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Abstract: Let G be an undirected graph with non-negative edge weights and let S be a subset of 7

its shortest paths such that, for every pair (u, v) of distinct vertices, S contains exactly one shortest 8

path between u and v. In this paper we define a range space associated with S and prove that its VC 9

dimension is 2. As a consequence, we show a bound for the number of shortest paths trees required 10

to be sampled in order to solve a relaxed version of the All-pairs Shortest Paths problem (APSP) in G. 11

In this version of the problem we are interested in computing all shortest paths with “centrality” at 12

least ε, where this centrality measure is a certain generalization of the betweenness centrality. Given 13

any 0 < ε, δ < 1, we propose a sampling algorithm that outputs with probability 1− δ the (exact) 14

distance and the shortest path between every pair of vertices (u, v) that has centrality at least ε. The 15

bound that we obtain for the sample size depends only on ε and δ, and do not depend on the size of 16

the graph. 17

Keywords: All-pairs Shortest Paths; Sample Complexity; Sampling Algorithm 18

1. Introduction 19

The All-pairs Shortest Path (APSP) is the problem of computing a path with the 20

minimum length between every pair of vertices in a weighted graph. The APSP problem is 21

very well studied and there has been recent results for a variety of assumptions for the input 22

graph (directed/undirected, integer/real edge weights, etc) [1–4]. In this paper we assume 23

that the input is an undirected graph G with n vertices and m edges with non-negative 24

weights. 25

In our scenario, the fastest known exact algorithms are the algorithm proposed 26

by Williams (2014) [1], which runs in O
(

n3

2c
√

log n

)
time, for some constant c > 0, and 27

by Pettie and Ramachandram (2002) [5] for the case of sparse graphs, which runs in 28

O(nm log α(m, n)) time, where α(m, n) is the Tarjan’s inverse-Ackermann function. If no 29

assumption is taken about the sparsity of the graph, then it is an open question whether 30

the APSP problem can be solved in strictly subcubic time, i.e. O(n3−c), for any c > 0, even 31

when the edge weights are natural numbers. 32

Recent results in fine-grained complexity indicate that the complexity time for the 33

APSP is tight [6–8], reinforcing the hypothesis that there is no strictly subcubic algorithm 34

for such task [9]. Since the exact computation of this version is expensive for large graphs, 35

especially the dense ones, it is natural dealing with alternative versions of the problem, 36

whether they are approximate [10,11] or applied to restricted scenarios [12]. In this paper, 37

we follow this line of work, dealing with a relaxation of the problem in the sense that the 38

classical APSP is a special case for a given adjustable parameter. More specifically, we aim 39

to compute, with high probability, all the shortest paths that meet a certain “centrality” 40

requirement. The idea is that the centrality of a shortest path P is higher when a large 41

number of shortest paths has P as a subpath. The precise definition of this centrality 42

measure is given in Section 2. 43

In this relaxed version of the APSP, given constant parameters 0 < ε, δ < 1, we propose 44

a sampling algorithm that outputs, with probability at least 1− δ, the (exact) distance and 45

a shortest path between every pair of vertices that admits a shortest path with centrality 46

at least ε. The central idea of the algorithm is to sample roots of shortest paths trees. In 47
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order to give a bound for the sample size that is sufficient to meet the input parameters, 48

we use sample complexity tools, namely, Vapnik–Chervonenkis (VC) dimension theory 49

and the ε-net theorem. We define a range space associated with a set of canonical shortest 50

paths in G between every pair of distinct vertices. One of the main results that we prove 51

is that the VC dimension of such range space is 2 and that the bound for the sample size 52

is r =
⌈ c

ε

(
2 ln( 1

ε ) + ln 1
δ

)⌉
, where c is a constant around 1

2 [13]. This result is interesting, 53

since it does not depend neither on the size of the input n, which is the case if one uses 54

standard union-bound techniques, nor on the topological structure of the graph that may 55

vary with n in many cases. As a consequence of this bound for the sample size, we obtain 56

a sampling algorithm for our problem with running time O(m + n log n + (DiamV(G))2), 57

where DiamV(G) is the vertex-diameter of the input graph (i.e. the maximum number of 58

vertices in a shortest path in G), for any constant ε. 59

If one sets ε as a function of n, in the limit case, when ε(n) = 1
n(n−1) , our algorithm 60

solves – with high probability – the classical APSP problem, but with time complexity 61

exceeding the running time of the exact algorithms from the literature [5,14]. However, 62

it is still an interesting problem to know for which functions ε(n) we still have a strictly 63

subcubic sampling algorithm. We show that our algorithm runs in O(n3−c) time if ε(n) 64

is any Ω
(

W0(n′)
n′

)
function, where n′ = n1−c (for a constant c > 0) and W0(n′) is the 65

branch 0 of the Lambert-W function defined for n′ ≥ 0, a non-algebraic value such that 66

W0(n′) = ln n′ − ln ln n′ + Θ
(

ln ln n′
ln n′

)
, which holds for n′ ≥ e. 67

2. Shortest Paths, Canonical Paths, and Shortest Paths Trees 68

Let G = (V, E) be an undirected graph, with n = |V| and m = |E|, and let ω be a 69

function of edge weights from E to an enumerable subset of R≥0. W.l.o.g., we assume that G 70

is connected, since our results can be applied to the connected components when a graph is 71

disconnected. Even though G is undirected, for convenience we use the notation (u, v) for 72

an edge of G. A path is a sequence of vertices P = (v1, v2, . . . , vk) such that vi ̸= vi+1 and 73

