United
Kingdom

Software
Metrics
Association

United Kingdom Software Metrics Association (UKSMA)

MK Il FUNCTION POINT ANALYSIS

COUNTING PRACTICES MANUAL

Version 1.3.1

< MK Il FPA»

Input ! Process : Output

“ Simple in concept, easy to apply,

aligned with modern systems analysis methods,

for intelligent software sizing and estimating”

United
Kingdom

Software
Metrics
Association

United Kingdom Software Metrics Association (UKSMA)

MK Il FUNCTION POINT ANALYSIS

COUNTING PRACTICES MANUAL

Version 1.3.1
Date: September 1998

Issued by: UKSMA Metrics Practices Committee

Copyright 01998 United Kingdom Software Metrics Association.
All rights reserved.

Members of UKSMA may reproduce this document in full or in part for use in
their own organisation, on condition either that this title page is included or
that the statement ‘This document contains material extracted from the
UKSMA MKIl Function Point Analysis Counting Practices Manual, Version
1.3.1" appears on the title page of the derived document.

Non-members of UKSMA should approach the UKSMA Administrator for
permission to use this document, which will not normally be refused.

The Metrics Practices Committee (MPC) can be contacted through the UKSMA
Administrator at:

St Clare’s

Mill Hill
Edenbridge
Kent TN8 5DQ
United Kingdom

Tel: 01732 864 952
Fax: 01732 864 996
E-mail: suerule@compuserve.com

Alternatively members may also contact the MPC via the UKSMA Website at
www.uksma.co.uk

The site contains information about UKSMA and there is a section where members
may seek advice from the MPC on matters concerning metrics in general or FPA in
particular.

CPM13.1 ii

Table of Contents

Table of Contents

FOREWORD v
1 1
Introduction 1
1.1 Definition and Purpose of Mkll Function Point Analysis 1
1.2 Purpose of the Counting Practices Manual (‘CPM’) 2
1.3 Who should read this document ? 2
1.4 Albrecht/IFPUG Function Point Analysis 2
1.5 Applicability of Mk 1| FPA 3
1.6 Manual Structure 5
1.7 Metrics Practices Committee 5
1.8 Procedure for raising a Query or Issue with the MPC 6
2 7
The Mk Il Function Point Analysis Rules 7
Rule 1 Boundary 7
Rule 2 Functional Size and Logical Transactions 8
Rule 3 Processing Component of Logical Transactions 8
Rule 4 Input and Output Components of Logical Transactions 9
Rule 5 Logical Transaction Size 9
Rule 6 Reporting a MKl Function Point Count 9
3 10
M easurement Steps 10
Step 1 Determine the Viewpoint, Purpose and Type of the Count 11
Step 2 Define the Boundary of the Count 11
Step 3 Identify the Logical Transactions 12
Step 4 Identify and Categorise the Data Entity Types 12
Step 5 Count the Input Data Element Types, the Data Entity Types Referenced, and the Output
Data Element Types. 12
Step 6 Calculate the Functional Size 12
Step 7 Determine Project Effort 12
Step 8 Calculate Productivity and other Performance Parameters 13
Step 9 Score the Degrees of Influence 13
Step 10 Calculate the Technical Complexity Adjustment 13
Step 11 Calculate Adjusted FP Size and Performance Parameters 13
4 14
General Guidelinesfor MklI Function Point Counting 14
4.1 Determining the Viewpoint, Purpose and Type of the Count 14
4.2 Drawing the boundary for a count 16
4.3 Interfaces 17
4.4 |dentifying Logical Transactions 20
4.5 ldentifying Entity Types 40
4.6 Counting Input and Output Data Element Types 43

CPM13.1

5 49

M easurement Guidelinesfor Specific Situations 49
5.1 Counting Graphical User Interfaces (GUIS) 49
5.2 Approximate Sizing of Application Portfolios 55
5.3 Sizing Changes 56
5.4 Changes to make software Y ear 2000 compliant 60
5.5 Counting Application Packages 60
6 62
Calculating the Adjusted Function Point Count 62
7 64
Measuring Effort 64
7.1 Project Start 65
7.2 Project End 65
7.3 Whose time included? 65
7.4 What time isincluded? 65
7.5 Project duration 65
8 66
Measuring Productivity and Other Aspects of Performance 66
8.1 Development Productivity 66
8.2 Change Productivity 67
8.3 Maintenance and Support Productivity 67
8.4 Measuring and Understanding Performance in Software Activities: The Wider Issues 67
9 68
Estimating Effort using Mkl FPA 68
GLOSSARY 70
MKII FPA Terms 70
APPENDIX | 74
Technical Complexity Adjustment 74
APPENDIX Il 83
Data Coallection Forms 83
BIBLIOGRAPHY 91

CPM13.1 v

FOREWORD

Function Point Analysis has matured sufficiently nowadays that it is routinely used for
performance measurement and estimating, not just within in-house Information
Systems departments, but in contractual situations between businesses and their
third-party IS suppliers.

It goes without saying therefore that standards for FPA are vital, and any publication
which helps broaden the understanding of this field, such as this Counting Practices
Manual for MKk 1l FPA is to be welcomed. The evidence from our consulting activities
is that there is in practice still a lot of misunderstanding of FPA and how to apply it,
and of course many large IS organisations still have not seen the benefits of adopting
these techniques. As a community, those interested in improving the
professionalism of the IS function, so that it can justifiably use the term ‘system
engineer’, still have a lot to do. We hope this manual will help.

The manual has been prepared by the Metrics Practices Committee of the UK
Software Metrics Association (UKSMA), which is made up of experienced
practitioners of the method. This version 1.3.1 is a maintenance release of
Versionl.3, which included several refinements and extensions to cope with new
forms of software requirements, and to ensure compatibility with the draft
International Standard on ‘Functional Size Measurement’. | warmly commend it to
you.

Charles Symons
Software Measurement Services Ltd
September 1998

CPM13.1 v

Introduction

1.1 Definition and Purpose of MklIl Function Point Analysis

For the purposes of this document, the abbreviation ‘Mk Il FPA’ is used for ‘Mark I
Function Point Analysis’.

Mk 1l FPA is a method for the quantitative analysis and measurement of information
processing applications. It quantifies the information processing requirements
specified by the user to provide a figure that expresses a size of the resulting
software product. This size is suitable for the purposes of performance
measurement and estimating in relation to the activity associated with the software
product

In the context of Mk Il FPA, ‘information processing requirements’ means the set of
functions required by the commissioning user of the application software product
(excluding any technical and quality requirements). ‘The activity’ could be the
development, change or maintenance of the software product needed to meet the
requirements.

The MkIl FPA method is intended to comply with ISO 14143/1, the International
Standard for Functional Size Measurement (see Bibliography).

CPM 1.3.1 Chapter 1

1.2 Purpose of the Counting Practices Manual (‘CPM’)

The Mk Il Method of Function Point Analysis was defined by Charles Symons in
‘Software Sizing and Estimating: Mk Il FPA’ published in 1991. After development
within KPMG in 1985/86, with the protected status of a proprietary method, the
method is now in the public domain. The Metrics Practices Committee (MPC) of the
UK Software Metrics Assaociation is now the design authority for the method and is
responsible for its continuing development.

The purpose of this Manual is to explain and promulgate the method, and to set out
the rules for applying Mk Il Function Point Analysis (‘FPA"). Chapters 1 to 5 inclusive
of this manual provide the authoritative standard of the Mk Il FPA Method.

It is not the purpose of this manual to replace Charles Symons' or the other books in
the Bibliography. The manual is not intended to provide a teaching introduction to
MKIl FPA, nor does it discuss the broader subject of software measurement.

This manual replaces all previous versions of the Counting Practices Manual.
The definition covers:
The software domains for which Mkll FPA may be applicable
Application software requirement components recognised by Mk 1l FPA
A process for applying the MKkIl FPA rules and documenting the result

Interpretation of the rules for a variety of software technologies (eg, GUI,
client/server, objects, etc.)

Basic Formulae used in Mk Il FPA
Terminology used in Mk Il FPA.

An important aspect of this new version of the standard, in order to comply with ISO
14143/1, is that the Technical Complexity Adjustment is no longer considered to
contribute to the ‘Functional Size’. Hence measurements previously expressed in
MKII ‘Unadjusted Function Points’ should now be regarded as the Mkll measures of
the Functional Size, without further qualification. For the time being, the Technical
Complexity Adjustment remains part of the method. If it has been applied then the
result should be qualified as the ‘Adjusted Functional Size’.

1.3 Who should read this document ?
Users of Mk 1l FPA
Suppliers of tools, training or other services involving the method.
Anyone interested in learning about the details of Mk 1l FPA

1.4 Albrecht/IFPUG Function Point Analysis

Allan Albrecht developed the original Function Point Analysis method. The design
authority for the direct descendent of his approach is now the International Function
Point Users Group (‘IFPUG’). The briefest reference is made here to the relationship
between the Mk Il and the IFPUG FPA methods.

