Preprint

A Range Space with Constant VC Dimension for All-pairs
Shortest Paths in Graphs

Alane M. de Lima "0, André L. Vignatti 14

check for
updates

Citation: Lima, A. M. de; Vignatti,
A.L.; daSilva, M. V. G. A Range Space
with Constant VC Dimension for
All-pairs Shortest Paths in Graphs.
Preprints 2022, 1, 0. https://doi.org/

Copyright: © 2022 by the authors.
(CC BY) (https://
creativecommons.org/licenses /by /
4.0/).

license

and Murilo V. G. da Silva 14

1 Federal University of Paran4, Brazil; amlima@inf.ufpr.br, vignatti@inf.ufpr.br, murilo@inf.ufpr.br

T These authors contributed equally to this work.

Abstract: Let G be an undirected graph with non-negative edge weights and let S be a subset of
its shortest paths such that, for every pair (1, v) of distinct vertices, S contains exactly one shortest
path between u and v. In this paper we define a range space associated with S and prove that its VC
dimension is 2. As a consequence, we show a bound for the number of shortest paths trees required
to be sampled in order to solve a relaxed version of the All-pairs Shortest Paths problem (APSP) in G.
In this version of the problem we are interested in computing all shortest paths with “centrality” at
least ¢, where this centrality measure is a certain generalization of the betweenness centrality. Given
any 0 < g, 6 < 1, we propose a sampling algorithm that outputs with probability 1 — J the (exact)
distance and the shortest path between every pair of vertices (1, v) that has centrality at least ¢. The
bound that we obtain for the sample size depends only on ¢ and ¢, and do not depend on the size of
the graph.

Keywords: All-pairs Shortest Paths; Sample Complexity; Sampling Algorithm

1. Introduction

The All-pairs Shortest Path (APSP) is the problem of computing a path with the
minimum length between every pair of vertices in a weighted graph. The APSP problem is
very well studied and there has been recent results for a variety of assumptions for the input
graph (directed /undirected, integer/real edge weights, etc) [1-4]. In this paper we assume
that the input is an undirected graph G with n vertices and m edges with non-negative
weights.

In our scenario, the fastest known exact algorithms are the algorithm proposed

by Williams (2014) [1], which runs in O(zf\%’@

by Pettie and Ramachandram (2002) [5] for the case of sparse graphs, which runs in
O(nmloga(m,n)) time, where a(m, n) is the Tarjan’s inverse-Ackermann function. If no
assumption is taken about the sparsity of the graph, then it is an open question whether
the APSP problem can be solved in strictly subcubic time, i.e. O(n3’c), for any c > 0, even
when the edge weights are natural numbers.

Recent results in fine-grained complexity indicate that the complexity time for the
APSP is tight [6-8], reinforcing the hypothesis that there is no strictly subcubic algorithm
for such task [9]. Since the exact computation of this version is expensive for large graphs,
especially the dense ones, it is natural dealing with alternative versions of the problem,
whether they are approximate [10,11] or applied to restricted scenarios [12]. In this paper,
we follow this line of work, dealing with a relaxation of the problem in the sense that the
classical APSP is a special case for a given adjustable parameter. More specifically, we aim
to compute, with high probability, all the shortest paths that meet a certain “centrality”
requirement. The idea is that the centrality of a shortest path P is higher when a large
number of shortest paths has P as a subpath. The precise definition of this centrality
measure is given in Section 2.

In this relaxed version of the APSP, given constant parameters 0 < ¢,J < 1, we propose
a sampling algorithm that outputs, with probability at least 1 — J, the (exact) distance and
a shortest path between every pair of vertices that admits a shortest path with centrality
at least e. The central idea of the algorithm is to sample roots of shortest paths trees. In

) time, for some constant ¢ > 0, and

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

https://www.mdpi.com/article/10.3390/1010000?type=check_update&version=1
https://doi.org/10.3390/1010000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-4575-2401
https://orcid.org/0000-0001-8268-5215
https://orcid.org/0000-0002-3392-714X

2 0f13

order to give a bound for the sample size that is sufficient to meet the input parameters,
we use sample complexity tools, namely, Vapnik—Chervonenkis (VC) dimension theory
and the e-net theorem. We define a range space associated with a set of canonical shortest
paths in G between every pair of distinct vertices. One of the main results that we prove
is that the VC dimension of such range space is 2 and that the bound for the sample size

isr=|¢ (2 ln(%) +1In %) |, where c is a constant around % [13]. This result is interesting,

since it does not depend neither on the size of the input #, which is the case if one uses
standard union-bound techniques, nor on the topological structure of the graph that may
vary with # in many cases. As a consequence of this bound for the sample size, we obtain
a sampling algorithm for our problem with running time O(m + nlogn + (Diamy (G))?),
where Diamy (G) is the vertex-diameter of the input graph (i.e. the maximum number of
vertices in a shortest path in G), for any constant e.

If one sets ¢ as a function of n, in the limit case, when ¢(n) = ﬁ, our algorithm
solves — with high probability — the classical APSP problem, but with time complexity
exceeding the running time of the exact algorithms from the literature [5,14]. However,
it is still an interesting problem to know for which functions (1) we still have a strictly
subcubic sampling algorithm. We show that our algorithm runs in O(n®~¢) time if &(n)

Wo(n')

is any Q(T) function, where n' = n'=¢ (for a constant ¢ > 0) and Wy(n') is the

branch 0 of the Lambert-W function defined for n’ > 0, a non-algebraic value such that
Wo(n') =Inn’ —Inlnn' + ©® (1“1“”/), which holds for n’ > e.

