the problem in terms of a range space, and then we give an outline of the two
algorithms that we present in this paper. Both algorithms take as input an undirected graph
G = (V,E) with n vertices and m edges with non-negative edge weights, a sample schedule
(|Si|)i≥1 and the quality and confidence parameters 0 < ε, δ < 1, assumed to be constants.

Let n = |V | and T be the set of n Dijkstra trees of G. The set H from Section 2.2 is
defined to be V 2 and the universe U is the set of all branches, i.e., U =

⋃
a∈V

⋃
b∈V :b 6=a Ba(b).

For each pair (u, v) ∈ V 2, let puv be a shortest path from u to v. Let τuv = {Ba(b) ∈ U :
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puv ∈ S(Ba(b))}, and let I = {τuv : (u, v) ∈ V 2}. Note that R = (U, I) is a range space.
For Ba(b) ∈ U , let fuv : U → {0, 1} be the function fuv(Ba(b)) = 1τuv (Ba(b)). The indicator
function 1τuv (Ba(b)) returns 1 if there is some shortest path from u to v as subpath of Ba(b)
(and 0 otherwise). We define F = {fuv : (u, v) ∈ V 2}.

Each Ta ∈ T is sampled according to the function π(Ta) = 1
n and each Ba(b) ∈ Ta

is sampled with probability 1
n−1 , leading to the function π(Ba(b)) = 1

n(n−1) (which is a
valid probability distribution), and E[fuv(Ba(b))] = c(u, v) for all (u, v) ∈ V 2, as proved in
Theorem 13.

I Theorem 13. For fuv ∈ F , for each Ta ∈ T and for each branch Ba(b) ∈ Ta, such that
each Ba(b) is sampled according to the probability function π(Ba(b)), E[fuv(Ba(b))] = c(u, v).

Proof. Given an undirected weighted graph G = (V,E), for all (u, v) ∈ V 2 we have from
Definition 7

LU (fuv) = LT (fuv) = E(a,b)∈V 2 [fuv(Ba(b))] =
∑
Ta∈T

∑
Ba(b)∈Ta

π(Ba(b))fuv(Ba(b))

= 1
n(n− 1)

∑
Ta∈T

∑
Ba(b)∈Ta

1τuv (Ba(b))

= 1
n(n− 1)

∑
a∈V

∑
b∈V :b 6=a

1τuv (Ba(b))

= tuv
n(n− 1) = c(u, v)

J

Let S = {Bai(bi), 1 ≤ i ≤ r} be a set of i branches sampled independently and identically
from U = ∪a∈V ∪b∈V :b 6=a Ba(b). Next, we define c̃(u, v), the estimation to be computed by
the algorithm, as the empirical average from Definition 7:

c̃(u, v) = LS(fuv) = 1
r

∑
Bai (bi)∈S

fuv(Bai(bi)) = 1
r

∑
Bai (bi))∈S

1τuv (Bai(bi)).

For each (u, v) ∈ V 2, the value c̃(u, v) can be defined as ||vuv||1/r, where

vuv = (fuv(Ba1(b1)), . . . , fuv(Bai(bi))).

Each function fuv, however, is a binary function such that ||vuv|| = tuv. Hence, we denote V
as the set of such values, i.e., V = {tuv, (u, v) ∈ V 2}. Note that |V| ≤ (|V 2| − n)/2, since G
is undirected – and then for a pair (u, v), tuv = tvu – and there may be different pairs of
vertices (uk, vk) and (ul, vl) with tukvk = tulvl .

The VC-dimension of the range space R = (T , I), which is an upper bound to the fixed
sample size that guarantees that |c̃(u, v)− c(u, v)| ≤ ε with probability at least 1− δ, for each
(u, v) ∈ V 2 and for 0 < ε, δ < 1, is stated below. In remainder of this paper let DiamV (G)
be the vertex-diameter of G, i.e., the maximum number of vertices in a shortest path of G.