(vi, vi+1) ∈ E, for 1 ≤ i < k. If u = v1 and v = vk, such path is referred to as a (u, v)-path. 74

We define EP as the set of edges of P. The shortest path from u to v in G is the (u, v)-path 75

such that the sum of the weights of the edges in EP is minimized. In this case we denote 76

such value d(u, v), also called the distance from u to v. 77

The set of all shortest paths from u to v in G is denoted Cuv. For a given path P ∈ Cuv, 78

let Inn(P) be the set of inner vertices of P, that is, Inn(P) = {w ∈ P : w /∈ {u, v}}. Consider 79

a shortest (u, v)-path P, and let u′ and v′ be two vertices of P, with u′ closer to u and v′ 80

closer to v. The subpath of P starting in u′ and ending in v′ is called a (u′, v′)-subpath of 81

P. The (immediate) predecessor of v in a shortest (u, v)-path P, denoted predP(v), is the 82

vertex w ∈ Inn(P) such that (w, v) ∈ EP. The diameter of G, denoted DiamG, is the size of 83

the largest shortest path in G. The vertex-diameter, denoted DiamV(G), is the maximum 84

number of vertices in a shortest path of G. 85

Let σ : V → {1, . . . , n} be an arbitrary vertex ordering of G. Consider the set of shortest 86

paths Luv = {P ∈ Cuv : σ(predP(v)) is minimum}. Note that there is only one vertex w 87

that satisfies the property “σ(predP(v)) is minimum”, so even if there are several paths in 88

Luv, the last edge (w, v) is the same for all of them. Next, we introduce the definition of a 89

canonical path with respect to σ. 90

Definition 1 (Canonical path (CP)). Consider a pair of vertices (u, v) ∈ V2 in G. The canonical 91

path (CP) from u to v, denoted P, is recursively defined as the shortest path in Cuv such that 92

case 1: |Luv| = 1. Then P ∈ Luv is the canonical path from u to v. 93

case 2: |Luv| > 1. Let w be the (unique) predecessor of v in the shortest paths of Luv. Then, the 94

canonical path from u to v corresponds to the canonical path from u to w plus the edge (w, v). 95

Fact 1. Given a pair of vertices (u, v) ∈ V2, the CP from u to v exists and it is unique. 96
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To see that Fact 1 holds, note that at each recursive step, there is only one vertex w 97

satisfying the property that defines Luv, and there is only one canonical path from u to 98

w. Besides, the recursion presented above always stop in the base case, since the distance 99

between a pair of vertices in a recursive step is smaller than the distance of a pair of vertices 100

analyzed in the previous step. The base is the one where there is only one (u, u′)-subpath 101

which is the shortest path from u to u′, for u′ ∈ Inn(P). Another important observation 102

about canonical paths is that the canonical path from u to v is not necessarily the same as 103

the canonical path from v to u. 104

A shortest paths tree (SPT) of a vertex u is a spanning tree of G such that the path from 105

u to every other vertex of this tree is a shortest path in G. There might be many SPTs for 106

a given vertex. In this paper we are interested in fixing one canonical SPT Tu, for every 107

vertex u of G. More precisely, for a given (arbitrary) vertex ordering σ, the canonical SPT 108

Tu is defined such that, for every vertex v, the shortest path from u to v in Tu is a canonical 109

path. In Section 4.1 we give more details on the computation of Tu, but, briefly speaking, 110

this tree is the one computed by a modification on Dijkstra’s algorithm where σ is used as a 111

tie-breaking criterion. We also call Tu the Dijkstra tree of u. 112

A shortest path that starts at the root of a Dijkstra tree is also called a branch of G. More 113

formally, given Tu, for every v ̸= u, the shortest path from u to v is a branch, denoted Buv. 114

In addition, every subpath of Buv is also a shortest path in G, and we denote such set of 115

subpaths (including Buv) as S(Buv). 116

We introduce the shortest path centrality of a pair of vertices (u, v). The idea, intuitively, 117

is that a shortest path is “central” if several other shortest paths pass through it. This is a 118

similar idea that is used in the well-known betweenness metric for a vertex [15], where a 119

vertex has high betweenness if many shortest paths pass through it. 120

In order to formally define the shortest path centrality we first need the following. Let
tuv be the number of canonical paths that contain a shortest path from u to v as subpath,
defined as

tuv = ∑
(a,b)∈V2 :a ̸=b

1uv(Bab),

where 1uv(Bab) is the indicator function that returns 1 if there is some shortest path from u 121

to v as subpath of the branch Bab (and 0 otherwise). 122

Definition 2 (Shortest Path Centrality). Given a pair (u, v) ∈ V2, the shortest path centrality
of (u, v) is defined as

c(u, v) =
tuv

n(n− 1)
, where n = |V|.