Inn’

2. Shortest Paths, Canonical Paths, and Shortest Paths Trees

Let G = (V, E) be an undirected graph, with n = |V| and m = |E|, and let w be a
function of edge weights from E to an enumerable subset of R>(. W.Lo.g., we assume that G
is connected, since our results can be applied to the connected components when a graph is
disconnected. Even though G is undirected, for convenience we use the notation (u, v) for
an edge of G. A path is a sequence of vertices P = (v1, vy, ..., v;) such that v; # v; 1 and
(vi,vi41) € E, for1 <i < k. If u = v and v = vy, such path is referred to as a (u, v)-path.
We define Ep as the set of edges of P. The shortest path from u to v in G is the (u,v)-path
such that the sum of the weights of the edges in Ep is minimized. In this case we denote
such value d(u,v), also called the distance from u to v.

The set of all shortest paths from u to v in G is denoted C,,. For a given path P € Cyy,
let Inn(P) be the set of inner vertices of P, thatis, Inn(P) = {w € P: w ¢ {u,v}}. Consider
a shortest (u,v)-path P, and let 4’ and ¢’ be two vertices of P, with u’ closer to u and v’
closer to v. The subpath of P starting in #’ and ending in ¢’ is called a (u',v")-subpath of
P. The (immediate) predecessor of v in a shortest (u,v)-path P, denoted pred,(v), is the
vertex w € Inn(P) such that (w, v) € Ep. The diameter of G, denoted Diamg, is the size of
the largest shortest path in G. The vertex-diameter, denoted Diamy (G), is the maximum
number of vertices in a shortest path of G.

Leto: V — {1,...,n} be an arbitrary vertex ordering of G. Consider the set of shortest
paths L, = {P € Cyp : o(predp(v)) is minimum}. Note that there is only one vertex w
that satisfies the property “o(pred,(v)) is minimum”, so even if there are several paths in
Ly, the last edge (w, v) is the same for all of them. Next, we introduce the definition of a
canonical path with respect to o.

Definition 1 (Canonical path (CP)). Consider a pair of vertices (u,v) € V2 in G. The canonical
path (CP) from u to v, denoted P, is recursively defined as the shortest path in Cyy such that

case 1: |L,y| = 1. Then P € L,y is the canonical path from u to v.

case 2: |Lyy| > 1. Let w be the (unique) predecessor of v in the shortest paths of Ly,. Then, the
canonical path from u to v corresponds to the canonical path from u to w plus the edge (w, v).

Fact 1. Given a pair of vertices (u,v) € V?, the CP from u to v exists and it is unique.

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

920

91

92

93

94

926

30f13

To see that Fact 1 holds, note that at each recursive step, there is only one vertex w
satisfying the property that defines £,,,, and there is only one canonical path from u to
w. Besides, the recursion presented above always stop in the base case, since the distance
between a pair of vertices in a recursive step is smaller than the distance of a pair of vertices
analyzed in the previous step. The base is the one where there is only one (u, u’)-subpath
which is the shortest path from u to u/, for u’ € Inn(P). Another important observation
about canonical paths is that the canonical path from u to v is not necessarily the same as
the canonical path from v to u.

A shortest paths tree (SPT) of a vertex u is a spanning tree of G such that the path from
u to every other vertex of this tree is a shortest path in G. There might be many SPTs for
a given vertex. In this paper we are interested in fixing one canonical SPT Ty, for every
vertex u of G. More precisely, for a given (arbitrary) vertex ordering ¢, the canonical SPT
T, is defined such that, for every vertex v, the shortest path from u to v in T, is a canonical
path. In Section 4.1 we give more details on the computation of T;,, but, briefly speaking,
this tree is the one computed by a modification on Dijkstra’s algorithm where ¢ is used as a
tie-breaking criterion. We also call T}, the Dijkstra tree of u.

A shortest path that starts at the root of a Dijkstra tree is also called a branch of G. More
formally, given T}, for every v # u, the shortest path from u to v is a branch, denoted B,;,.
In addition, every subpath of B,y is also a shortest path in G, and we denote such set of
subpaths (including B,,) as S(Bo).

We introduce the shortest path centrality of a pair of vertices (u,v). The idea, intuitively,
is that a shortest path is “central” if several other shortest paths pass through it. This is a
similar idea that is used in the well-known betweenness metric for a vertex [15], where a
vertex has high betweenness if many shortest paths pass through it.

In order to formally define the shortest path centrality we first need the following. Let
tuv be the number of canonical paths that contain a shortest path from u to v as subpath,

defined as
tuv = Z]luv(Bab)/
(a,b)€V2:a#b

where 1,5 (B,;) is the indicator function that returns 1 if there is some shortest path from u
to v as subpath of the branch B, (and 0 otherwise).

Definition 2 (Shortest Path Centrality). Given a pair (u,v) € V2, the shortest path centrality
of (u,v) is defined as
tuv

c(u,v) = m,

where n = |V|.

2.1. Key Results on Canonical Paths

Before we present the main results of this paper in Section 3.1, we need first a key
technical result concerning canonical paths. We show in Theorem 1 that any subpath of a
canonical path is also a canonical path.

Lemma 1. Given a pair of vertices (u,v) € V2, let P be the CP from u to v in G. If | Lyp| = 1,
then every subpath of P is also a CP.

Proof. Let P’ be a (u/,v')-subpath of P. Suppose by contradiction that P’ is not a CP. Let
Q' # P’ be the shortest path Q" = («/,...,?) in G which the CP from 1 to v'.

Case 1: v # v. Let S1 be a (u,u’)-subpath and S; be a (v, v)-subpath, both from P.
Let Q be the concatenation of S;, Q’, and S,. Note that P’ and Q' have the same length
(since both are shortest paths), and so does P and Q. Since P and Q have the same vertices
from v’ to v, then the predecessor of v in both paths is the same. Hence, P and Q are in L.
But then |£,,| > 1, a contradiction.