The two methods measure subtly but significantly different sizes of a software
product (and therefore of the work-output of the processes of developing, maintaining
and enhancing a software product).

CPM 1.3.1 Chapter 1 2

In terms of the sizes produced, the major difference is that Mk Il FPA, with its finer
granularity, is a continuous measure whereas IFPUG limits component size once a
threshold is reached. As the concepts on which the size measure is based are
logical transactions and entities, in which software requirements and functional
specifications are typically expressed, a MKll Functional Size measure should be
truly independent of the technology or methods used to develop or implement the
software.

The weightings introduced by Charles Symons were designed to deliver a size scale
of similar magnitude for the Mkll method as for the IFPUG method. On average
therefore, the methods give roughly the same software sizes up to around 400
function points (though there can be quite a scatter about the average for individual
items of software). For larger sizes, Mk Il FPA tends to produce increasingly higher
sizes than the Albrecht/IFPUG method.

For some purposes, e.g. portfolio management, the methods may be regarded as
equivalent. However, for the commonest purposes of performance measurement
and estimating it is preferable to use one scale or the other consistently, only
converting between them if needed, using a formula which shows the average
relationship.

1.5 Applicability of Mk Il FPA

MKII FPA is a method that assists in measuring process efficiency and managing
costs for application software development, change or maintenance activities. It
measures a software product size independent of technical characteristics of the
software, in terms relevant to users. It can be:

applied early in the software development process
applied uniformly throughout the software's lifetime
interpreted in business terms, and

understood by users of the software.

MKIl Function Points can be used to measure the functional size of any software
application that can be described in terms of logical transactions, each comprising an
input, process and output component. The sizing rules were designed to apply to
application software from the domain of business information systems, where the
processing component of each transaction tends to be dominated by considerations
of the storage or retrieval of data. The method may be applicable to software from
other domains, but the user should note that the sizing rules do not take into account
contributions to size such as from complex algorithms as typically found in scientific
and engineering software, nor do the rules specifically take into account real-time
requirements. To apply MKIl FPA to these other domains may be possible or may
require extensions to or new interpretations of the rules given in this manual.

MKII FPA can be used for sizing:

a requirements specification or functional specification of a new application or of
a change to an existing application

the requirements met by an existing, operational application, whether it be a
bespoke application or an implementation of a packaged business software
solution, and whether a batch or on-line implementation.

CPM 1.3.1 Chapter 1 3

Either directly, or coupled with effort, defect counts and other measures, Mkll FPA
can be used for a variety of purposes, including to:

measure project or organisational performance (productivity, delivery rate and
quality).

compare internal and external IT performance

compare application quality and reliability

compare normalised development, maintenance and support costs of
applications on different platforms

estimate the resourcing requirements, duration and cost of projects

contribute to the cost and risk elements of the business case for a new project
assist in identifying all requirements before an application has been developed
control ‘creeping elegance’ or scope change during projects

assign work to team members

determine the size of the application asset base

produce useful, high-level, functional documentation of old ‘legacy’ systems that
lack up-to-date functional documentation

determine the replacement value of applications.

MK Il FPA is independent of the project management method to be used (eg
waterfall, spiral, incremental) and of the development method employed (eg object-
oriented, SSADM, Information Engineering, etc.). It is a measure of the logical,
business requirements, independent of how they are implemented.

CPM 1.3.1 Chapter 1

1.6 Manual Structure

This manual is split into 10 Chapters. After this Introduction, the Chapters address

the following:

Chapter 2

Chapter 3
Chapter 4

Chapter 5
Chapter 6

Chapter 7
Chapter 8
Chapter 9
Chapter 10
Appendix 1

Appendix 2

Appendix 3

describes the Rules to which all Mk Il Function Point counts must
conform.

lists the main steps to be carried out in performing a count.

provides general guidelines and illustrations of how to perform the
tasks involved in a count for many situations faced in practice.

provides measurement guidelines for some sizing specific types of
software and for some specific types of sizing requirements.

describes the process to adjust the Functional Size derived using
the MKkIl method to account for non-functional requirements.

gives a definition of effort for the calculation of productivity.
describes how to measure productivity.

gives a brief introduction to the use of MKIl FPA for estimating.
provides a glossary of terms and definitions.

contains a detailed definition of the Technical Complexity
Adjustment.

provides some forms which may prove helpful in performing a
count.

contains a Bibliography of publications referred to in this document,
and other useful references.

1.7 Metrics Practices Committee

The Metrics Practices Committee was established by the Committee of UKSMA to
exercise delegated authority on a day-to-day basis over the Mk Il Function Point
method. The Committee acts on behalf of UKSMA and the user community with the
following objectives:

to act as the Design Authority and owner of the Mkl method

to maintain control over the rules, interpretation and documentation of the Mkll

method

to ensure that the rules are interpreted in a consistent and valid way for both MKII
and IFPUG methods

to supply advice on the interpretation of both the Mkll and IFPUG methods

to foster consistency in the application of the methods, and thus comparability of

results

to promote the use of the Functional Size as a key component of software

metrics

to provide a reference point for interpretation

to keep the user community informed of any developments via the UKSMA
Committee and general meetings.

CPM 1.3.1 Chapter 1 5

1.8 Procedure for raising a Query or Issue with the MPC

Should the reader wish to comment or need advice on any aspect of this manual,
please contact the UKSMA Administrator. Suggestions for improvement to this
document, and UKSMA services are warmly welcomed!

CPM 1.3.1 Chapter 1

The MK Il Function Point Analysis
Rules

Below are listed the rules to which all Mk 1l Function Point Counts must conform.
General guidelines to assist in conformance to these rules are given in Chapter 4 of
the manual.

Rule 1 Boundary

1.1 MK Il FPA is used to measure the size of the functionality required by
the users of an application, within a boundary defined for the purpose
of the FP count.

1.2 The application or part of the application enclosed by the boundary
must be a coherent body of functionality, comprising one or more
complete Logical Transaction Types. (In the following, ‘Type’ is
dropped for ease of reading.)

CPM 1.3.1 Chapter 2

Rule 2

2.1

2.2

2.3

2.4

2.5

Rule 3

3.1

3.2

3.3

3.4

Functional Size and Logical Transactions

The Functional Size of an application is the sum of the sizes of each of
the Logical Transactions whose input and output components cross
the enclosing boundary.

A Logical Transaction is the lowest level of self-consistent process. It
consists of three components; input across an application boundary,
processing involving stored data within the boundary, and output back
across the boundary.

It is triggered by a unique event that is of interest to the user, which,
when completed, leaves the application in a self-consistent state in
relation to the unique event. It may also be triggered by a user
requirement to extract information from the application, leaving it
unchanged.

A Logical Transaction is counted once when sizing an application,
even though it may be executed from more than one point in the
application.

Changes to applications are counted by summing the size of the
added, changed, and deleted Logical Transactions.

In the case of changed Logical Transactions, the size counted is the
size of the changes made to the Logical Transactions, not the overall
size of the Logical Transactions. The size of the changes made is
found by summing the counts of the added, changed and deleted
input, process and output components of the Logical Transactions.

Processing Component of Logical Transactions

The processing component of a Logical Transaction is analysed by
reference to its manipulation (i.e. create, update, delete, or read) of
stored data.

The processing component is sized by counting the number of Primary
Entity Types that are referenced by the Logical Transaction, plus the
System Entity if referenced. See Section 4.4 for definitions of ‘Entity-
Type’ and ‘Primary’.

All accesses to Non-Primary Entity Types within the entity model are
considered to be references to a single entity called the System Entity.

Within an application boundary there can be only one System Entity,
to which a maximum of one reference may be included in the
processing component of a Logical Transaction.

CPM 1.3.1 Chapter 2 8

Rule 4

4.1

4.2

Rule 5

5.1

5.2

Rule 6

6.1

Input and Output Components of Logical
Transactions

The input and output components of a Logical Transaction are sized
by counting the number of Data Element Types crossing the
application boundary, via each component respectively.

A Data Element Type is a uniquely processed item of information that
is indivisible for the purposes of the Logical Transaction being sized.
It is part of an input or output data flow across an application
boundary.

Logical Transaction Size

The Functional Size of a Logical Transaction is the weighted sum of
the input, processing, and output components of the Logical
Transaction.

The industry standard weights are as follows: Input Weight is 0.58
(per Input Data Element Type), Processing Weight is 1.66 (per Entity

Type Reference), and the Output Weight is 0.26 (per Output Data
Element Type).