2.1. Key Results on Canonical Paths 123

Before we present the main results of this paper in Section 3.1, we need first a key 124

technical result concerning canonical paths. We show in Theorem 1 that any subpath of a 125

canonical path is also a canonical path. 126

Lemma 1. Given a pair of vertices (u, v) ∈ V2, let P be the CP from u to v in G. If |Luv| = 1, 127

then every subpath of P is also a CP. 128

Proof. Let P′ be a (u′, v′)-subpath of P. Suppose by contradiction that P′ is not a CP. Let 129

Q′ ̸= P′ be the shortest path Q′ = (u′, . . . , v′) in G which the CP from u′ to v′. 130

Case 1: v′ ̸= v. Let S1 be a (u, u′)-subpath and S2 be a (v′, v)-subpath, both from P. 131

Let Q be the concatenation of S1, Q′, and S2. Note that P′ and Q′ have the same length 132

(since both are shortest paths), and so does P and Q. Since P and Q have the same vertices 133

from v′ to v, then the predecessor of v in both paths is the same. Hence, P and Q are in Luv. 134

But then |Luv| > 1, a contradiction. 135

Case 2: v′ = v. Let w and w′ be the predecessors of v in P′ and Q′, respectively. Note 136

that w ̸= w′. Thus, since {w′, v} is the last edge of Q′, by the definition of CP, σ(w′) < σ(w). 137
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Figure 1. Illustration of vertex vk−i in the shortest paths P (depicted in black color) and Z (depicted
in red color).

Figure 2. Illustration of the shortest path from z to q (in orange), denoted Q′, in the proof of Lemma 4.

But then in the edge (w, v) of P, vertex w does not have the minimum index among all 138

possible predecessors of v, contradicting the fact that P is a CP. 139

Lemma 2. Given a pair of vertices (u, v) ∈ V2, let P be the CP from u to v in G. Let w be the 140

predecessor of v in P. Then the (u, w)-subpath of P is the CP from u to w. 141

Proof. Let P′ be the (u, w)-subpath of P. In the case of |Luv| = 1, then from Lemma 1 we 142

have that P′ is the CP from u to w. Otherwise, by Definition 1 (case 2) applied to P, it must 143

hold that P′ is the CP from u to w. 144

Lemma 3. Given a pair of vertices (u, v) ∈ V2, let P be the CP from u to v in G. Then for each 145

z ∈ Inn(P), the (u, z)-subpath of P is the CP from u to z. 146

Proof. Let P′ be the (u, z)-subpath of P and w be the predecessor of v in P. We prove our 147

claim by induction on the number of edges from z to v. The base case is the one where 148

z = w (i.e. P′ is the (u, w)-subpath of P). This holds from Lemma 2. 149

Let z′ be the predecessor of z in P and let P′′ be the (u, z′)-subpath of P. For the 150

induction step, we show that if P′ is CP from u to z, then P′′ is the CP from u to z′. 151

By Definition 1 applied to P′, there are two cases to consider: |Luz| = 1 (case 1) and 152

|Luz| > 1 (case 2). In case 1, by Lemma 1 applied to P′, the shortest path P′′ must be the CP 153

from u to z′. In case 2, by Definition 1 (case 2) applied to P′, the CP from u to z′ is P′′. 154

Lemma 4. Given a pair of vertices (u, v) ∈ V2, let P be the CP from u to v in G. Then for each 155

z ∈ Inn(P), the (z, v)-subpath of P is the CP from z to v. 156

Proof. Let Q be the (z, v)-subpath of P. We prove by contradiction supposing that Q is not 157

the CP from z to v in G. Then there is a shortest path Y which is the CP from z to v in G. 158

Consider the subpath of P from u to z concatenated with Y, and denote such concatenation 159

as Z. Note that, even though the number of vertices of Q and Y may be different, the length 160

of Q and Y is the same, since both are shortest paths. The same applies to P and Z. 161

Denote the vertices in P and Z as P = (u = v1, . . . , v = vk) and Z = (u = w1, . . . , v = 162

wl). Let vk−i be the vertex of P such that i is maximum, 0 ≤ i < k, and such that the 163

following holds: for all 1 ≤ j ≤ i, the vertex vk−j in P is the same as the vertex wl−j in Z 164

(Figure 1). For simplicity, denote vk−i as q, vk−i−1 as q′, and wl−i−1 as y′. Note that the 165

edges in the (q, v)-subpaths of P and Z are the same, but (q′, q) and (y′, q) is not the same 166

edge. 167

Let Q′ and Y′ be the (z, q)-subpaths of P and Y, respectively (Figure 2). Since we are 168

assuming that Y is the CP from z to v in G, then by Lemma 3, Y′ is the CP from z to q in 169

G. Note that Q′ ̸= Y′ (since Q ̸= Y), and hence, Q′ is not the CP from z to q in G. Thus, 170

σ(q′) > σ(y′). 171
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From Lemma 3 applied to P, the (u, q)-subpath of P is a CP. But this path is a shortest 172

path such that q′ is not the vertex with minimum index among all possible predecessors of 173

q (recall that σ(q′) > σ(y′)), a contradiction. 174

Theorem 1. Given a pair of vertices (u, v) ∈ V2, let P the CP from u to v in G. Then for each 175

(u′, v′) ∈ V2, the (u′, v′)-subpath of P is the CP from u′ to v′ in G. 176

Proof. Let P′ be the (u′, v′)-subpath of P. From Lemma 4, the (u′, v)-subpath of P, denoted 177

Q, is a CP. From Lemma 3, since Q is the CP from u′ to v in G, then P′ is the CP from u′ to 178

v′ in G. 179

3. Sample Complexity and VC Dimension 180

In sampling algorithms, typically the aim is the estimation of a certain quantity accord- 181

ing to given parameters of quality and confidence using a random sample of size as small 182

as possible. A central concept in sample complexity theory is the Vapnik–Chervonenkis 183