Case 2: v/ = v. Let w and w’ be the predecessors of v in P’ and Q’, respectively. Note
that w # w’. Thus, since {w’, v} is the last edge of Q’, by the definition of CP, o (w’) < o(w).

97

98

929

100

101

122

40f13

V1 = w1 Vg—i—1 V—i = W]—; Vi = W
S ’7' """"""""" *
Wi—i—-1

Figure 1. Illustration of vertex vy_; in the shortest paths P (depicted in black color) and Z (depicted
in red color).

Figure 2. [llustration of the shortest path from z to g (in orange), denoted Q’, in the proof of Lemma 4.

But then in the edge (w,v) of P, vertex w does not have the minimum index among all
possible predecessors of v, contradicting the fact that Pisa CP. [

Lemma 2. Given a pair of vertices (u,v) € V2, let P be the CP from u to v in G. Let w be the
predecessor of v in P. Then the (u, w)-subpath of P is the CP from u to w.

Proof. Let P’ be the (1, w)-subpath of P. In the case of |L,,| = 1, then from Lemma 1 we
have that P’ is the CP from u to w. Otherwise, by Definition 1 (case 2) applied to P, it must
hold that P’ is the CP from u tow. [

Lemma 3. Given a pair of vertices (u,v) € V2, let P be the CP from u to v in G. Then for each
z € Inn(P), the (u,z)-subpath of P is the CP from u to z.

Proof. Let P’ be the (u,z)-subpath of P and w be the predecessor of v in P. We prove our
claim by induction on the number of edges from z to v. The base case is the one where
z = w (i.e. P’ is the (u, w)-subpath of P). This holds from Lemma 2.

Let 2’ be the predecessor of z in P and let P’ be the (u,z')-subpath of P. For the
induction step, we show that if P’ is CP from u to z, then P” is the CP from u to z’.

By Definition 1 applied to P/, there are two cases to consider: |£,;| = 1 (case 1) and
|L.z| > 1 (case 2). In case 1, by Lemma 1 applied to P’, the shortest path P’ must be the CP
from u to z’. In case 2, by Definition 1 (case 2) applied to P/, the CP from u to 2’ is P”. O

Lemma 4. Given a pair of vertices (u,v) € V2, let P be the CP from u to v in G. Then for each
z € Inn(P), the (z,v)-subpath of P is the CP from z to v.

Proof. Let Q be the (z, v)-subpath of P. We prove by contradiction supposing that Q is not
the CP from z to v in G. Then there is a shortest path Y which is the CP from z to v in G.
Consider the subpath of P from u to z concatenated with Y, and denote such concatenation
as Z. Note that, even though the number of vertices of Q and Y may be different, the length
of Q and Y is the same, since both are shortest paths. The same applies to P and Z.

Denote the verticesin Pand ZasP = (u =vy,...,v=0v)and Z = (u = wy,...,v0 =
w;). Let vx_; be the vertex of P such that i is maximum, 0 < i < k, and such that the
following holds: for all 1 < j <, the vertex Vk—j in P is the same as the vertex wy—j inZ
(Figure 1). For simplicity, denote vy_; as g, vx_;_1 as g, and w;_;_1 as y’. Note that the
edges in the (g, v)-subpaths of P and Z are the same, but (¢, 9) and (y/,) is not the same
edge.

Let Q' and Y’ be the (z, q)-subpaths of P and Y, respectively (Figure 2). Since we are
assuming that Y is the CP from z to v in G, then by Lemma 3, Y’ is the CP from z to 4 in
G. Note that Q' # Y’ (since Q # Y), and hence, Q' is not the CP from z to ¢ in G. Thus,

o(q) > a(y).

50f13

From Lemma 3 applied to P, the (u, q)-subpath of P is a CP. But this path is a shortest
path such that g is not the vertex with minimum index among all possible predecessors of
q (recall that o(q’) > ¢(y')), a contradiction. [

Theorem 1. Given a pair of vertices (u,v) € V2, let P the CP from u to v in G. Then for each
(u',0") € V2, the (u',v")-subpath of P is the CP from u’ to ' in G.

Proof. Let P’ be the (u/,v’)-subpath of P. From Lemma 4, the (u/, v)-subpath of P, denoted
Q, is a CP. From Lemma 3, since Q is the CP from u’ to v in G, then P’ is the CP from u’ to
v'inG. O

3. Sample Complexity and VC Dimension

In sampling algorithms, typically the aim is the estimation of a certain quantity accord-
ing to given parameters of quality and confidence using a random sample of size as small
as possible. A central concept in sample complexity theory is the Vapnik—Chervonenkis
Theory (VC dimension), in particular, the idea of finding an upper bound for the VC
dimension of a class of binary functions related to the sampling problem at hand. In our
context, for instance, we may consider a binary function that takes a branch and outputs 1
if such branch contains a shortest path for a given set. Generally speaking, from the upper
bound for the VC dimension of the given class of binary functions we can derive an upper
bound to the sample size for the sampling algorithm.

We present in this section the main definitions and results from sample complexity
theory used in this paper. An in-depth exposition of the VC dimension theory and the
e-net theorem can be found in the books of Shalev-Schwartz and Ben-David (2014) [16],
Mitzenmacher and Upfal (2017) [17], Anthony and Bartlett (2009) [18], and Mohri et al.
(2012) [19].

Definition 3 (Range Space). A range space is a pair R = (U, Z), where U is a domain (finite
or infinite) and T is a collection of subsets of U, called ranges.

For a given S C U, the projection of T on S is the set Zg = {SN1: 1 € T}. If |Zg| = 2]
then we say S is shattered by Z. The VC dimension of a range space is the size of the largest
subset S that can be shattered by Z, i.e.