Reporting a MKkIl Function Point Count

A MKII FP count obtained according to the rules of this Counting
Practices Manual should include reference to the CPM Version
Number when it is reported, for example:

‘657 MKII Function Points (V1.3)’, or

‘MKIl FP Index = 557 (V1.3)’

CPM 1.3.1 Chapter 2 9

Measurement Steps

The purpose of this section is to summarise the key factors in each of the steps 1 to
6 which comprise the Mk Il FPA Counting Process, the additional steps 7 to 8 which
are needed to determine the most commonly required performance parameters, and
the optional steps 9 to 11 which are needed to take into account the Technical
Complexity Factor. Reference is made to the Rules of Chapter 2, and to other parts
of this manual which provide greater detail and guidance.

The Functional Size of an application is derived from the Functional User
Requirements as expressed by the commissioning user.

Any function that is provided, but which was not required by the user, is ignored for
FPA purposes (Rule 1).

Functional requirements are usually modelled in the Requirements Specification and
Logical System Design documents. They are an expression of what an application
should do or does, rather than how it does it, and these are therefore good source
documents for counting purposes.

Access to a member of the project team knowledgeable in what the system is
supposed to do, and to a data analyst for the data entity model, is also an invaluable
asset to a count.

The effort involved in a count typically takes 0.2% - 0.4% of the total project effort for
a new large development project.

CPM 1.3.1 Chapter 4 10

Mk Il FPA Counting Process and its use for Productivity Measurement

Measure Functional Productivity Measure Adjusted
Size Measurement Size (Optional)

1. Determine
purpose & type
of count
2. Determine
Boundary of
Count
3. Identify . Identify & 7. Determine 9. Score
Logical categorise project Degrees of
Transactions Entity Types effort Influence
5. Count Input, 10.
Process and Calculate
Output TCA
6. Calculate 11. Calculate
Functional Adjusted
Size FP Size
T
Calculate
Productivity

.

Step 1 Determine the Viewpoint, Purpose and Type of the
Count

Identify the customer for the count, and the purpose. For example, is it to measure
the work-output of a particular group of developers, or the functionality ‘owned’ by a
particular user? Is the aim to count all of the functionality which was required, or the
functionality which was delivered to the user? See Section 4.1 for guidelines.

Questions which may help determine what has to be counted include:
Does the project involves development, change, maintenance, or support?
When did/does the project begin and end?

Is an accurate or approximate count needed? (If the latter, see Section 5.2.) Is it
needed for performance measurement, or for estimating? (If the latter, see also
Chapter 9.)

Step 2 Define the Boundary of the Count

This is also linked with Step 1. Drawing the boundary determines the Logical
Transactions to be included in the count, and identifies any interfaces.

See Sections 4.2 and 4.3 for guidelines.

CPM 1.3.1 Chapter 4 11

Step 3 Identify the Logical Transactions

Logical transactions are the lowest level processes supported by the application,
consistent with Rule 2

See Section 4.4 for guidelines.

Step 4 Identify and Categorise the Data Entity Types

It is usually highly desirable to have an entity-relationship data model for the
requirements, to identify all the Data Entity Types. However, as only the Primary
Entity Types are needed, a full Third Normal Form analysis is not needed.

See Section 4.5 for guidelines.

Step 5 Count the Input Data Element Types, the Data
Entity Types Referenced, and the Output Data
Element Types.

For each Logical Transaction, count the number of Input Data Element Types (Ni),
the number of Data Entity Types Referenced (Ne), and the number of Output Data
Element Types (No).

See Sections 4.5 and 4.6 for guidelines.

Step 6 Calculate the Functional Size

The Functional Size (Function Point Index) is the weighted sum over all Logical
Transactions, of the Input Data Element Types (Ni), the Data Entity Types
Referenced (Ne), and the Output Data Element Types (No).

So the Function Point Index (FPI) for an application is:
FPI = Wi* SNi + We * SNe + Wo * SNo,

where ‘S means the sum over all Logical Transactions, and the industry average
weights per Input Data Element Type, Data Entity Type Reference and Output Data
Element Type are, respectively:

Wi =0.58
We = 1.66
Wo = 0.26
For the sizing formulae to be used for changes to applications, see Section 5.3

Step 7 Determine Project Effort
Determine the total effort and elapsed time for the project.
See Chapter 7 for guidance.

CPM 1.3.1 Chapter 4 12

Step 8 Calculate Productivity and other Performance
Parameters

Examples: Productivity = FPI / Project Effort,
Delivery Rate = FPI / Elapsed Time
See Chapter 8 for guidance.

Step 9 Score the Degrees of Influence

Optionally assess the Degrees of Influence of each of the Technical Complexity
Adjustment characteristics.

See Appendix 1 for guidance.

Step 10 Calculate the Technical Complexity Adjustment
Optionally calculate the TCA.
See Appendix 1 for guidance.

Step 11 Calculate Adjusted FP Size and Performance
Parameters
Optionally use the TCA calculated in Step 10 to calculate the Adjusted FP Size which

can then replace the FPI to derive the associated performance parameters (e.g.
productivity and delivery rate), as in Step 8.

CPM 1.3.1 Chapter 4 13

General Guidelines for Mkl
Function Point Counting

The purpose of this chapter is to provide users of the Mkll FP method with more
detailed rules and practical cases which illustrate the application of the method for a
variety of real counting situations. The structure of the chapter corresponds to the
first five steps of the Mkll FPA Counting Process described in chapter 3.

4.1 Determining the Viewpoint, Purpose and Type of the
Count

As defined in Rule 1, the first important step before starting any Mkll Function Point
count is to decide the ‘boundary’ of the application which has to be counted; this
determines what functionality is included and what is excluded.

The choice of the boundary depends on the viewpoint, and perhaps the purpose of
the count. There are three commonly encountered viewpoints.

CPM 1.3.1 Chapter 4 14

The Project Viewpoint. We wish to determine the size of the functionality
delivered, i.e. the ‘work-output’, by a specific application development or change
project, or the functionality supported by a specific application maintenance or
support activity. The purpose might be that we wish to use the resulting
functional size measure as a component of measuring productivity of the project,
or as a component of estimating the effort to develop the project. In this case the
boundary is drawn around the functionality delivered by the project team or as
maintained by the support team.

The Application Manager Viewpoint. We wish to determine the total size of
applications which support a specific business functional area, and which are
managed as a unit by an Application Manager. The purpose might be to track
the extent of automation of the business area as it progresses each year, or to
measure the support productivity of the Application Manager's team for that
whole area. In this case the boundary is drawn around the functionality
supported by the Application manager’s team.

The Business Enterprise Viewpoint. We wish to determine the total size of the
application portfolio of the enterprise for the purpose of asset valuation. In this
case the boundary is drawn around the whole of the portfolio of the Enterprise.

The reason for distinguishing these different viewpoints is that the Mkll FP counts
arising from these different viewpoints are not necessarily related in a simple additive
way. Usually, the whole is less than the sum of the parts. Examples will illustrate.

The functional requirements of a Business area are developed in three
successive application development projects. For the purposes of estimating and
of measuring the productivity of the three separate projects, we need to count the
FP’s delivered by each of the projects separately. However, because of the
architecture of the systems of this Business area in our example, each project
had to deliver some temporary, ‘throw-away’ functionality to convert data from the
previous generation of applications, and in addition some permanent interface
files have to be created for the three applications to work coherently.

Clearly, to measure the productivity of the individual projects, we need to count
the total functionality delivered from the Viewpoint of the Project Leader by each
separate project. This would include the FP’s of any ‘throw-away’ functionality,
and of any interface files which that project had to provide. But when measuring
the final total or ‘nett’ functionality from the viewpoint of the Business area when
all three projects have been completed, we would not count the ‘throw-away’
functionality, and it may arise that not all of the functionality implied in the
interfaces is credited to the ‘nett’ functionality (see further the discussion on
interfaces below).

A similar type of boundary problem arises when counting the FP’s delivered for
client-server systems. A client-server application could be developed by two sub-
project teams, one specialising in PC client applications, and the other in main-
frame server applications. The application boundaries for the two projects may
well overlap, with some user functionality being dealt with by both projects. If we
wish to measure the performance of each development sub-project team
separately, then the total functionality delivered by each team would be counted

CPM 1.3.1 Chapter 4 15

separately. Alternatively, if we wish to size the integrated client-server
application, to measure the functionality delivered to the user or project sponsor,
then the overlapping functionality would not be double-counted.

4.2 Drawing the boundary for a count

As shown in the preceding paragraph, where the boundary of an application is drawn
for FP counting depends on the intended viewpoint, purpose and use of the count.
Drawing the boundary determines what functionality is to be included in the count,
and what excluded.