Theory (VC dimension), in particular, the idea of finding an upper bound for the VC 184

dimension of a class of binary functions related to the sampling problem at hand. In our 185

context, for instance, we may consider a binary function that takes a branch and outputs 1 186

if such branch contains a shortest path for a given set. Generally speaking, from the upper 187

bound for the VC dimension of the given class of binary functions we can derive an upper 188

bound to the sample size for the sampling algorithm. 189

We present in this section the main definitions and results from sample complexity 190

theory used in this paper. An in-depth exposition of the VC dimension theory and the 191

ε-net theorem can be found in the books of Shalev-Schwartz and Ben-David (2014) [16], 192

Mitzenmacher and Upfal (2017) [17], Anthony and Bartlett (2009) [18], and Mohri et al. 193

(2012) [19]. 194

Definition 3 (Range Space). A range space is a pairR = (U, I), where U is a domain (finite 195

or infinite) and I is a collection of subsets of U, called ranges. 196

For a given S ⊆ U, the projection of I on S is the set IS = {S ∩ I : I ∈ I}. If |IS| = 2|S| 197

then we say S is shattered by I . The VC dimension of a range space is the size of the largest 198

subset S that can be shattered by I , i.e. 199

Definition 4 (VC dimension). The VC dimension of a range space R = (U, I), denoted
VCDim(R), is

VCDim(R) = max{k : ∃S ⊆ U such that |S| = k and |IS| = 2k}.

The following combinatorial object, called ε-net, is useful when one wants to find a 200

sample S ⊆ U that intersects every range in I of a sufficient size. 201

Definition 5 (ε-net). LetR = (U, I) be a range space and π be a probability distribution on U.
Given 0 < ε < 1, a set S is called ε-net w.r.t. R if

∀I ∈ I , Pr
π
(I) ≥ ε ⇒ |I ∩ S| ≥ 1.

When computing ε-nets for a given range space R = (U, I), we typically build a 202

sample S from elements of U. One can obtain lower bounds for the size of S via standard 203

union bound. However, these bounds usually overestimate |S| since they only take into 204

account the number of points in U or the number of ranges inR. This issue can be overcame 205

if the VC dimension of the range space that models the problem at hand, denoted k, is finite. 206

The next theorem, proven by Har–Peled and Sharir (2011) [20], states a lower bound for |S| 207

based on k. 208
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Theorem 2 (see [20], Theorem 2.12). Given 0 < ε, δ < 1, let R = (U, I) be a range space 209

with VCDim(R) ≤ k, let π be a probability distribution on the domain U, and let c be a universal 210

positive constant. 211

A collection of elements S ⊆ U sampled w.r.t. π with |S| = c
ε

(
k ln 1

ε + ln 1
δ

)
is an ε-net with 212

probability at least 1− δ. 213

As pointed by Löffler and Phillips (2009) [13], c is around 1
2 , but in this paper we leave 214

c as an unspecified constant. 215

Some of the techniques used in our sampling strategy described in Sections 3.1 and 4 216

were developed by Riondato and Kornaropoulos (2016) and Riondato and Upfal (2018) [21, 217

22], where the authors used VC dimension theory, the ε-sample theorem, and Rademacher 218

averages for the estimation of betweenness centrality in a graph. The work of Lima et al. 219

[23,24] showed how to use sample complexity tools for the estimation of the percolation 220

centrality, which is a generalization of the betweenness centrality. More recently, Cousins 221

et al. (2021) [25] showed improved bounds for the betweenness centrality approximation 222

using Monte–Carlo empirical Rademacher averages, and Lima et al. (2022) [26] used sample 223

complexity tools in the design of a sampling algorithm for the local clustering coefficient of 224

every vertex of a graph. 225

3.1. Range Space and VC Dimension Results 226

In this section, we first define the problem in terms of a range space, and then we 227

show that the VC dimension of the range space that models the problem is constant, which 228

directly impacts in the size of the sample to be used by our algorithms. In fact, we show 229

that this sample size only depends on the parameters of quality and confidence, ε and δ, 230

respectively. 231

Let n = |V| and T be the set of n Dijkstra trees of G. Recall that such trees are,
by definition, composed by canonical paths. The universe U is defined for the set of all
branches of Dijkstra trees, i.e.

U =
⋃

(a,b)∈V2 :b ̸=a

Bab.

For each pair (u, v) ∈ V2, let puv be the canonical path from u to v, according to Definition 232

1. Each range τuv is defined as τuv = {Bab ∈ U : puv ∈ S(Bab)}. In other words, we can say 233

that Bab is in the range of (u, v) if Bab “passes” through a canonical path between u and v. 234

Let I = {τuv : (u, v) ∈ V2} be the rangeset. So,R = (U, I) is the range space defined for 235

our problem. 236

Now we show how to plug our range spaceRwith Definition 5 so we can use Theorem 237

2 to bound the sample size that is tight enough for the task that we are tackling. We first 238

show in Theorem 3 that c(u, v) = Prπ(τuv). For this result, we have that each tree Ta ∈ T is 239

sampled with probability π(Ta) =
1
n and each branch Bab ∈ Ta is sampled with probability 240

1
n−1 , leading to the probability distribution π(Bab) =

1
n(n−1) (which is a proper distribution 241

as the sum is equal to 1). Let 1uv(Bab) be the indicator function that returns 1 if there is 242

some canonical path from u to v as subpath of Bab, i.e. Bab ∈ τuv, and 0 otherwise. 243

Theorem 3. For (u, v) ∈ V2, Prπ(τuv) = c(u, v). 244
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Proof. For fixed (u, v) ∈ V2 and considering that a branch Bab ∈ U is sampled with
probability π(Bab) =

1
n(n−1) , we have

Pr
π
(τuv) = ∑

Ta∈T
∑
Bab∈Ta

π(Bab)1uv(Bab)

=
1

n(n− 1) ∑
Ta∈T

∑
Bab∈Ta

1uv(Bab)

=
1

n(n− 1) ∑
a∈V

∑
b∈V:b ̸=a

1uv(Bab)

=
tuv

n(n− 1)
= c(u, v).