Definition 4 (VC dimension). The VC dimension of a range space R = (U,T), denoted
VCDim(R), is

VCDim(R) = max{k : 3S C U such that |S| = k and |Zs| = 2*}.

The following combinatorial object, called e-net, is useful when one wants to find a
sample S C U that intersects every range in 7 of a sufficient size.

Definition 5 (e-net). Let R = (U, Z) be a range space and 7t be a probability distribution on U.
Given 0 < e < 1, aset S is called e-net w.r.t. R if

VI€Z Pr()2e = |INS|>1.

When computing e-nets for a given range space R = (U,Z), we typically build a
sample S from elements of U. One can obtain lower bounds for the size of S via standard
union bound. However, these bounds usually overestimate |S| since they only take into
account the number of points in U or the number of ranges in R. This issue can be overcame
if the VC dimension of the range space that models the problem at hand, denoted k, is finite.
The next theorem, proven by Har-Peled and Sharir (2011) [20], states a lower bound for |S|
based on k.

200

60f13

Theorem 2 (see [20], Theorem 2.12). Given 0 < ¢,6 < 1, let R = (U, I) be a range space
with VCDim(R) < k, let 7t be a probability distribution on the domain U, and let ¢ be a universal
positive constant.

A collection of elements S C U sampled w.r.t. 7t with |S| = £ (k In % +1n %) is an e-net with
probability at least 1 — 6.

As pointed by Loffler and Phillips (2009) [13], ¢ is around %, but in this paper we leave
c as an unspecified constant.

Some of the techniques used in our sampling strategy described in Sections 3.1 and 4
were developed by Riondato and Kornaropoulos (2016) and Riondato and Upfal (2018) [21,
22], where the authors used VC dimension theory, the e-sample theorem, and Rademacher
averages for the estimation of betweenness centrality in a graph. The work of Lima et al.
[23,24] showed how to use sample complexity tools for the estimation of the percolation
centrality, which is a generalization of the betweenness centrality. More recently, Cousins
et al. (2021) [25] showed improved bounds for the betweenness centrality approximation
using Monte—Carlo empirical Rademacher averages, and Lima et al. (2022) [26] used sample
complexity tools in the design of a sampling algorithm for the local clustering coefficient of
every vertex of a graph.

3.1. Range Space and VC Dimension Results

In this section, we first define the problem in terms of a range space, and then we
show that the VC dimension of the range space that models the problem is constant, which
directly impacts in the size of the sample to be used by our algorithms. In fact, we show
that this sample size only depends on the parameters of quality and confidence, € and 4,
respectively.

Let n = |V| and T be the set of n Dijkstra trees of G. Recall that such trees are,
by definition, composed by canonical paths. The universe U is defined for the set of all
branches of Dijkstra trees, i.e.

u= U B
(a,b)€V2:b#a

For each pair (u,v) € V2, let Puv be the canonical path from u to v, according to Definition
1. Each range Ty is defined as Ty = {B;; € U : pup € S(Byy)}. In other words, we can say
that B, is in the range of (1, v) if B,, “passes” through a canonical path between u and v.
Let Z = {7y : (u,0) € V?} be the rangeset. So, R = (U, Z) is the range space defined for
our problem.

Now we show how to plug our range space R with Definition 5 so we can use Theorem
2 to bound the sample size that is tight enough for the task that we are tackling. We first
show in Theorem 3 that ¢(u, v) = Pry (7). For this result, we have that each tree T, € T is

sampled with probability 77(T,) = 1 and each branch By, € T, is sampled with probability

1
n—1’

as the sum is equal to 1). Let 1,,(B,;) be the indicator function that returns 1 if there is
some canonical path from u to v as subpath of B, i.e. By, € Typ, and 0 otherwise.

leading to the probability distribution 77(8,,) = ﬁ (which is a proper distribution

Theorem 3. For (u,v) € V2, Pry(ty) = c(u,v).

70f13

Proof. For fixed (1,v) € V? and considering that a branch B,;, € U is sampled with
probability 7(B,;) = ﬁ, we have

Pr(Ty) = Z Z 7T (Bap) Luo(Bap)
T T.€T BupeT,

:$ Z Z Ly (Bap)

n(n—1) Ta€T Byp€T,

~ e L L (B

acV beV:b#a

RICED c(u,v).
The first equality follows from the fact that the probability that a branch lies on the range
Tup is equal to counting the individual probabilities of each branch that is in 7. O

For problems involving shortest paths, such as the ones in [21,24], it is possible to
find a bound for the sample size using VC dimension theory. The referred work typically
apply the same proof structure, having a bound based on the vertex-diameter of a graph G,
denoted Diamy (G), as in Theorem 4 (we present such proof for the sake of completeness).
Even though Diamy (G) might be as large as 7, in particular, this bound is exponentially
smaller for graphs with logarithmic vertex-diameter, which may be common in practice.

Although the bound presented in Theorem 4 depends on a combinatorial structure
of G, in this work we present an improvement to this result in Theorems 5 and 6, giving a
bound that depends only on the desired quality and confidence parameters of the solution.
More specifically, for these two theorems we have that VCDim(G) = 2 for a given graph G
with respect to a fixed vertex ordering ¢, where VCDim(G) denotes the VC dimension of
the range space R = (U, Z) related to a graph G.

Theorem 4. For a given graph G = (V,E),
VCDim(G) < |21g Diamy (G) +1.

Proof. Let VCDim(G) = k, where k € N. Then, there is S C U such that |S| = kand S is
shattered by Z. Each B,;, € S must appear in 28~ different ranges in Z, from the definition
of shattering. On the other hand, B, has length at most Diamy (G). Then the maximum
number of subpaths of B,;,, denoted |S(B,;)|, is Diamy (G) - (Diamy (G) — 1). Thus, the
branch B, lies in at most |S(B,;)| ranges, and therefore,

21 < |S(By)| < Diamy (G) - (Diamy (G) — 1) < Diamy (G)2.