When the application boundary is drawn, it defines the conceptual border between
the software and the ‘user’ (see further below). ‘Input data’ from the user crosses the
boundary to enter the application. ‘Output data’ leaves the application and crosses
the boundary to reach the user. Within the boundary are the Data Entity Types
(hereinafter referred to as ‘entities’, for simplicity) that are processed by the Logical
Transaction Types (hereinafter referred to as ’logical transactions’ or just
‘transactions’) of the application.

In the context of FPA, examples of ‘user’ are:

Business User - e.g. a manager, a clerk, someone at a terminal, or some other
person who enters data into the application and receives output.

Automated User - another application or automatic data collection device that
supplies data to or receives data from the application being counted. (Note that
an application can also be regarded as the user from the viewpoint of a ‘lower-
level’ piece of software such as a file handler or network access device. But MKiII
FPA was designed to work at the business application level, and great care
should be taken about applying the method at lower, infrastructure software
levels.)

In all cases, data from the user which crosses the application boundary to be
processed will:

cause some part of the application to change state according to the requirements
of the user.

and/or

cause data to be made available to the user.

Drawing an application boundary must not result in incomplete logical transactions.
Any logical transaction must have some user input from across the boundary, do
some processing on data entity types within the boundary, and return output across
the boundary.

Whether the requirements of the application are implemented in on-line or in batch
mode is immaterial to the FP count; there is no logical difference between data

CPM 1.3.1 Chapter 4 16

crossing the application boundary on-line, and data crossing the boundary off-line
(batch).

Figure 4.1 below shows a typical example of an application boundary from a
business user perspective, encompassing on-line and batch transactions.

Applivation Downdury

g —
Ver '\ E yp%u

N

Figure 4.1 - Business user view of application boundary

Referring to figure 4.1, we can see that there is an on-line transaction that updates
one database. This transaction involves the user at a terminal holding an
input/output dialogue across the application boundary.

In figure 4.1 there is also a batch transaction which accesses three databases. This
transaction is initiated in a production environment, under the control of the computer
operators, and produces a report, which is sent to the business application user. The
input from the operators, who initiate the job, crosses the application boundary, as
does the output report that is sent to the user.

There are three databases shown within the application boundary in figure 4.1. It
does not matter for the FP count of this application if one or more of these databases
happens to be shared with other applications that may create, read, update or delete
data on the databases. For the purposes of the function point count being described,
the entities implied in all three databases are included within the application
boundary as they are referenced by the two transactions shown in figure 4.1, and the
relevant entity references will be counted in each of those transactions.

Databases can appear within the boundaries of any number of applications. The
criterion for their inclusion is simply whether or not the data is referenced by one or
more logical transactions included within the application being counted. Logical
transactions, on the other hand, normally appear in only one application, unless
functionality is deliberately duplicated across more than one application.

4.3 Interfaces

When an application boundary is drawn for the purposes of a particular FP count, it
may result in identifying ‘interfaces’ to other applications. In common understanding,
the word ‘interfaces’ is used for two physically different processes.

a file of ‘data’ (eg master data records, ‘transactions’, a string of messages, etc.)
is made available as an interface file from one application to be shared with
another

CPM 1.3.1 Chapter 4 17

‘data’ are transmitted via an interface, either one at a time or as a batch, from one
application to another

N.B. When we use the term ‘transactions’ in the above, these are not complete
logical transactions in the meaning of Mkll FPA. Typically, these ‘transactions’ might
be the input part of a set of logical transactions. For example a file (or stream) of
orders, or bank terminal withdrawals, would be the input part of the logical
transactions for the receiving application which is going to process them.
(Remember, a complete logical transaction always involves an input, process and
output component, which leaves the application in a self-consistent state.)

In the first type of interface above where one application shares a file with another,
both applications, the one making the interface file available (i.e. the application
maintaining the file) and the other using (i.e. reading) the same interface file,
encompass this file within their boundaries. Therefore the entity types implied in the
file should be counted in the relevant logical transactions of each of the applications.

In the second type of interface above, the data transmitted across the common
application boundary form the output part of a logical transaction of the sending
application, and similarly also the input part of a logical transaction of the receiving
application. As in the first type of interface above, any entity types referenced by the
transmitted data should be counted in both the sending and receiving applications,
as both process such data.

At first sight, these two types of interfaces seem to discuss different physical
implementations of the same logical requirement and thus might be expected to give
identical Mkll FP counts. But this is not necessarily so — the two types of interfaces
may result from distinct logical requirements.

Three cases below will illustrate how to apply the counting rules when interfaces
arise. In each case it is assumed that the Viewpoint requires each application
processing the interface file to be sized separately. In the table headings, ‘DET’
means ‘Data Element Type'.

Case 1. Orders are entered on-line in Application A and validated, and accumulated
on a file which can be accessed directly by, i.e. shared with, Application B. The
shared order file is within the boundary of both applications, and hence the orders do
not have to ‘cross an application boundary’ to be passed from A to B. At some
arbitrary time chosen by Application B, it processes the accumulated orders against
a Stock file and produces a summary report. Application A has no influence on when
Application B reads the file. Applications A and B both also read a master Customer
file during their respective processing.

Applic. Transaction Input DET’s | Processing ER’s Output DET'’s
A Order Entry 20 2 (Ord, Cust) 1 (Error/
Confirm),
B Order Process | 1 (Trigger) 3 (Ord, Cust, 10 (Ord
Stock) Summary)

CPM 1.3.1 Chapter 4

18

Case 2. As Case 1, but before Application B begins to process the interface file,
Application A sends a notification that ‘on-line processing has completed’. There is
therefore a separate transaction sent by Application A, and received by Application
B, that synchronises the two applications. If we are counting both applications
separately, this transaction should be counted in both applications.

Applic. Transaction Input DET’s | Processing ER’s Output DET'’s
A Order Entry 20 2 (Ord, Cust) 1 (Error/
Confirm)
A Entry Complete | 1 1 1
B Begin Order 1 (Trigger) 3 (Ord, Cust, 10 (Ord
Process Stock) Summary)

(Note: Case 2 gives a different count to Case 1. But in Case 1, Application A has no
control regarding which processing cycle of Application B will handle any specific
Order. There is also in Case 1, arguably, a requirement for a ‘transaction’ to
Application B informing the latter that it may start its processing, but this originates
from somewhere other than Application A and has not been shown as required in
Case 1. It may, for instance, be a timed trigger, such as ‘Time_Of_Day’, or an
operator intervention.

Case 3. As Case 1, but each order, immediately after entry and validation, is
transmitted ‘on-line’ by Application A to Application B.

Applic. Transaction Input DET’s | Processing ER’s Output DET's
A Order Entry 20 2 (Ord, Cust) 1 (Error, etc)
plus ‘n’ *
B Order Process | 5 (revali- 3 (Ord, Cust, 10 (Ord
dated) Stock) Summary)

*‘'n’, the count of the number of DET’s transmitted out across the common boundary
depends on the requirements for formatting agreed with Application B. If the 20
DET's transmitted out are treated as a block, unchanged in format from the data
entered, count ‘one’. If all 20 DET’s are re-formatted to meet the requirements of
Application B, count 20.

Case 3 also differs from Cases 1 & 2 in that each Order is processed discretely and
sequentially by both Applications A & B. No additional notification messages are
needed, as, upon receipt of each Order transaction, Application B processes it and
waits for Application A to transmit the next.

CPM 1.3.1 Chapter 4 19

In all of Cases 1, 2 & 3, Applications A & B may reside on the same or different
processors. This is a physical implementation detail which does not affect the
functional size.

The General Rules therefore are as follows:

€) Input read from an Interface File: If information read from an interface file
requires validation, then count the input DET's that require validation as part
of a logical transaction of the receiving application.

(b) Output transmitted across an Interface: Count the DET’s made available or
transmitted across the interface that have to be specially formatted for the
receiving application in the output component of a logical transaction of the
transmitting application

© The files made available or transmitted across an interface comprise DET's
which will may create or cause updates of one or more entities. Count any
references to these entities in the relevant logical transactions of both the
sending and receiving applications.

(d) Take care to understand any logical requirements to synchronise interacting
applications and count the transactions made necessary.

(Note also that if the task were to produce the size of the combined system A+B as
one unit, ignoring interface considerations, then the relevant transactions and their
sizes would be as in Case 1 above, irrespective of how the requirements had been
implemented.)

4.4 Identifying Logical Transactions

After deciding the purpose of an FP study, and choosing an appropriate boundary,
the next most critical decision to make when performing FPA, is to correctly identify
the set of logical transactions involved. This Section is intended to help the reader
identify logical transactions correctly and clarifies some commonly encountered
counting situations.

N.B. Tests of experienced Mkll FPA practitioners have shown that the commonest
mistake made is to omit to identify and hence size some of the Logical Transactions
of the system. The advice of this Section on distinguishing Logical Transactions is
therefore especially important.