The first equality follows from the fact that the probability that a branch lies on the range 245

τuv is equal to counting the individual probabilities of each branch that is in τuv. 246

For problems involving shortest paths, such as the ones in [21,24], it is possible to 247

find a bound for the sample size using VC dimension theory. The referred work typically 248

apply the same proof structure, having a bound based on the vertex-diameter of a graph G, 249

denoted DiamV(G), as in Theorem 4 (we present such proof for the sake of completeness). 250

Even though DiamV(G) might be as large as n, in particular, this bound is exponentially 251

smaller for graphs with logarithmic vertex-diameter, which may be common in practice. 252

Although the bound presented in Theorem 4 depends on a combinatorial structure 253

of G, in this work we present an improvement to this result in Theorems 5 and 6, giving a 254

bound that depends only on the desired quality and confidence parameters of the solution. 255

More specifically, for these two theorems we have that VCDim(G) = 2 for a given graph G 256

with respect to a fixed vertex ordering σ, where VCDim(G) denotes the VC dimension of 257

the range spaceR = (U, I) related to a graph G. 258

Theorem 4. For a given graph G = (V, E),

VCDim(G) ≤ ⌊2 lg DiamV(G) + 1⌋.

Proof. Let VCDim(G) = k, where k ∈ N. Then, there is S ⊆ U such that |S| = k and S is
shattered by I . Each Bab ∈ S must appear in 2k−1 different ranges in I , from the definition
of shattering. On the other hand, Bab has length at most DiamV(G). Then the maximum
number of subpaths of Bab, denoted |S(Bab)|, is DiamV(G) · (DiamV(G)− 1). Thus, the
branch Bab lies in at most |S(Bab)| ranges, and therefore,

2k−1 ≤ |S(Bab)| ≤ DiamV(G) · (DiamV(G)− 1) ≤ DiamV(G)2.

Solving for k, VCDim(G) = k ≤ ⌊2 lg DiamV(G) + 1⌋. 259

For Theorems 5 and 6, we introduce the definition of meeting path between two canoni- 260

cal paths P1 and P2, and in Lemma 5 we prove that there is only one such path between P1 261

and P2. We use this fact to prove that VCDim(G) ≤ 2 in Theorem 5. 262

Definition 6. Consider two different canonical paths P1 and P2. We say that a canonical path 263

Z = (z, . . . , z′) is a meeting path between P1 and P2 if Z is a maximal (z, z′)-subpath of P1 and 264

P2. 265

Lemma 5. Consider two different canonical paths P1 and P2. Let Z be a meeting path between P1 266

and P2. Then Z is the only meeting path between both paths in G. 267

Proof. Let P1 = (x, . . . , x′), P2 = (y, . . . , y′), and Z = (z, . . . , z′). Suppose that Z is a 268

meeting path between P1 and P2 and suppose that it is not unique. Let W = (w, . . . , w′) be 269
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Figure 3. Case where τxw ∩ S = {P1, P2, P3}, for P1 = (u, . . . , v), P2 = (u′, . . . , v′), and P3 =

(u′′, . . . , v′′).

Figure 4. Case where τq′y ∩ S = {P1}, for P1 = (u, . . . , v), P2 = (u′, . . . , v′), and P3 = (u′′, . . . , v′′).
The red dashed path correspond to a shortest path that cannot happen.

another meeting path in G. Note that Z and W are disjoint, otherwise the concatenation of 270

both paths would contradict the maximality of Z and W. Without loss of generality, we 271

may assume the following: 272

• Z is contained in the (x, z′)-subpath of P1 and in the (y, z′)-subpath of P2, with z′ closer 273

to x and to y in P1 and P2, respectively; 274

• W is contained in the (w, x′)-subpath of P1 and in the (w, y′)-subpath of P2, with w 275

closer to x′ and to y′ in P1 and P2, respectively. 276

Let D be the CP from z′ to w in G. Since P1 and P2 are canonical paths, by Theorem 1, 277

the (z′, w)-subpath of P1 and the (z′, w)-subpath of P2 must be equal do D. Let Z′ be the 278

concatenation of Z, D, and W. Then Z′ is a meeting path between P1 and P2 that contradicts 279

the maximality of Z. 280

Theorem 5. For a given graph G = (V, E) and a fixed ordering σ over V,

VCDim(G) ≤ 2.