Solving for k, VCDIim(G) = k < [21gDiamy (G) +1|. O

For Theorems 5 and 6, we introduce the definition of meeting path between two canoni-
cal paths P; and P,, and in Lemma 5 we prove that there is only one such path between P;
and P,. We use this fact to prove that VCDim(G) < 2 in Theorem 5.

Definition 6. Consider two different canonical paths Py and P,. We say that a canonical path
Z = (z,...,7') is a meeting path between Py and P, if Z is a maximal (z,z")-subpath of Py and
ps.

Lemma 5. Consider two different canonical paths Py and Py. Let Z be a meeting path between Py
and P,. Then Z is the only meeting path between both paths in G.

Proof. Let P, = (x,...,x'), P, = (y,...,¥'),and Z = (z,...,Z'). Suppose that Z is a
meeting path between P; and P, and suppose that it is not unique. Let W = (w, ..., w') be

80f13

QU
w - Eq/ y V" v
@@ QO O— @@
@----- ‘ """ .//
q u

Figure 3. Case where Ty, NS = {Py, P, D3}, for Py = (u,...,0), P, = (#/,...,v'), and P3 =
w”,...,0").

Figure 4. Case where 7, NS = {P}, for P = (4,...,v), P, = (#/,...,v),and P3 = (u”,...,0").
The red dashed path correspond to a shortest path that cannot happen.

another meeting path in G. Note that Z and W are disjoint, otherwise the concatenation of
both paths would contradict the maximality of Z and W. Without loss of generality, we
may assume the following:

e Ziscontained in the (x, z’)-subpath of P; and in the (y, z’)-subpath of P, with z’ closer
to x and to y in P; and P,, respectively;

e W is contained in the (w, x’)-subpath of P; and in the (w, y')-subpath of P,, with w
closer to x’ and to y' in P; and P,, respectively.

Let D be the CP from z’ to w in G. Since P; and P, are canonical paths, by Theorem 1,
the (z/, w)-subpath of P; and the (z’, w)-subpath of P, must be equal do D. Let Z' be the
concatenation of Z, D, and W. Then Z’ is a meeting path between P; and P, that contradicts
the maximality of Z. [

Theorem 5. For a given graph G = (V, E) and a fixed ordering o over V,
VCDim(G) < 2.

Proof. Suppose that VCDim(G) > 2. Then there is a set of canonical paths S = {P;, P», P3 }
that is shattered by Z. These paths are described as P; = {u,...,v}, P, = {u/,...,7'}, and
Py ={u",...,0"}. Let W be the (w, w')-subpath of P; that is also contained in P, and P;.
From the definition of shattering, this path must exist so that 7,y NS = {P;, P», P3}. Let x
be the farthest predecessor of w in P; such that, w.l.o.g., the (x, w)-subpath of P;, denoted
X, is also contained in P, (but not in P3). Let y be the farthest successor of P; such that a
(q, y)-subpath of Pj, denoted Y, is also contained in P3 (but not in P»). Note that X and Y
must exist so that Ty, NS = {Py, P>} and Ty NS = {Py, P3}.

Suppose that there is a (g, x)-subpath of P, that is contained in P; but not in Py, as
depicted in Figure 3. Since the CP from u’ to v’ is not the same as the one from v’ to #’ (and
correspondingly for 1" and v"’), and P, and P; must pass through W, then g is not contained
in X. From Lemma 5, all the vertices from ¢ to w’ must be the same in P, and P;. Hence, P;
goes through x, and from our initial assumption, P, does not have any intersection with a
vertex that comes before x in P;. Besides, P5 goes through ¢’ and Y. Therefore, any subpath
of P, starting in g is also a subpath of Ps. This contradicts that 7, NS = {P;, P, } since
Tew NS = {Pl, P, P3}.

Consider now the (g, v')-subpath of P;, denoted Pj}. Suppose that P; has an intersec-
tion with a (r, r’)-subpath of P (Figure 4). From our initial assumption, P; goes through W
and Y, so it passes through ¢/, and ¢’ reaches r. Hence, from Lemma 5, all the vertices from
g’ to v’ must be the same in P, and Ps. In this case, P; does not contain a (/, w)-subpath,
otherwise P; and P; would form a cycle starting and ending in 7. Besides, P5 does not

301

90f13

it h
aIbI'c.dI.f

g
Figure 5. Graph with VCdim(G) > 2.

have a (7, y)-subpath or a (’,y’)-subpath, for any ' € Inn(Y), otherwise that would be
two different CPs from ' to . Hence, P; does not pass through the (4, y)-subpath of P;,
contradicting that 7, NS = {Py, P;} since 7, NS = {P1}. O

Theorem 6. For a given graph G = (V, E) and a fixed ordering o over V,
VCDim(G) > 2.

Proof. Consider the graph as in Figure 5. Then, for P; = (a,b,¢,d, e, f), P, = (g,b,¢,d, e, h),
and S = {P, P}, wehave: 7,c = {P1}, Tgc = {P2}, ;g = {P1, P2}, and T =0. O

4. Algorithms

For an undirected graph G = (V, E) with non-negative edges weights, with n = |V|
and m = |E|, we first present in Section 4.1 a modified version of Dijkstra’s algorithm which
takes into consideration a given vertex ordering ¢, and then we show that the shortest
paths in the SPT computed by the algorithm are canonical paths. Then, in Section 4.2 we
present an algorithm for the relaxed APSP problem that returns, with probability at least
1 — 9, the shortest paths with centrality least €.