I Theorem 14. The VC-dimension of the range space R = (U, I) is

VCDim(R) ≤ b2 lgDiamV (G) + 1c.
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Proof. Let VCDim(R) = k, where k ∈ N. Then, there is S ⊆ U such that |S| = k and
S is shattered by I. By the definition of shattering, each Bai(bi)) ∈ S must appear in
2k−1 different ranges in I. On the other hand, Bai(bi) has length at most DiamV (G). So,
considering that Bai(bi) = DiamV (G), then |S(Bai(bi))| = DiamV (G) · (DiamV (G) − 1).
Hence, 2k−1 ≤ DiamV (G) · (DiamV (G)− 1), and k− 1 ≤ lg(DiamV (G) · (DiamV (G)− 1)) ≤
2 ·DiamV (G). Since k must be integer, k ≤ b2 lgDiamV (G)+1c ≤ 2 lgDiamV (G)+1. Finally,
VCDim(R) = k ≤ b2 lgDiamV (G) + 1c. J

Note that for a sample of size r, by Hoeffding bound we have

Pr(|c̃(u, v)− c(u, v)| ≥ ε) ≤ 2exp(−2rε2).

Applying the union bound for all (u, v) ∈ V 2, the value of r must be 2exp(−2r2)n2 ≥ δ,
which leads to r ≥ 1

2ε2 (ln 2+2 lnn+ln(1/δ)). Even though DiamV (G) might be as large as n,
we note that our bound given in Theorem 14 is tighter since it depends on the combinatorial
structure of G. In particular, since a bound on DiamV (G) can be computed efficiently, in our
algorithm we compute a sample size tailored for the input graph in question. In particular,
our bound is exponentially smaller for graphs with logarithmic vertex diameter, which are
common in practice.

The results above can be improved if we consider a progressive sampling approach instead
of running the sampling algorithm directly in a sample of fixed size. We define the progressive
sampling schedule of this work as follows: let S1 be the initial sample size and δ1 = δ/2. At
this point, the only information available about the empirical Rademacher complexity of S1
is that R̃r(F , S1) ≥ 0. Plugging this with the r.h.s. of the bound in Theorem 11, which has
to be at most ε, we have

ln(3/(δ/2)) +
√

ln(3/(δ/2)) ln(3/(δ/2))
|S1|

+

√
ln(3/(δ/2))

2|S1|
≤ ε

2 ln(6/δ)
|S1|

+

√
ln(6/δ)
2|S1|

≤ ε

4 ln2(6/δ)
|S1|2

+ ln(6/δ)
2|S1|

≤ ε2

which leads to the quadratic inequality

2|S1|2ε2 − |S1| ln(6/δ)− 8 ln2(6/δ) ≥ 0.

with solution
|S1| ≥

ln(6/δ)(1 +
√

1 + 82ε2)
4ε2 . (1)

There is no fixed strategy for scheduling. In our algorithm we follow the results of Provost
et al. [19] as well as Riondato and Upfal [21] where a geometric sampling schedule is proposed
as a strategy (the authors conjecture that such strategy is optimal, but we do not need such
assumption), i.e., the one that Si = ciS1, for each i ≥ 1 and for a constant c > 1.

Given 0 < ε, δ < 1, let (|Si|)i≥1 be a geometric sample schedule with starting sample size
defined in Equation (1). We present the outline of the algorithms for estimating the shortest
path centrality and for the computation of shortest paths with such centrality at least ε.
Both algorithms return the correct output with probability 1 − δ. For instance, the first
algorithm outputs a table c̃ with the centrality estimation, while the second outputs a table d
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with the distances between the pair of vertices and it stops sampling if the sample size reach
the bound in Theorem 9 (ii). Since both algorithms are similar, we outline them in parallel.