Proof. Suppose that VCDim(G) > 2. Then there is a set of canonical paths S = {P1, P2, P3} 281

that is shattered by I . These paths are described as P1 = {u, . . . , v}, P2 = {u′, . . . , v′}, and 282

P3 = {u′′, . . . , v′′}. Let W be the (w, w′)-subpath of P1 that is also contained in P2 and P3. 283

From the definition of shattering, this path must exist so that τww′ ∩ S = {P1, P2, P3}. Let x 284

be the farthest predecessor of w in P1 such that, w.l.o.g., the (x, w)-subpath of P1, denoted 285

X, is also contained in P2 (but not in P3). Let y be the farthest successor of P1 such that a 286

(q′, y)-subpath of P1, denoted Y, is also contained in P3 (but not in P2). Note that X and Y 287

must exist so that τxw ∩ S = {P1, P2} and τq′y ∩ S = {P1, P3}. 288

Suppose that there is a (q, x)-subpath of P2 that is contained in P3 but not in P1, as 289

depicted in Figure 3. Since the CP from u′ to v′ is not the same as the one from v′ to u′ (and 290

correspondingly for u′′ and v′′), and P2 and P3 must pass through W, then q is not contained 291

in X. From Lemma 5, all the vertices from q to w′ must be the same in P2 and P3. Hence, P3 292

goes through x, and from our initial assumption, P2 does not have any intersection with a 293

vertex that comes before x in P1. Besides, P3 goes through q′ and Y. Therefore, any subpath 294

of P2 starting in q is also a subpath of P3. This contradicts that τxw ∩ S = {P1, P2} since 295

τxw ∩ S = {P1, P2, P3}. 296

Consider now the (q′, v′)-subpath of P2, denoted P′2. Suppose that P3 has an intersec- 297

tion with a (r, r′)-subpath of P′2 (Figure 4). From our initial assumption, P3 goes through W 298

and Y, so it passes through q′, and q′ reaches r. Hence, from Lemma 5, all the vertices from 299

q′ to r′ must be the same in P2 and P3. In this case, P3 does not contain a (r′, w)-subpath, 300

otherwise P1 and P3 would form a cycle starting and ending in r′. Besides, P3 does not 301
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Figure 5. Graph with VCdim(G) ≥ 2.

have a (r′, y)-subpath or a (r′, y′)-subpath, for any y′ ∈ Inn(Y), otherwise that would be 302

two different CPs from r′ to y′. Hence, P3 does not pass through the (q′, y)-subpath of P1, 303

contradicting that τq′y ∩ S = {P1, P3} since τq′y ∩ S = {P1}. 304

Theorem 6. For a given graph G = (V, E) and a fixed ordering σ over V,

VCDim(G) ≥ 2.

Proof. Consider the graph as in Figure 5. Then, for P1 = (a, b, c, d, e, f ), P2 = (g, b, c, d, e, h), 305

and S = {P1, P2}, we have: τac = {P1}, τgc = {P2}, τcd = {P1, P2}, and τaj = ∅. 306

4. Algorithms 307

For an undirected graph G = (V, E) with non-negative edges weights, with n = |V| 308

and m = |E|, we first present in Section 4.1 a modified version of Dijkstra’s algorithm which 309

takes into consideration a given vertex ordering σ, and then we show that the shortest 310

paths in the SPT computed by the algorithm are canonical paths. Then, in Section 4.2 we 311

present an algorithm for the relaxed APSP problem that returns, with probability at least 312

1− δ, the shortest paths with centrality least ε. 313

4.1. Modified Dijkstra 314

In this section we present a modification of Dijkstra’s algorithm presented in [27]. 315

Dijkstra’s algorithm, for a given vertex s, outputs a SPT, denoted Ts, rooted in s. This 316

algorithm maintains in every step a set S such that every vertex in S has its distance from s 317

already computed. At every step, a vertex v in V \ S with minimum estimated distance 318

from s is selected to be added in S. An edge (u, w) ∈ E is relaxed if the minimum distance 319

from s to u plus the weight of (u, w) improves the minimum distance from s to w. 320

The main difference between the modified algorithm that we present here and the 321

original one is the tie-breaking criterion for the selection of edges to be added in a shortest 322

path. In a given step of the modified Dijkstra, if there are multiple vertices in V \ S 323

with the same estimation for minimum distance from s, then the one with minimum 324

index in σ is chosen to be added in S. Additionally, let u be a vertex that has been 325

just inserted in Ts in a given iteration. For every neighbor y of u in V \ S for which 326

the algorithm relax the edge (u, y), the ordering is taken into consideration so that if 327

d(s, u) +ω(u, y) = d(s, u′) +ω(u′, y), for some u′ in S, then the tie-breaking for the shortest 328

(s, y)-path depends on which vertex between u and u′ has the minimum index in σ. 329

Theorem 7 shows that the modified Dijkstra’s algorithm correctly computes all the 330

canonical paths from a source s to any other vertex in V with respect to σ. Note that S is a 331

priority queue that is also modified to give higher priority to vertices with lowest indexes in 332

σ in the case of ties in the vertices selection. We observe, however, that these modifications 333

do not increase the running time of the priority queue operations. 334

Theorem 7. All shortest paths computed by a modified Dijkstra’s algorithm with respect to a given 335

vertex ordering σ are canonical paths. 336

Proof. (Sketch) Similar to the proof of correctness of the original Dijkstra’s algorithm 337

presented in [27] (Theorem 22.6), the proof is by induction on the size of S. 338
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Let s be the source vertex. For each u ∈ V, let d̃(s, u) the estimated minimum distance 339

from s to u in a given step of the algorithm. For |S| = 0, the set S is empty and then this base 340

is trivially true. For the base where |S| = 1, we have S = {s}, and then d̃(s, s) = d(s, s) = 0. 341