4.1. Modified Dijkstra

In this section we present a modification of Dijkstra’s algorithm presented in [27].
Dijkstra’s algorithm, for a given vertex s, outputs a SPT, denoted T, rooted in s. This
algorithm maintains in every step a set S such that every vertex in S has its distance from s
already computed. At every step, a vertex v in V' \ S with minimum estimated distance
from s is selected to be added in S. An edge (1, w) € E is relaxed if the minimum distance
from s to u plus the weight of (u, w) improves the minimum distance from s to w.

The main difference between the modified algorithm that we present here and the
original one is the tie-breaking criterion for the selection of edges to be added in a shortest
path. In a given step of the modified Dijkstra, if there are multiple vertices in V' \ S
with the same estimation for minimum distance from s, then the one with minimum
index in ¢ is chosen to be added in S. Additionally, let u be a vertex that has been
just inserted in Ts in a given iteration. For every neighbor y of u in V \ S for which
the algorithm relax the edge (u,y), the ordering is taken into consideration so that if
d(s,u) +w(u,y) =d(s,u’)+ w1, y), for some u’ in S, then the tie-breaking for the shortest
(s, y)-path depends on which vertex between u and ' has the minimum index in ¢.

Theorem 7 shows that the modified Dijkstra’s algorithm correctly computes all the
canonical paths from a source s to any other vertex in V with respect to o. Note that S is a
priority queue that is also modified to give higher priority to vertices with lowest indexes in
o in the case of ties in the vertices selection. We observe, however, that these modifications
do not increase the running time of the priority queue operations.

Theorem 7. All shortest paths computed by a modified Dijkstra’s algorithm with respect to a given
vertex ordering o are canonical paths.

Proof. (Sketch) Similar to the proof of correctness of the original Dijkstra’s algorithm
presented in [27] (Theorem 22.6), the proof is by induction on the size of S.

302

303

304

10 of 13

Let s be the source vertex. For each u € V, let d(s, u) the estimated minimum distance
from s to u in a given step of the algorithm. For |S| = 0, the set S is empty and then this base
is trivially true. For the base where |S| = 1, we have S = {s}, and then d(s,s) = d(s,s) = 0.
Besides, s does not have a predecessor, since it is the source, so the base is also true for
this case. For the inductive step, we have the following hypothesis: for all v € S, we
have that d(s,v) = d(s,v) and the predecessor of v in the Dijkstra tree of s is the one with
minimum index in ¢. Proving that d(s, v) = d(s,v) follow the same arguments of the proof
of correctness in [27] for the original Dijkstra’s algorithm.

In order to prove that the predecessor of v in the Dijkstra tree of s, denoted ¢/, is the
one with minimum index in ¢ among all possible predecessors of v, we prove that all edges
(z,0) where d(s,v) = d(s,z) + w(z,v) were examined when the edge (v/,v) were relaxed.
Consider, by contradiction, that there is some vertex 1’ that has the minimum index in ¢
among all possible predecessors of v, but that the edge (1’,v) was not examined before
vertex v is added to S. If the edge (1, v) was not examined, then v was added in S before
u'. In this case, this happened either because d~(s, v) < d(s, u') or because J(s, v) =d(s,u')
and o(v) < o(u’). However, in both cases, then ' could not be the predecessor of v, since
d(s,u") should be strictly smaller than d(s, v) to be considered as a possible predecessor of
v. Hence, all y € S with d(s,y) < d(s,v) should have been examined before v, and hence,
v’ is the predecessor of v with minimum index in ¢ among all such vertices. This value
never changes again once v is added in S. [

4.2. Computing Shortest Paths with High Centrality

Given 0 < g6 < 1, Algorithm 1 computes, with probability 1 — J, the distances
between pair of vertices with centrality at least . We also briefly describe the necessary
modifications on the algorithm so that the shortest path associated to such distances be also
computed.

Algorithm 1: PROBABILISTICALLPAIRSSHORTESTPATHS(G,¢,9)

input :weighted graph G = (V, E) with n = |V, parameters 0 < ¢, < 1.
output:distance d,,, for each (1,v) € V2 s.t. c(u,v) > ¢, with probability 1 — 6.
1 fori< 1to [g(zm% —l—ln%ﬂ do
2 sample a € V with probability 1/n
3 T, < SINGLESOURCESHORTESTPATHS(a) /* modified Dijkstra */
4 sample b € V\ {a} with probability 1/(n — 1)
5 B,y < shortest path from a to b in T,
6 for each (u,v) € By, x By, do /* u closer to a, v closer to b */
7 dyp < dgp — day /* dg, and d;; come from T, */
8 return each d,, in the distances table

Theorem 8. Consider a (u,v)-path such that c(u,v) > €. Algorithm 1 computes the exact distance
between u and v with probability 1 — J.

Proof. Algorithm 1 samples several branches and we first assume that such samples are an
e-net (we show later that this is indeed true). Recalling the range space modeling (Section
4.2), the sample of branches is denoted by S and the (u, v)-path is related to a range 7.

As, by lines 2 and 4, the branch is sampled with probability 1/n(n — 1) then, by
Theorem 3, we have that c(u, v) = Pr(Tyy). Thus, as ¢(u,v) > ¢,s0 Pr(tyy) > €. As we are
assuming that the sample is an e-net, by Definition 5, then |7,, N S| > 1 for all 7, such that
Pr(ty») > e. Thatis, since c¢(u,v) > € then at least one branch of the sample S contains the
(u,v)-path. If a branch B, in S contains the (1, v)-path, then in line 3 the exact distance
between u and v is computed, since the (1, v)-path which is a subpath of the shortest path
from a to b is also minimal, so its distance d,, can be computed as d;y — dgy.