Users of MKIl FPA should note that early in a project’s life-cycle, requirements are
often stated in a general form such as ‘the system shall be usable by anyone familiar
with GUI conventions’. The temptation at this stage is to say that such a requirement
can only be handled by the Technical Complexity Adjustment (which is no longer
considered to contribute to the Mkll FP size).

CPM 1.3.1 Chapter 4 20

By the time the requirements are agreed in detail, however, much of this ‘ease of
use’ requirement will have influenced the information processing content of the
various Logical Transactions, and hence this requirement will be taken into account
in the MkII Functional Size. The Logical Transactions to be counted thus correspond
to the finally agreed set of logical requirements allocated to the software being sized.

44.1 What is a Logical Transaction ?

Logical transactions are the lowest level business processes supported by a software
application. Each comprises three elements: input across an application boundary,
some related processing, and output across the application boundary.

The definition says that:

Each logical transaction is triggered by a unique event of interest in the
external world, or a request for information and, when wholly complete,
leaves the application in a self consistent state in relation to the unique
event.

This statement warrants some further explanation. The keywords are examined
below.

triggered Each logical transaction has an input part, some related
processing and an output part — the processing and output
occur in response to the stimulus provided by the input part
which itself corresponds to an event in the external world.

unique In FPA, we are concerned only with unique types of event —
synonyms and multiple occurrences are ignored, provided
that the same set of processing is triggered in each case.
That is, the same acquisition and validation, references to the
same set of entity types, and the same formatting and
presentation are performed. Variations in processing path
resulting from different input values on distinct occasions are
not regarded as giving rise to different logical transaction
types. All the entities which could be referenced by all
possible processing paths should be counted in the one
logical transaction type.

event of interest People are interested in information of varying kinds; such
information originates when things happen in the ‘real world’
e.g. when an account is opened at a bank, or a lift reaches a
specific floor, when a customer pays for goods bought at a
retail store, or a television programme is cued to commence
broadcasting. The ‘events of interest’ are those about which
the software application is required to process information.

Events are:

Atomic; events are indivisible and cannot be decomposed
into two or more component events unless the level of
abstraction (granularity) of the description you are making,
and hence the purpose and requirement of the
application, is changed;

Consistency preserving and Instantaneous ; each event
either completes successfully, or fails entirely — it is not

CPM 1.3.1 Chapter 4 21

external world

request for
information

wholly completed

self-consistent state

possible for an event to have ‘partially happened’;

Detectable; in order to store information about an event,
the event must be observable, or at least able to be
inferred from observations.

These are the ACID tests — if any candidate ‘event’ fails one
or more of these criteria, reject it from the application’s logical
model.

In some circumstances we can contrive that the events of
interest in the external world directly generate messages
which form the input side of a logical transaction. In other
circumstances, a software application must periodically
inspect (i.e. ‘poll’) the status of the external world to
determine whether an event of interest has occurred,
generating an input message to document a positive result.
In either case, the resulting message is regarded as the input
side of a logical transaction (the detection mechanism is
purely implementation detail). The polling mechanism is, of
course, triggered by an event in the external world i.e. the
passage of a specified amount of time.

Everything that lies outwith an application’s boundary is
considered to be the external world of that application. All
users of an application exist in this external world, as do the
happenings that are recorded in the form of events, and the
requests for information made by the application users.
Thankfully, these are the only components of the external
world that need any description for the purposes of FPA.
However, such a description is absolutely necessary in order
to establish the context of the application.

People wish to store and remember information about events,
as indicated above. In order to retrieve some of the stored
information from an application, a request is made (by a user
in the external world). This takes the form of an input
message, which triggers some processing and a response
(output), just as does an event. Individual requests are
always atomic, consistency-preserving (as, by definition, they
cause no change of state), instantaneous and detectable.
Hence, requests for information (often called ‘queries’)
provide an essential source of logical transactions. They
differ from events in that events occur regardless of the
existence of a software application; requests for information
are themselves consequences of the existence of the
application.

The definition of a logical transaction does not specify the
time between receipt of the input message and the end of the
output response; the duration may be a few microseconds or
run into years (in theory). However, the logical transaction
commences when the event is detected and is wholly
complete only when the response has left the application
boundary.

As indicated above, events are defined as instantaneous, and
logical transactions are defined to record the fact that an
event has occurred. As an event cannot be decomposed, nor
partially happen, neither may the logical transaction that
represents it. A transaction must be entirely successful or fail

CPM 1.3.1 Chapter 4 22

entirely if the information stored in the application is to remain
correct, that is, self-consistent in relation to the unique event.

No single item of information stored by an application should
contradict another item of information — if such a situation
should occur as the result of a software fault, the application
is said to have ‘lost integrity’. (But this cannot normally be
detected by FPA!)

442 CRUDL - Create, Read, Update, Delete, List

In an application that stores information about a set of entity types (i.e. a set of
business objects), the presence of each entity type automatically implies the
existence of a minimum set of logical transactions. This minimum set is colloquially
referred to using the acronym ‘CRUDL’, which stands for ‘Create, Read, Update,
Delete and List'.

Instances of any entity type must follow a minimalist life history initiated by a create
event, then consisting of a sequence of zero or more update events and terminating
with a logical delete event. See Figure 4.2. At any time during this life history,
application users may make requests for information, i.e. Reads, to view the details
of one specific instance of an entity type, or require a List of all or of a selection of
stored entity instances. During a first attempt to catalogue the logical transactions in
an application, the FPA practitioner is advised to assume the presence of at least
these five CRUDL transaction types - although not all types may be required by the
same application.

MINIMALIST LIFE HISTORY ACTUAL LIFE HISTORY
e CE—
EMPLOYEE EMPLOYEE
Join Firm Update Part Leave Firm Join Firm Update Part Leave Firm
Change * *
Employee Working
Details Life
|
|]]]
KEY Assign
- to Finish Project Personnel Possible
STRUCTURE ITERATED Project Assessment Promotion
BOX PART |
[o] o]
(0] Promotion _
EVENT OPTIONAL
PART

Figure 4.2: Minimalist & More Complex Entity Life Histories

Subsequent analysis is likely to expose more detailed information regarding the life
history of the entity types. In particular, the practitioner should expect to find that a
model using a single Update event is too simplistic. Most business entity types

CPM 1.3.1 Chapter 4 23

exhibit richer life histories, where each entity instance passes through a variety of
states, undergoing a specific set of changes each represented by distinct logical
transaction.

Note that a transaction termed, for example ‘Maintain Customer Details’, is almost
certainly NOT the lowest level business process.

‘Maintain’ implies requirements for a series of logical transactions such as ‘View' an
existing item, if <not found> ‘Add’ a new item, ‘Change’ the viewed item, or ‘Delete’ it,
‘Authorise’ the change made by a junior member of staff, or ‘List’ the entire set of
items available, etc.

Ask the following questions when identifying the set of logical transactions:
‘Who uses it?’
‘Why is it needed?’
‘What does it do?’
‘When is it initiated?’

‘How is it different from other logical transactions?’

4.4.3 Cataloguing Logical Transactions

One approach that is recommended when analysing and defining software
requirements is to produce successively refined versions of a catalogue of the logical
transactions that are (or are required to be) fulfilled by the application (or project).

During the early stages of problem analysis, the transaction catalogue will consist of
a simple list of all the candidate events and requests for information (where the term
‘candidate’ implies that a definite commitment has yet to be made regarding
inclusion). See Figure 4.3. While recording candidate transactions, if other
information such as for example, the required transaction response time, the
transaction volumes or security criteria, becomes available, it may be helpful to
record this too in the catalogue. This will aid calculation of the Technical Complexity
Adjustment if required, and helps document both functional and related qualitative
requirements.

CPM 1.3.1 Chapter 4 24

Event Response | Volume
or Time

Query

ID Transaction Name

Transaction Cluster #1 — MAINTAIN CUSTOMER

TOO1 Add_Customer E < 3sec 120/ day
T002 Change_Customer E <3sec 15/ day
TOO3 Delete_Customer E < 3sec 15 /day

T0O4 Query_Customer Q < 3sec 50 / day
TOO5 List_Customers Q < 60 min <5/day

Transaction Cluster #2 — MAINTAIN ACCOUNT

TO10 Add_Account E < 3sec 200 / day

etc.

Figure 4.3: Catalogue of Clustered Candidate Logical Transactions

As work progresses, information becomes less ambiguous and requirements are
agreed more clearly. Details can be added progressively to describe the input,
process and output parts of each transaction. Decisions can be made regarding the
confirmation or rejection of the candidate status of transactions, and new
transactions may be found.