Besides, s does not have a predecessor, since it is the source, so the base is also true for 342

this case. For the inductive step, we have the following hypothesis: for all v ∈ S, we 343

have that d̃(s, v) = d(s, v) and the predecessor of v in the Dijkstra tree of s is the one with 344

minimum index in σ. Proving that d̃(s, v) = d(s, v) follow the same arguments of the proof 345

of correctness in [27] for the original Dijkstra’s algorithm. 346

In order to prove that the predecessor of v in the Dijkstra tree of s, denoted v′, is the 347

one with minimum index in σ among all possible predecessors of v, we prove that all edges 348

(z, v) where d̃(s, v) = d̃(s, z) + ω(z, v) were examined when the edge (v′, v) were relaxed. 349

Consider, by contradiction, that there is some vertex u′ that has the minimum index in σ 350

among all possible predecessors of v, but that the edge (u′, v) was not examined before 351

vertex v is added to S. If the edge (u′, v) was not examined, then v was added in S before 352

u′. In this case, this happened either because d̃(s, v) < d̃(s, u′) or because d̃(s, v) = d̃(s, u′) 353

and σ(v) < σ(u′). However, in both cases, then u′ could not be the predecessor of v, since 354

d̃(s, u′) should be strictly smaller than d̃(s, v) to be considered as a possible predecessor of 355

v. Hence, all y ∈ S with d̃(s, y) < d̃(s, v) should have been examined before v, and hence, 356

v′ is the predecessor of v with minimum index in σ among all such vertices. This value 357

never changes again once v is added in S. 358

4.2. Computing Shortest Paths with High Centrality 359

Given 0 < ε, δ < 1, Algorithm 1 computes, with probability 1 − δ, the distances 360

between pair of vertices with centrality at least ε. We also briefly describe the necessary 361

modifications on the algorithm so that the shortest path associated to such distances be also 362

computed. 363

Algorithm 1: PROBABILISTICALLPAIRSSHORTESTPATHS(G,ε,δ)
input :weighted graph G = (V, E) with n = |V|, parameters 0 < ε, δ < 1.
output :distance duv, for each (u, v) ∈ V2 s.t. c(u, v) > ε, with probability 1− δ.

1 for i← 1 to
⌈

c
ε

(
2 ln 1

ε + ln 1
δ

)⌉
do

2 sample a ∈ V with probability 1/n
3 Ta ← SINGLESOURCESHORTESTPATHS(a) /* modified Dijkstra */
4 sample b ∈ V \ {a} with probability 1/(n− 1)
5 Bab ← shortest path from a to b in Ta
6 for each (u, v) ∈ Bab ×Bab do /* u closer to a, v closer to b */
7 duv ← dav − dau /* dau and dav come from Ta */
8 return each duv in the distances table

Theorem 8. Consider a (u, v)-path such that c(u, v) ≥ ε. Algorithm 1 computes the exact distance 364

between u and v with probability 1− δ. 365

Proof. Algorithm 1 samples several branches and we first assume that such samples are an 366

ε-net (we show later that this is indeed true). Recalling the range space modeling (Section 367

4.2), the sample of branches is denoted by S and the (u, v)-path is related to a range τuv. 368

As, by lines 2 and 4, the branch is sampled with probability 1/n(n − 1) then, by 369

Theorem 3, we have that c(u, v) = Pr(τuv). Thus, as c(u, v) ≥ ε, so Pr(τuv) ≥ ε. As we are 370

assuming that the sample is an ε-net, by Definition 5, then |τuv ∩ S| ≥ 1 for all τuv such that 371

Pr(τuv) ≥ ε. That is, since c(u, v) ≥ ε then at least one branch of the sample S contains the 372

(u, v)-path. If a branch Bab in S contains the (u, v)-path, then in line 3 the exact distance 373

between u and v is computed, since the (u, v)-path which is a subpath of the shortest path 374

from a to b is also minimal, so its distance duv can be computed as dav − dau. 375
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Now it remains to prove that the sample S is indeed an ε-net. Note that in lines 1–7, 376

the loop is executed k =
⌈

c
ε

(
2 ln 1

ε + ln 1
δ

)⌉
times, so our sample has at least size k. By 377

Theorems 2, 5, and 6, this sample size is sufficient for it to be an ε-net with probability at 378

least 1− δ. 379

Theorem 9. Algorithm 1 has running time O(m + n log n + (DiamV(G))2). 380

Proof. Lines 2, 4 and 5 takes linear time. Line 3 (the modified Dijkstra) runs in O(m + 381

n log n), as the modifications do not change the running time of the original Dijkstra’s 382

algorithm. The loop in line 6 takes time O((DiamV(G))2) since the length of Bab cannot 383

be greater than the vertex diameter of the graph. The distances returned by Dijkstra’s 384

algorithm in line 3 are stored in a table d. Since operations of insertion, deletion, and search 385

on this data structure take time O(1), then updating table d takes time O(1). Assuming 386

that ε and δ are constants, the number of loop iterations in lines 1–7 is constant, and the 387

result follows. 388

As it is common to APSP and search algorithms, Algorithm 1 also constructs a data 389

structure from which, for all vertices (u, w), a shortest path from u to w can be retrieved. 390

We can store the predecessors of each vertex that is in Bab so that a (u, v)-subpath of Bab can 391

be retrieved by a backward traversing from v to u on these predecessors. This modification 392

does not change the execution time of the original algorithm. 393

In the remainder of this section we are interested in determining the smallest value of 394

ε for which our algorithm would still perform on strictly subcubic time. For this, we drop 395

the assumption that ε is constant and therefore write it as a function of n, denoted by ε(n). 396

Let k be the sample size (which impacts on the number of times line 1 of Algorithm
1 is executed). Then k = O

(
1

ε(n) ln 1
ε(n)

)
, and the running time of Algorithm 1 becomes

O(k · (m + n log n + (DiamV(G))2)). In the worst case m = O(n2) and then its running
time is O(k · n2). As the best conjectured time is O(n3−c), for a constant c > 0 [14], then we
are looking for the value of ε(n) such that the time of our algorithm is upper bounded by
O(n3−c), i.e. O(k · n2) = O(n3−c). Thus k = n1−c, i.e.