11 0f 13

Now it remains to prove that the sample S is indeed an e-net. Note that in lines 1-7,
the loop is executed k = k (2 Inl+In %)-‘ times, so our sample has at least size k. By

Theorems 2, 5, and 6, this sample size is sufficient for it to be an e-net with probability at
least1 —6. O

Theorem 9. Algorithm 1 has running time O(m + nlogn + (Diamy (G))?).

Proof. Lines 2, 4 and 5 takes linear time. Line 3 (the modified Dijkstra) runs in O(m +
nlogn), as the modifications do not change the running time of the original Dijkstra’s
algorithm. The loop in line 6 takes time O((Diamy (G))?) since the length of B,; cannot
be greater than the vertex diameter of the graph. The distances returned by Dijkstra’s
algorithm in line 3 are stored in a table d. Since operations of insertion, deletion, and search
on this data structure take time O(1), then updating table d takes time O(1). Assuming
that € and ¢ are constants, the number of loop iterations in lines 1-7 is constant, and the
result follows. [

As it is common to APSP and search algorithms, Algorithm 1 also constructs a data
structure from which, for all vertices (1, w), a shortest path from u to w can be retrieved.
We can store the predecessors of each vertex that is in B, so that a (u, v)-subpath of B, can
be retrieved by a backward traversing from v to u on these predecessors. This modification
does not change the execution time of the original algorithm.

In the remainder of this section we are interested in determining the smallest value of
¢ for which our algorithm would still perform on strictly subcubic time. For this, we drop
the assumption that ¢ is constant and therefore write it as a function of 1, denoted by ().

Let k be the sample size (which impacts on the number of times line 1 of Algorithm

1 is executed). Then k = O (s(lT) In 5(17))’ and the running time of Algorithm 1 becomes

O(k - (m + nlogn + (Diamy(G))?)). In the worst case m = O(n?) and then its running
time is O (k - n?). As the best conjectured time is O(n3~), for a constant ¢ > 0 [14], then we
are looking for the value of e(n) such that the time of our algorithm is upper bounded by
O(n?°),ie. O(k-n?) = O(n3°). Thus k = n'~, i.e.

Solving for e(n), we have ¢(n) = %};C), where Wy (1n!7¢) is the branch 0 of the Lambert-W

function [28]. To simplify the notation, let n’ = n'=¢. If ' > e, then a known bound [29]
lnn/—lnlnn’+®<%)

n/

for Wo(n') is Wo(n') = Inn’ — Inlnn’ + 6(%) Therefore e(n) =

Note that the smallest value for the centrality of a pathis 1/n(n — 1), which is the case
for a path that is not strictly contained in any other path. So, to compute the distance of
paths with such small centrality, we have to use € so small that the execution time exceeds
that of the best existing algorithms [5,14]. Nevertheless, by the reasoning above, we note

that we can set € as small as @(h;lf’/) .

5. Estimating the Shortest Path Centrality

The main objective of our paper is the computation of shortest paths with high cen-
trality. However, one might be interested in computing the value of the centrality of such
shortest paths. In this section we give the outline of how to adapt our algorithm so that the
centrality of each (1,v) € V2 can be estimated within ¢ error, with probability at least 1 — 4,
for 0 < ¢, < 1. For this task we can use the more general result of Theorem 2 applied
to the notion of e-sample, which states that a collection of elements S C U sampled with

respect to 7t with [S| = 5 (k +In %) is an e-sample with probability at least 1 — §. More
precisely, an e-sample generalizes an e-net in the sense that not only it intersects ranges of a

12 0f 13

sufficient size but it also guarantees the right relative frequency of each range in Z within
the sample S. That is, given 0 < € < 1, a set S is called e-sample with respect to a range
sni|

space R = (U, Z), and a probability distribution 7 on U if VI € Z, |Pr(I) — W' <e

The idea is that after building a sample of size r = [5(2 +In %)] , we build a counting
table f to estimate the number of branches that contain a certain canonical path as a subpath.
More specifically, the entry f,, estimates the value t,;, (recall Definition 2 in Section 2) for
the pair of vertices (u,v). For this, the value f.o is incremented by 1/r in lines 6 and 7
if the branch B, contains the canonical path between 1 and v as subpath. At the end of
the algorithm, if a pair of vertices (1, v) is not included in the table, the estimation for the
centrality is assumed to be zero. This modification does not change the asymptotic running
time of Algorithm 1. We state that in Corollary 1.

Corollary 1. Given an undirected graph G = (V,E) with non-negative edge weights, with
n = |V|, and a sample of sizer = [5(2 +In 1)1, Algorithm 2 has running time O (m + nlogn +
(Diamy (G))?) for the computation of a table from which the centrality estimation of each u,v € V2
can be retrieved.

6. Concluding Remarks

In this paper we present a range space having the domain composed by the shortest
paths of a graph G where there is one shortest path for each pair of vertices in G.We show
that the VC dimension of such range space is 2. We show that this result can be applied to
bound the sample size required for an approximation algorithm for a relaxed version of the
All-pairs shortest path problem (APSP). In this version, we compute, with probability at
least 1 — 4, the shortest paths of G having centrality at least ¢, for 0 < ¢, < 1. We present
a O(m + nlogn + (Diamy(G))?) running time algorithm for this task. We show that a

sample of shortest paths of size [£ (2 In % +1In %)] is sufficient for achieving the desired

result. So, in an application where one might be interested only in computing “central”
shortest paths the algorithm is rather efficient and it depends only on the parameters ¢
and ¢ (classical approaches in literature based in union bound, for example, typical require
sample sizes that depend on the size of the input).

An open question that we are particularly interested is the connection between ¢
and n or Diamy (G) for specific input distributions. For the general case, trivially setting
&= ﬁ, we have a guarantee that every shortest path in G is computed with probability
1 — 4, but that would yield an algorithm with running time exceeding O(n3). This may
not be a surprise since APSP may not admit a strictly subcubic algorithm. Nevertheless,

/ / Inlnn’
Inn'—Inlnn jr® ()

In n’

we show that if ¢ is at least
algorithm is O(n%°), for ¢ > 0.