Consider the table for the estimation of canonical shortest paths tree t̃ and the set V that
contains the values in t̃ without repetition. The following steps are repeated for each i ≥ 1.
For the sake of clarity, S0 = ∅.

step 1. Create a sample of k = |Si|−|Si−1| elements of U chosen uniformly and independently
(with replacement) at random;

step 2. Sample a vertex a, compute a canonical shortest path tree Ta and an array of
distances dist of size n− 1 from a to each y ∈ V , a 6= y. Sample a vertex b ∈ {V \ {a}}
and get the corresponding branch Ba(b) ∈ S(Ta). For every shortest path puv ∈ S(Ba(b)),
increase the value t̃(u, v) by 1. Repeat this step k times;

step 3. Compute the bound to R̃r(F , Si) by minimizing the function defined in Theorem 12.
If it satisfies the stopping condition defined in Theorem 11 or if the sample size corresponds
to the bound in Theorem 9 (ii), then return the set {d(u, v), (u, v) ∈ V 2 and d(u, v) > 0}
(and also {c̃(u, v) = t̃uv/|Si|, (u, v) ∈ V 2 and t̃uv > 0} if the estimation c̃ is being
computed). Otherwise, increase the size of Si until it has size |Si+1|, increase i and return
to step 1.

Step 1 is trivial and step 2 can be performed by running Dijkstra’s Algorithm in time
O(m + n logn) in the input graph G for each sampled vertex a. The update of tables t̃
and d is performed by a procedure running on the branch Ba(b) described in Algorithm 1.
Since G is undirected, for each subpath found in Ba(b), we can update both d(u, v) and
d(v, u) (and also c̃(u, v) and c̃(v, u)). Note that since S(Ba(b)) might have O(DiamV (G)2)
shortest paths, this algorithm performs O(DiamV (G)2) updates in the output table. The
dimension of the tables d, c̃ and t̃ are min(lg DiamV (G) ·DiamV (G)2, n2), since in the worst
case DiamV (G) = n and a value is not reinserted in the table during the traversing of the
algorithm.

Next we give the algorithm that updates tables t̃ and d and the main algorithm (Algorithms
1 and 2, respectively) in detail. For the storage of each value in V in a sparse way and
without repetition, Algorithm 1 keeps an array count of size n, such that each value in
count[p] contains the amount of pairs of vertices having p branches from canonical shortest
path trees, for 1 ≤ p ≤ n. For the sake of clarity, we present in Algorithm 2 the computation
of table d with the option to compute table c̃ if the indicator variable for the shortest path
centrality spc is equal to one.

I Theorem 15. Consider a sample Sr = {T1, . . . , Tr} of size r and let ηi be the value obtained

in line 15 on the i-th iteration. Then ηr = 2ws +
ln 3
δr

+
√

(ln 3
δr

+4|Sr|ws) ln 3
δr

|Sr| +
√

ln 3
δr

2|Sr| , where
δr = δ/2r, is the value where r is the minimal i ≥ 1 such that ηr ≤ ε for the input graph
G = (V,E) and for fixed constants 0 < ε, δ < 1. Algorithm 2 returns with probability at
least 1 − δ the exact distance d(u, v), for each (u, v) ∈ V 2 such that d(u, v) > 0, and the
corresponding shortest path between the vertices u and v whenever puv has centrality at least
ε. Additionally, the value of c̃(u, v) is within ε error to the value of c(u, v) with probability
1− δ.

Proof. Let i ≥ 1 be an iteration of the loop in 5–16 and let Ei be the event where
sup(u,v)∈V 2 |c̃(u, v) − c(u, v)| > ηi in this iteration. We need the event Ei occurring with
probability at most δ for some iteration i. That is, we need
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Algorithm 1 updateShortestPaths(dist, Ba(b), d, t̃, V, count)

Data: Array of distances dist generated by Dijkstra algorithm, branch Ba(b), exact
distances table d, number of canonical shortest path trees table t̃, set V,
counter array count.

Result: Update of the distances array d and the values in t̃ using paths from Ba(b).
1 for j ← 1 to |Ba(b)| do
2 for i← j + 1 to |Ba(b)| do
3 bi ← Ba(b)[i]
4 bj ← Ba(b)[j]
5 d[bj ][bi]← d[bi][bj ]← dist[bi]− dist[bj ]
6 if first time insertion of bj and bi in then
7 t̃[bj ][bi]← t̃[bi][bj ]← 0
8 t̃[bj ][bi]← t̃[bi][bj ]← t̃[bi][bj ] + 1
9 count[t̃[bj ][bi]]← count[t̃[bj ][bi]] + 1