By the time software requirements are completely described in detail, the transaction
catalogue will contain all the information required to perform an accurate and precise
MkIl FPA measurement. It can also provide the information necessary to control
scope creep and to perform impact analysis when subsequent changes are
proposed. For an example of a Catalogue of Transactions complete with the sample
details, see Figure 4.4. (Again, response time and volumes are possibly only
relevant if the TCA is to be calculated.)

CPM 1.3.1 Chapter 4 25

Event | No. of No. of Entity No. MKl Resp | Vol
D Transaction Name or Input Resp Output Types of ER FP onse | ume
Query DET onse DET Referred Time
to
Transaction Cluster #1 — MAINTAIN CUSTOMER
TOO | Add_Customer E 20 OKI/Er 1 Customer 1 13.52 <3 120
1 ror sec /
day
TOO | Change_Customer E 20 OK/Er 1 Customer 1 13.52 <3 15/
2 ror sec day
TOO | Delete_Customer E 1 OK/Er 1 Customer 1 25 <3 15
3 ror sec | /day
TOO | Query_Customer Q 4 Custo 25 Customer 2 12.14 <3 50/
4 mer & sec day
Acco Account
unt_D
etails
TOO | List_Customers Q 1 Custo 19 Customer 1 7.18 <60 | <5/
5 mer_ min day
List
Transaction Cluster #2 — MAINTAIN ACCOUNT
TO1 | Add_Account E 15 OK/Er 2 Customer 2 12.54 <3 200
0 ror sec /
Account day

etc.

444 The Three Elements of a Logical Transaction

Figure 4.4.

Catalogue of Logical Transactions completed with details

Every logical transaction consists of the three elements of input, process and output.

Mkl FPA makes the following basic assumptions regarding the functional size of
these three elements:

the size of the input element is proportional to the number of uniquely processed
Data Element Types (‘DET’s") composing the input side of the transaction

the size of the processing element is proportional to the number of Data Entity

Types (or ‘entities’) referenced during the course of the logical transaction;

the size of the output element is proportional to the number of uniquely

processed DET’s composing the output side of the transaction.

CPM 1.3.1 Chapter 4

26

It is a convention of Mkll FPA that, as a minimum, each logical transaction must have
at least one input data element type, must make one reference to an entity type and
must have one output data element type.

By examination of the catalogue of the logical transactions that compose a software
application (or project), three base counts can be derived for the above; i.e. the Total
Number of Input DET's, the Total Number of References to Entities and the Total
Number of Output DET's. Detailed rules for identifying references to entity types and
DET's are described in the next Sections 4.5 and 4.6 respectively.

The three elements input, process, output, each represent information processing of
a distinct nature. Specifically:

the input element consists of the acquisition and validation of incoming data
either describing an event of interest in the external world, or the parameters of a
request for information to be output from the application;

the processing element consists of the storage and retrieval of information
describing the status of entities of interest in the external world;

the output element consists of formatting and presentation of information to the
external world.

The functionality involved in providing each of these three distinct kinds of
information processing is different. Hence, in MKkll FPA, three weighting factors are
used to enable these three kinds of functionality to be combined into a single value
for a Functional Size. (The weights have been calibrated to industry-average relative
effort to analyse, design, program, test and implement these components, so that the
MKIl FP Functional Size scale provides an industry-average relative measure of
work-output for these activities.)

445 Logical Transactions at Application Program Interfaces

As discussed above, defining the application boundary clarifies the interfaces to the
world external to the application and to the application users that exist in that external
world. When considering the logical input and output of information, the source and
destination of specific messages is of little consequence; for our MKkl FPA purposes
we are interested only in data as it crosses the application boundary. However,
some of the external users may be other software applications, and it is worth
examining the kinds of situation than can arise.

4451 Application Program I nterface with Another Application

Two applications inter-operate such that information from one application is
transmitted to the second application. See Figure 4.5.

Appliratiar Bowndory

L on e Foreriuze o
£S5 THTRILN \ Eeievred Applizudinn

Biesiiesy m
Lzer

Figure 4.5 - Example of an interface between two applications

CPM 1.3.1 Chapter 4 27

In this example, events in the business world trigger a logical transaction that is dealt
with by one application, causing changes in the state of the data retained by that
application, and a response to the business user. As a result of the transaction, data
is written to a file. This file is subsequently read and processed by a second
application. This second application is a separately developed, maintained and
managed piece of software, having its own distinct application boundary.

Completion of the transaction leaves the first application in a consistent state
regardless of the success or failure of the processing provided by the second
application.

The second application reads the information contained in the file and treats the
records it contains as a stream of input messages, each of which forms the input side
of a logical transaction. To maximise reliability the receiving application should
validate the data content of the file as it would information input from any other
source. Hence, provided the structure and content of the interface file is published
and adhered to, the internal organisations of the two inter-operating applications are
independent one from another. Thus they comply with the software engineering
principle of information hiding designed to encourage low coupling between the
software components and hence maximise maintainability and minimise support
costs.

For the purposes of Mkll FPA, the information written to the interface file by the
sending application is seen as output data elements of the logical transaction that
triggers the processing. In addition, the receiving application will see the records
contained in the interface file as the input side of a series of logical transactions, and
one would expect the receiving application to contain corresponding processing and
provide a suitable output in response.

4452 Updating Files Nominally ‘Owned By’ Another Application

In a situation somewhat different from that above, the first application might directly
create entity types stored as files more usually updated (and hence regarded as
being owned by the second application).

In this circumstance, no application program interface exists, as the first application
is intimately dependent on the internal structure of the second application. The
second application would need to perform no validation of input, as all the processing
related to the initial stimulus is performed by the first application. Hence, in MKII
FPA, under these circumstances the creation of the files would be counted as
references to entity types taking place during the processing part of the logical
transaction concerned in the first application. Hence these files would be considered
as being included within the boundary of the first application.

Confusion may arise here because the concept of the ‘application boundary’ is
commonly used in two senses. One sense is the well defined Mkll FPA concept of
the application boundary. On the other hand, sometimes a set of files and related
software programs are allocated as the responsibility of a particular maintenance
team and are regarded as an ‘application’. This arises due to a political division of
work and responsibility. In such a case, the political boundary of the application may
not coincide with the MkIl FPA concept of the ‘application boundary’.

CPM 1.3.1 Chapter 4 28

4453 User views of the application boundary

An application boundary can be drawn from a number of points of view. As
components of transactions can be recognised by examining the inputs and outputs
where they cross the boundary, understanding the nature of the boundary has a
profound effect on the set of transactions identified. Consider the following
client/server application shown in Figure 4.6

] n
| >
Network

Local
Flip AGONs oy

s
i)
A

m i
v

L\

Mainlrame
Rowts OB

Figure 4.6 - Example of a client/server application

In this example there is a PC that runs a client routine providing a GUI front end to
the business user. The routine accesses a network database residing on a local file
server. This database contains a summary of commonly used data that resides in a
more complete form on a mainframe machine (possibly geographically distant).

When the user enters an enquiry on the PC, the local database on the file server is
used to provide information displayed on the screen. However, only summary data is
shown. If the user wants more detailed information, double clicking with the mouse
causes the detailed data to be extracted from the master database that resides on
the mainframe. All updates that the user makes cause the summary database on the
network to be updated, as well as the mainframe master.

The two databases are used to improve response times. The network database,
holding only summary data, is quite small, and the response time for the majority of
transactions, which only require summary information, is very fast. On the few
occasions when detailed information is required, the mainframe is accessed, and the
response time of the transaction is much longer.

The business user view of the system is shown in Figure 4.7, below.

CPM 1.3.1 Chapter 4 29

User | Applicalion Bowndary

v

Figure 4.7 - User view of a client/server application

The physical location of the data is of little concern to the business user. The user
enters data and the required responses are displayed. The fact that two physical
databases are used is a technical solution chosen for performance reasons. From
the user perspective there is only one logical database. Duplicate entity types in the
two physical databases are perceived as single logical entity types. As there is only
a single boundary enclosing both the local and mainframe databases, logical
transactions are recognised only as their inputs and outputs cross this boundary.
Inter-operation of the application components is invisible to the business user and no
logical transactions are recognised in the messages passing between PC and
mainframe.

Example transactions might be...

Event | No. of No. of No.
ID Transaction Name or Input Response Output Entity of

Query | DET DET Types ER

Referred to
TOO | QUERY_CUSTOMER Q 2 Display 5 Customer 1
1 _SUMMARY_DATA Summary
Data

TOO | QUERY_CUSTOMER Q 2 Display 20 Customer 1
2 _DETAIL_DATA Detail Data

However...

...three groups of development staff were involved in building this application. And it
is easy to imagine a scenario whereby IS management is interested in the size of the
application attributable to each team. That is, how much did each team build?

Figure 4.8 shows the view of the project team that was involved in the development
of the PC client aspect of the application.