1
ε(n)

ln
1

ε(n)
= n1−c.

Solving for ε(n), we have ε(n) = W0(n1−c)
n1−c , where W0(n1−c) is the branch 0 of the Lambert-W 397

function [28]. To simplify the notation, let n′ = n1−c. If n′ ≥ e, then a known bound [29] 398

for W0(n′) is W0(n′) = ln n′ − ln ln n′ + Θ
(

ln ln n′
ln n′

)
. Therefore ε(n) =

ln n′−ln ln n′+Θ
(

ln ln n′
ln n′

)
n′ . 399

Note that the smallest value for the centrality of a path is 1/n(n− 1), which is the case 400

for a path that is not strictly contained in any other path. So, to compute the distance of 401

paths with such small centrality, we have to use ε so small that the execution time exceeds 402

that of the best existing algorithms [5,14]. Nevertheless, by the reasoning above, we note 403

that we can set ε as small as Θ
(

ln n′
n′

)
. 404

5. Estimating the Shortest Path Centrality 405

The main objective of our paper is the computation of shortest paths with high cen- 406

trality. However, one might be interested in computing the value of the centrality of such 407

shortest paths. In this section we give the outline of how to adapt our algorithm so that the 408

centrality of each (u, v) ∈ V2 can be estimated within ε error, with probability at least 1− δ, 409

for 0 < ε, δ < 1. For this task we can use the more general result of Theorem 2 applied 410

to the notion of ε-sample, which states that a collection of elements S ⊆ U sampled with 411

respect to π with |S| = c
ε2

(
k + ln 1

δ

)
is an ε-sample with probability at least 1− δ. More 412

precisely, an ε-sample generalizes an ε-net in the sense that not only it intersects ranges of a 413
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sufficient size but it also guarantees the right relative frequency of each range in I within 414

the sample S. That is, given 0 < ε < 1, a set S is called ε-sample with respect to a range 415

spaceR = (U, I), and a probability distribution π on U if ∀I ∈ I , |Prπ(I)− |S∩I|
|S| | ≤ ε. 416

The idea is that after building a sample of size r = ⌈ c
ε2 (2 + ln 1

δ )⌉, we build a counting 417

table t̃ to estimate the number of branches that contain a certain canonical path as a subpath. 418

More specifically, the entry t̃uv estimates the value tuv (recall Definition 2 in Section 2) for 419

the pair of vertices (u, v). For this, the value t̃uv is incremented by 1/r in lines 6 and 7 420

if the branch Bab contains the canonical path between u and v as subpath. At the end of 421

the algorithm, if a pair of vertices (u, v) is not included in the table, the estimation for the 422

centrality is assumed to be zero. This modification does not change the asymptotic running 423

time of Algorithm 1. We state that in Corollary 1. 424

Corollary 1. Given an undirected graph G = (V, E) with non-negative edge weights, with 425

n = |V|, and a sample of size r = ⌈ c
ε2 (2 + ln 1

δ )⌉, Algorithm 2 has running time O(m + n log n + 426

(DiamV(G))2) for the computation of a table from which the centrality estimation of each u, v ∈ V2
427

can be retrieved. 428

6. Concluding Remarks 429

In this paper we present a range space having the domain composed by the shortest 430

paths of a graph G where there is one shortest path for each pair of vertices in G.We show 431

that the VC dimension of such range space is 2. We show that this result can be applied to 432

bound the sample size required for an approximation algorithm for a relaxed version of the 433

All-pairs shortest path problem (APSP). In this version, we compute, with probability at 434

least 1− δ, the shortest paths of G having centrality at least ε, for 0 < ε, δ < 1. We present 435

a O(m + n log n + (DiamV(G))2) running time algorithm for this task. We show that a 436

sample of shortest paths of size ⌈ c
ε

(
2 ln 1

ε + ln 1
δ

)
⌉ is sufficient for achieving the desired 437

result. So, in an application where one might be interested only in computing “central” 438

shortest paths the algorithm is rather efficient and it depends only on the parameters ε 439

and δ (classical approaches in literature based in union bound, for example, typical require 440

sample sizes that depend on the size of the input). 441

An open question that we are particularly interested is the connection between ε 442

and n or DiamV(G) for specific input distributions. For the general case, trivially setting 443

ε = 1
n(n−1) , we have a guarantee that every shortest path in G is computed with probability 444

1− δ, but that would yield an algorithm with running time exceeding O(n3). This may 445

not be a surprise since APSP may not admit a strictly subcubic algorithm. Nevertheless, 446

we show that if ε is at least
ln n′−ln ln n′+Θ

(
ln ln n′

ln n′
)

n′ , where n′ = 1− c, the running time of our 447

algorithm is O(n3−c), for c > 0. 448
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