10 if (t̃[bj ][bi] or t̃[bi][bj ]) /∈ V then
11 V.add(t̃[bj ][bi])
12 if count[t̃[bj ][bi]− 1] ≥ 1 then
13 count[t̃[bj ][bi]− 1]← count[t̃[bj ][bi]− 1]− 1
14 if count[t̃[bj ][bi]− 1] = 0 then
15 V.remove(t̃[bj ][bi]])

Pr(∃i ≥ 1 s.t. Ei occurs) ≤
∞∑
i=1

Pr(Ei) ≤ δ,

where the inequality comes from union bound. Setting Pr(Ei) = δ/2i, we have

∞∑
i=1

Pr(Ei) = δ

∞∑
i=1

1
2i = δ.

Let Sr = {T1, . . . , Tr} be the final sample obtained after the iteration r in the loop 5–16
where the stopping condition is satisfied, i.e., ηr ≤ ε. For each iteration i in 5–16, where
1 ≤ i ≤ r, consider that for each a ∈ V , there is one Dijkstra tree Ta ∈ T , and hence, |T | = n.
A vertex a ∈ V is sampled with probability 1/n and a vertex b is sampled with probability
1/n−1 in lines 8 and 10, respectively; therefore, Ba(b) is sampled with probability 1/n(n−1)
(line 11). The branch Ba(b) is traversed by Algorithm 1, and the distances of every shortest
path in S(Ba(b)) are clearly correctly and exactly computed.

Let puv ∈ S(Ba(b)) be a shortest path from u to v in the sampled branch. At this point,
d(u, v) has the exact distance and the shortest path from u to v correctly computed. We
will show by contraposition that if c(u, v) ≥ ε, then |τuv ∩ Sr| ≥ 1, where τuv = {Bc(d) ∈⋃
a∈V

⋃
b∈V :b 6=a Ba(b) : puv ∈ S(Bc(d))} and c(u, v) = E[fuv(Ba(b))] = Prπ(τuv).

If |τuv ∩ Sr| < 1, then there is no branch in Sr that contains a shortest path from
u to v, and hence c̃(u, v) = 0. Then the value of c(u, v) must be at most ε so that
|c̃(u, v) − c(u, v)| ≤ ε holds. Therefore, if c(u, v) ≥ ε, then |τuv ∩ Sr| ≥ 1 and Sr with size
at most d cεb2 lgDiamV (G) + 1c ln 1

ε + ln 1
δ e is an ε-net with probability at least 1− δ. The

probability that d(u, v) (as well as d(v, u)) is exactly computed is ≥ 1− δ (Theorem 9 (ii)).
Now consider the computation of the estimation c̃(u, v), for a pair (u, v) ∈ V 2. Let

puv ∈ S(G) be a shortest path from u to v and let S′ ⊆ Sr be the set of sampled branches
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such that puv ∈ S(Bx′
i
(y′i)), where Bx′

i
(y′i) ∈ S′. If the branch sampled in lines 8 and 10 of

Algorithm 2 is in S′, then the value t̃(u, v) has its value increased by 1 in line 8 of Algorithm
1, so at the end or r-th iteration in loop 5–16, c̃(u, v) = t̃(u,v)

|Sr| = 1
|Sr|

∑
Bx′
i
(y′
i
)∈S′ 1 =

1
|Sr|

∑
Bxi (yi)∈S 1τuv (Bxi(yi)) = 1

|Sr|
∑
Bxi (yi)∈S fuv(Bxi(yi)).

Since ηr ≤ ε, LS(fuv) = c̃(u, v) and LU (fuv) = c(u, v) (Theorem 13) for all (u, v) ∈ V 2

and fuv ∈ F , then Pr(|c̃(u, v)− c(u, v)| ≤ ε) ≥ 1− δ (Theorem 11). J

Algorithm 2 ProbabilisticAllPairsShortestPaths(G,ε,δ,spc)

Data: Weighted graph G = (V,E) with n = |V | and m = |E|, accuracy parameter
0 < ε < 1, confidence parameter 0 < δ < 1, sample scheduling (Si)i≥1

Result: Probabilistic Shortest Path Distance d[u][v], for each (u, v) ∈ V 2 with
d[u][v] > 0.