CPM 1.3.1 Chapter 4 30

e
- _ Client Project Team

~—
\\‘ PCCent | «— I
==l
Natwork
5 Adcass

T s
|
Q rie

Figure 4.8 - The PC Client Project Team’s View of the Boundary

In this scenario the user is the business user who initiates logical transactions
triggering processing of data held on the network file server.

As described previously, when the user double clicks the mouse button, detailed
information is retrieved from the mainframe database, via a mainframe server
routine. From the PC Client project team viewpoint, this is achieved via an interface
with the mainframe application. The PC client outputs some data across the
application boundary, sending it to the mainframe server routine. This, in its turn,
processes the message passing back across the application boundary the data
requested from the mainframe.

Example transactions might be...

Event | No. of No. of No.
ID Transaction Name or Input Response Output | eptity Types | Of
Query DET DET Referred to ER
TOO1 QUERY_CUSTOMER _ Q 2 Display 5 Customer 1
SUMMARY_DATA Summary
Data
T002 QUERY_CUSTOMER_ Q 2 Request to 2 Customer 2
DETAIL_DATA mainframe System
TOO3 RECEIVE_DETAILS_F E 20 Display 20 System 1
ROM_MAINFRAME Customer
details

In MklIl FPA, and from the perspective of the project team, the size of the PC Client
application includes the DET’s output across the application program interface with
the mainframe as part of the output side of the triggering transaction. Additionally,
the response from the mainframe is regarded as the input side of a distinct logical
transaction, triggering processing and the corresponding output to the business user.

Figure 4.9 shows the project from the viewpoint of the mainframe project team.

CPM 1.3.1 Chapter 4 31

1
Sy

mm’ H_

Figure 4.9 - The Mainframe Project Team’s View of the Boundary

To the mainframe project team, the user is the PC Client. It is the PC Client that
initiates logical transactions requiring data to be processed on the mainframe.

Input from the PC Client crosses the application program interface i.e. the boundary,
is processed by the mainframe server routine, which accesses the mainframe
database, and causes output to be sent across the application boundary back to the
PC Client. In Mkl FPA, and from the perspective of the project team, each distinct
kind of message received from the PC Client is regarded as the input side of a
separate logical transaction, with corresponding processing (in the form of references
to logical entity types stored on the mainframe database) and an output message
(sent back to the PC Client).

Example transactions might be...

Event | No. of No. of No.

ID Transaction Name or Input Response | Output Entity of

Query DET DET Types ER

Referred to

TOO | QUERY_CUSTOMER _ Q 2 Pass 20 Customer 1
1 DETAIL_DATA Customer
Details to

PC

In addition to the PC Client and mainframe development teams, there was an
infrastructure team that developed the routines which were used for file access on
the network server, and on the mainframe. These routines were built so that they
could be used by a number of future projects, that is, the infrastructure team was
responsible for designing and constructing re-usable components. Figure 4.10
shows the infrastructure team'’s view of the project.

CPM 1.3.1 Chapter 4 32

Figure 4.10 - The Infrastructure Project Team’s View of the Boundary

The infrastructure team produced two potentially r-usable routines. One routine
provides database access to the local summary database stored on the network
server; the other routine provides database access to the detailed data stored on the
mainframe database.

In MklIl FPA, and from the perspective of the PC Client and Mainframe project teams,
both these routines are extensions to the programming language used for software
development. They are bottom-up components on a par with other programming
language instructions such as IF...THEN...ELSE, MOVE, READ...FILE,
WRITE...RECORD, ADD A TO B, etc. Hence they are invisible to the business
users, and to the PC Client and the Mainframe application project teams.

They would not normally be sized by Mkll FPA as application functionality.

However, if it is desired to measure the potentially re-usable functionality developed
by an infrastructure support team, such routines can be measured using Mkll FPA
but great care should be taken. MkIl FPA was designed for use with software in the
business applications domain, and applying it to infrastructure software is extending
its design envelope. Certainly, FPA values obtained from these distinct domains
should not be mixed together.

Note, that the level of granularity (i.e. the abstraction used) is more finely grained for
the infrastructure components than that used when drawing the application
boundaries for the PC Client and Mainframe components (which is itself a more
finely grained abstraction than that used to draw the boundary from the viewpoint of
the business user). Also, separate boundaries should be drawn around each distinct
set of related bottom-up components, and disparate and unrelated components
should not be lumped together. This is because the logical model used to describe
the context of one component will be different from the logical model used to
describe a separate, unrelated component. Any similarity is by chance and is liable
to lead to future confusion. Where different things are described, making clearly
distinct descriptions leads to less eventual ambiguity.

CPM 1.3.1 Chapter 4 33

Hence, in the case above, the routine used to provide access to the network
database is enclosed in a distinct boundary, and is sized separately from the routine
used to provide access to the mainframe database.

4454 Distinguishing Deployed Size and Delivered Size

The foregoing examples illustrate the impact of the user view and the corresponding
understanding of the application boundary.

The business user viewpoint results in a size measure of the business
functionality independent of the application architecture and is sometimes
referred to as the deployed size.

The project team viewpoint results in a size measure of each application that is
separately designed, developed and maintained, and the sum of such measures
is sometimes referred to as the delivered size.

The infrastructure team’s viewpoint results in a size measure of all the software
components that extend the functionality delivered by the underlying operating
system, middleware, database management systems, network communications
systems, etc., delivering this functionality not to the business user, but to
applications developers.

Each of the three measures above are derived using distinct abstractions and levels
of granularity in the descriptions used to describe their respective contexts. The
terminology used in these descriptions will invariably be different. Hence, such
measures should be kept distinct. It rarely makes any sense to add them together.

4.4.6 Accounting for Housekeeping

44.6.1 Database Management and I ntegrity Functions

Database management and integrity functions are only included in a Mkll FPA size
when they represent agreed business requirements, i.e. not technical or quality
requirements. So a good question to ask is, ‘Is this function specifically required by
the application user as part of the business requirements?’. If the answer is TRUE,
then it is justifiable to include it in the FP count.

For instance, it is normally expected that a software application is complete and
internally consistent. Hence any functions required to check and maintain database
integrity and performance (e.g. database rebuild routines) are regarded as implicitly
required implementation detail, and dictated by the choice of a software solution.
Such functions would be expected to be provided as a part of the operational
environment and to be executed by IS staff. They would not be included in a MKII
FPA study as distinct logical transactions.

However, if the business user requires specific functions to enable the end user to
perform integrity checks, to determine the percentage free space available and to
initiate database rebuild processing, then such functionality would be counted as
logical transactions. The difference here is that, in the second case, the logical
transactions have to be provided with an interface usable by business users, and
have to be subjected to the same development disciplines as any other business
functionality intended for staff without special IS knowledge, skills and tools.

If the application provides a ‘deletion routine’ or tool for error correction, then this is a
legitimate function that can be measured. Generic tools automatically provided by
the operational environment should not be counted

CPM 1.3.1 Chapter 4 34

446.2 Operational Logs

If a log is a necessary part of maintaining the integrity of the application e.g. it
provides information necessary to enable database back-up and recovery routines to
execute successfully, then it is normally regarded as implicit in the choice of a
software solution to the business problem and is not counted.

However, if the log is required by the business user as an additional, user controlled
function e.g. to provide management with a means of determining the volume of
transactions processed per period, then it is regarded as user-specified functionality
and any related logical transactions would be recognised.

Example 1. A transaction is required to process many records and produce the sum
total of certain numeric values. If the business requirement is only to calculate the
total, any logs that are produced as a by-product are not ‘...of interest to the user...’
and are not counted.

Example 2. If, in the above transaction, the user specifies that an audit log is
required to show that all records have been processed, then the output is ‘...of
interest to the user...” and is counted.

4463 Security Access

If the Logical Transactions involved in gaining user access are provided by the
operating environment, they should not be counted. Additional requirements for
security allocated to the software being sized (i.e. giving rise to Logical Transactions
specific to and provided by the software) should be counted.

447 Batch Programs

MKII FPA is concerned with the measurement of the Functional Size of software.

The Functional Size excludes, by definition, consideration of the qualitative (i.e.
performance) characteristics of the software. Hence, Mkll FPA makes no distinctions
regarding speed of response, volume of transaction throughput, etc. Itis concerned
only with the logical functions.

Batch programs are a physical implementation of a logical function, and batch mode
is chosen usually due to issues such as the need to process large volumes of input
with little user intervention. So far as a logical model is concerned, whether a
function is implemented in batch or on-line mode is of no concern to Mkll FPA.
Hence, the same process is used to identify logical transactions and to calculate the
size for functionality implemented in batch or on-line.