- , where n’ = 1 — ¢, the running time of our

References

1. Williams, R. Faster All-pairs Shortest Paths via Circuit Complexity. In Proceedings of the 46-th Annual ACM Symposium on
Theory of Computing; ACM: New York, 2014; STOC'14, pp. 664-673.

2. Chan, TM. All-Pairs Shortest Paths for Unweighted Undirected Graphs in o(Mn) Time. ACM Trans. Algorithms 2012, 8.

3. Eirinakis, P,; Williamson, M.D.; Subramani, K. On the Shoshan-Zwick Algorithm for the All-Pairs Shortest Path Problem. Journal
of Graph Algorithms and Applications 2017, 21, 177-181.

4. Brodnik, A.; Grgurovi¢, M. Solving all-pairs shortest path by single-source computations: Theory and practice. Discrete applied
mathematics 2017, 231, 119-130.

5. DPettie, S.; Ramachandran, V. Computing Shortest Paths with Comparisons and Additions. In Proceedings of the 13th Annual
ACM-SIAM Symposium on Discrete Algorithms; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2002;
SODA '02, pp. 267-276.

6. Roditty, L.; Vassilevska Williams, V. Fast approximation algorithms for the diameter and radius of sparse graphs. In Proceedings
of the 45th annual ACM symposium on Theory of computing, 2013, pp. 515-524.

7. Abboud, A.; Williams, V. Popular Conjectures Imply Strong Lower Bounds for Dynamic Problems. In Proceedings of the 2014

IEEE 55th Annual Symposium on Foundations of Computer Science, 2014, pp. 434-443.

13 0f 13

10.
11.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

28.
29.

Abboud, A.; Williams, V.; Yu, H. Matching Triangles and Basing Hardness on an Extremely Popular Conjecture. SIAM Journal on
Computing 2018, 47, 1098-1122.

Vassilevska Williams, V. Hardness of easy problems: Basing hardness on popular conjectures such as the strong exponential time
hypothesis (invited talk). In Proceedings of the 10th International Symposium on Parameterized and Exact Computation (IPEC
2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

Dor, D.; Halperin, S.; Zwick, U. All-pairs almost shortest paths. SIAM Journal on Computing 2000, 29, 1740-1759.

Roditty, L.; Shapira, A. All-pairs shortest paths with a sublinear additive error. ACM Transactions on Algorithms (TALG) 2011,
7,1-12.

Shoshan, A.; Zwick, U. All pairs shortest paths in undirected graphs with integer weights. In Proceedings of the 40th Annual
Symposium on Foundations of Computer Science (Cat. No. 99CB37039), 1999, pp. 605-614.

Loffler, M.; Phillips,].M. Shape fitting on point sets with probability distributions. In Proceedings of the European symposium
on algorithms. Springer, 2009, pp. 313-324.

Williams, R. Faster All-Pairs Shortest Paths via Circuit Complexity. SIAM Journal on Computing 2018, 47, 1965-1985.

Freeman, L.C. A set of measures of centrality based on betweenness. Sociometry 1977, pp. 35—41.

Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press: New
York, 2014.

Mitzenmacher, M.; Upfal, E. Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis,
2nd ed.; Cambridge University Press: New York, 2017.

Anthony, M.; Bartlett, P.L. Neural Network Learning: Theoretical Foundations, 1st ed.; Cambridge University Press: New York, 2009.
Mohri, M.; Rostamizadeh, A ; Talwalkar, A. Foundations of Machine Learning; The MIT Press: Cambridge, 2012.

Har-Peled, S.; Sharir, M. Relative (p, €)-approximations in geometry. Discrete & Computational Geometry 2011, 45, 462-496.
Riondato, M.; Kornaropoulos, E.M. Fast approximation of betweenness centrality through sampling. Data Mining and Knowledge
Discovery 2016, 30, 438—475.

Riondato, M.; Upfal, E. ABRA: Approximating Betweenness Centrality in Static and Dynamic Graphs with Rademacher Averages.
ACM Trans. Knowl. Discov. Data 2018, 12, 61:1-61:38.

Lima, A.M.; da Silva, M.V,; Vignatti, A.L. Estimating the Percolation Centrality of Large Networks through Pseudo-dimension
Theory. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp.
1839-1847.

Lima, A.M.; da Silva, M.V,; Vignatti, A. Percolation centrality via Rademacher Complexity. Discrete Applied Mathematics 2021.
Cousins, C.; Wohlgemuth, C.; Riondato, M. Bavarian: Betweenness Centrality Approximation with Variance-Aware Rademacher
Averages. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 196-206.
Lima, A.M.; da Silva, M.V.G.; Vignatti, A.L. Estimating the Clustering Coefficient Using Sample Complexity Analysis. In
Proceedings of the LATIN 2022: Theoretical Informatics; Springer International Publishing: Cham, 2022; pp. 328-341.

Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to algorithms; MIT press, 2022.

Weisstein, E. Lambert W-Function, from Wolfram Math-World, 2013.

Hoorfar, A.; Hassani, M. Inequalities on the Lambert W function and hyperpower function. J. Inequal. Pure and Appl. Math 2008,
9,5-9.

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

	Introduction
	Shortest Paths, Canonical Paths, and Shortest Paths Trees
	Key Results on Canonical Paths

	Sample Complexity and VC Dimension
	Range Space and VC Dimension Results

	Algorithms
	Modified Dijkstra
	Computing Shortest Paths with High Centrality

	Estimating the Shortest Path Centrality
	Concluding Remarks
	References