1 count[i]← 0,∀i ∈ 1, . . . , n
2 |S0| ← 0
3 V ← ∅
4 i← 0, j ← 1
5 do
6 i← i+ 1
7 for l← 1 to |Si| − |Si−1| do
8 sample a ∈ V with probability 1/n
9 Ta, dist← singleSourceShortestPaths(a)

10 sample b ∈ {V \ {a}} with probability 1/(n− 1)
11 Ba(b)← shortest path from a to b in Ta
12 updateShortestPath(dist, Ba(b), d, t̃, V, count)
13 ws ← mins∈R+

1
s ln

∑
t∈V exp s2t

2|Si|2

14 δi ← δ/2i

15 η ← 2ws +
ln 3
δi

+
√

(ln 3
δi

+4|Si|ws) ln 3
δi

|Si| +
√

ln 3
δi

2|Si|

16 while η > ε

17 c̃[u][v]← t̃[u][v]/|Si|, for each (u, v) ∈ V 2 such that t̃[u][v] > 0
18 if spc = 1 then
19 return d[u][v] and c̃[u][v], for each(u, v) ∈ V 2 such that t̃[u][v] > 0
20 else
21 return d[u][v], for each (u, v) ∈ V 2 such that d[u][v] > 0

I Theorem 16. Given an undirected weighted graph G = (V,E) with n = |V | and a sample
of size at most r = d cεb2 lgDiamV (G) + 1c ln 1

ε + ln 1
δ e, Algorithm 2 has expected running

time O(lgDiamV (G) ·max(m+ n logn,DiamV (G)2) for the computation of table d.

Proof. We sample the vertex a, b ∈ V in lines 8 and 10 in linear time. Algorithm 1 (line
12) takes time O(DiamV (G)2) since in the worst case, the length of a branch Ba(b) cannot
be deeper than the diameter of the graph. Line 13 is executed by an algorithm that is
linear in the size of the sample [13]. The loop in lines 5–16 runs at most r times and
the Dijkstra algorithm which is executed in line 9 has running time O(m + n logn). The
operations of insertion, deletion and search in tables t̃ and d take time O(1) on average.
So, the total expected running time of Algorithm 2 is O(rmax(m+ n logn,DiamV (G)2)) =
O(lg DiamV (G) ·max(m+ n logn,DiamV (G)2)). J
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I Corollary 17. Given an undirected weighted graph G = (V,E) with n = |V | and a sample
of size r = d cε2 b2 lgDiamV (G) + 1c ln 1

δ e, Algorithm 2 has running time O(lgDiamV (G) ·
max(m+ n logn,DiamV (G)2)) for the computation of table c̃.

4 Concluding remarks

In this paper we presented a O(lg DiamV (G) ·max(m+n logn,DiamV (G)2) expected running
time algorithm that outputs a shortest path between every pair of vertices (u, v) with
probability at least 1− δ whenever the shortest path centrality of (u, v) is at least ε, for fixed
constants 0 < ε, δ < 1. The algorithm uses the idea of sampling and we show that a sample
of shortest paths of size d cεb2 lgDiamV (G) + 1c ln( 1

ε ) + ln 1
δ e is sufficient for achieving the

desired result. We note that this is particularly interesting in sparse graphs with logarithmic
diameter, which are common in practical applications, since for those graphs the sample
size drops exponentially in comparison to a sample size obtained by, for instance, Hoeffding
and union bounds. In such cases, the algorithm runs in O(n logn log logn) time. So, in an
application where one might be interested only in computing “central” shortest paths the
algorithm is rather efficient.

Finally, an open question that we are particularly interested is the connection between
ε and n for specific input distributions. For the general case, trivially setting ε = 2/n, by
Theorem 1, we have a guarantee that every shortest path in G is computed with probability
1− δ, but that would increase the algorithm complexity to Õ(n3). We wonder if this fact may
be related to the assumption that the APSP may not admit a strictly subcubic algorithm.
However, if we assume that the graph is sampled from a given probability distribution, a
strictly subcubic randomized algorithm for the (original) APSP may be achievable.
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