Although batch program flows often contain many steps, implemented as distinct
programs connected by intermediate files, usually only a few of these programs
process any input or output across the logical application boundary. Typically, these
include the first and last programs in the flow, and any programs that generate
printed reports. Figure 4.11 illustrates a batch flow containing several program
steps.

CPM 1.3.1 Chapter 4 35

o orore[w74
Ty B
—/)

suspense
file v1

.
A b3 trx
file include in
son /

next cycle

file v2

Figure 4.11 - A Typical Batch Flow — Transaction & Master File Collation

In the illustration, data about events are input and validated by program P1. Input
errors are output by a print program P4. Valid transaction data is sorted and merged
in program P2 with transaction data suspended from the previous execution of the
batch flow due to mismatches with the masterfile. The sorted file of transactions is
read by a collation program P3; this performs a father/son update producing a new
(son) generation of a masterfile, a list reporting all the updates, insertions and
deletions made, and a new version of the suspense file for use the next time the
batch flow is executed.

In the example flow, data input for all logical transaction types crosses the boundary
as the input to P1. Hence this input needs careful analysis to identify the distinct
logical transactions. Output for all transaction types crosses the boundary as the list
from P3 and the error report from P4. These two reports need careful analysis so the
outputs can be properly attributed to the correct logical transactions. To understand
the entity types, examine and perform a third normal form data analysis on the
father/son masterfile.

Batch flows have the characteristic that they are concerned with small numbers of
logical transactions (e.g. Insert_Master, Credit_Master, Debit_Master,
Delete_Master), processed in relatively large volumes. Although the processing of
the component logical transactions is distributed across a number of program steps,
the functional size of batch suites typically is quite small.

4.4.8 Camouflaged Transactions

4481 Retrieve Before Create, Update or Delete

Often in practice, an Update transaction may be required to be preceded by a
Retrieve transaction. The Retrieve is provided to help the user decide whether to
proceed with the Update or not, after sight verification that the correct record has
been selected for update. This ‘Retrieve-before-Update’ transaction may be
identical to a normal Read transaction (in which case it is only counted once for the

CPM 1.3.1 Chapter 4 36

software), or it may be required to be different from a normal Read, in which case it
should be counted as a separate transaction from the normal Read.

Examples of differences would be if the ‘Retrieve-before-Update’ did not show all the
information available via a normal Read, or if use of the normal Read transaction was
restricted in certain ways, e.g. so that the data were presented in non-updateable
form, or if it had other distinguishing processing.

The same considerations would apply to an Add or Delete function which may be
preceded by the need for a confirmatory enquiry. However, where the ‘Retrieve-
before’ process is identical before an Add, Update and Delete transaction, count only
one ‘Retrieve-before’ transaction-type.

4482 Transaction Chaining and Nesting

For the convenience of some users, logical transactions may be linked by the
software so that, on completion of one, the application automatically navigates to
another.

Such chaining together of several transactions typically is arranged in response to
usability requirements, e.g. to facilitate rapid navigation for telephone sales staff.
Often, information entered as input to one transaction is stored locally and reused as
input in subsequent transactions, without requiring the user to re-enter it. One
transaction may be said to inherit data input to an earlier transaction.

In MKIl FPA, logical transactions are distinguished as the lowest level business
processes that leave the data content of the application self-consistent. So, although
transactions may be chained navigationally, if successive processing steps leave the
application self-consistent, then each step is regarded as a distinct logical
transaction.

Navigation is not counted in Mkl FPA, so irrespective of any chaining, all the DET’s
necessary as input for any one transaction are counted, irrespective of efforts to
maximise usability and of whether devices such as inheriting data from earlier
transactions are used.

Similarly, in some applications, requirements may be resolved such that, during the
course of one transaction it is necessary for the user to initiate (and possibly
complete) a distinct separate transaction. For example, part way through a
Create_Order transaction, it may prove necessary to perform a Query_Stock enquiry.
The Query_Stock enquiry transactions is logically distinct; it may be reached by
navigation from several parts of the system. Hence it is counted as a separate
logical transaction with unique processing, distinct from the Create_Order
transaction.

4483 Synonyms

Large software projects can involve large numbers of people, both from the user and
the supplier side of the project. During software requirements capture, the disparate
requirements of a wide variety of users with a variety of purposes are considered.
Also, several different people may provide their personal views of the requirements
of a single user group. Under these circumstances, it is likely that different people

CPM 1.3.1 Chapter 4 37

will use distinct terminology. The result can be that the catalogue of logical
transactions may contain several transactions with different names but requiring
exactly similar processing. That is, one transaction exists with several synonyms.

It is the analysts’ responsibility to identify such situations and resolve them, clarifying
whether there are really multiple transactions or a single logical transaction with
multiple names. Note however, that Mkll FPA measures functional requirements,
and similar requirements may be imposed by distinct user groups for their own
purposes. If distinct user groups require similar functionality, this functionality is, by
definition, delivered to distinct customers. Hence, it is admissible to keep the
requirements of each user group distinct and to size the relevant logical transactions
due to each user group, if they are really different.

Example 1:

The user wants a report of sales performance, with a separate report of the sub-
totals for:

Area
Department
Salesman.

All the information is reported at a single point in time and the various elements of
the reports are synchronised, aggregated, and delivered to a single user group on
one report. The reports fulfil a single user need, the provision of Sales Performance
information. Therefore a single logical transaction is recognised, the output size of
which consists of the entire set of DET'’s on the report, including the sub-totals.

Example 2:

Alternatively, if there were three different customers (e.g. Area Manager,
Department Manager, Sales Manager) each with a distinct requirement for a report
on Sales Performance, then there would be 3 separate logical transactions, even
though the requirements of all three had been satisfied by the developers by
providing copies of the same shared physical report. In this case the size of each
report should in theory include only the DET's requested by each respective
customer.

4484 Distinguishing logical requirements combined into a single physical
implementation

A frequent failing in understanding user requirements derives from inadequate
functional decomposition of the problem. In Mkl FPA, the measure of Functional
Size is very sensitive to the recognition of all the required logical transactions.
Therefore, when sizing requirements during development, care should be taken to
ensure that functional requirements are first decomposed to the lowest level of
business process required by the user.

CPM 1.3.1 Chapter 4 38

Example 1:

A user group requires that customer data be updated either on-line, or stored and
updated automatically at the end of the working day. As a first attempt, the
requirement is described by the transaction

Update Customer Record.

If the user is really unconcerned regarding the precise implementation and it makes
no difference to the business when customer details are updated, then this may be
sufficient.

However, if the user wishes to be provided with a choice to be made at run time,
enabling the user to specify whether a specific customer’s details should be updated
immediately or the update delayed until later, then a single transaction would be
insufficient. It is not the ‘lowest level business process...". A further decomposition of
the requirement results in the recognition of the following:

Update Customer Details on-line
Update Customer Records off-line

On even closer analysis, it will be realised that in order to perform an off-line update,
new customer details must be captured and temporarily stored and a subsequent
update triggered by some stimulus — in this case, the tick of the clock or some other
signal indicating the end of the working day. Therefore, in the final analysis, there
could be a total of three logical transactions as follows:

Update Customer Details on-line
Capture and Store Customer Details
Apply Customer Updates at end of day

There are obvious performance differences between these later requirements and
the earlier single update transaction. Not least, the degree to which the customer
details accurately reflect the events that have occurred in the external world is
different between the two cases. In the second case, the deferred update can result
in customer details lagging the external world by one whole day. This may or may
not be a desirable feature — only the user can comment adequately.

4485 Reused Components

How to identify the transactions represented by modules that are used in many
applications or many places in a single application may cause uncertainty.

A logical transaction may be implemented so that it makes use of a common module,
for instance retrieving address details for a client. This re-use does not affect the
size of the logical transaction. How the logical transaction is physically implemented
is not at issue: Mkll FPA is concerned with the logical view, so the reused module is
‘invisible’ to this view. The input DET'’s, references to entity types and output DET’s
are counted in the usual way.

Alternatively, an entire logical transaction may be implemented so that it is available
from multiple places within the application. In this case also, the transaction is

CPM 1.3.1 Chapter 4 39

counted only once, regardless of the number of different ways in which it is possible
to navigate to it.

If software which implements one or more logical transactions is utilised in more than
one application, then its functionality should be counted in as many applications as it
appears in (once per required transaction per application) as it is to be assumed that
it implements distinct user requirements in each such application. The fact that
implemented software is reused in this way does not affect the Functional Size,
which is a measure of the requirements. Reuse will, of course, affect the effort, time
and cost of software development, which will typically be lower than if reuse where
not an option. The benefit therefore, will show up as improved capability on the part
of the developer. This is entirely reasonable — a business problem of measured size
is being solved more efficiently.

4.5 ldentifying Entity Types

45.1 Basic Rules for Counting Entity Type References

In MKIl FPA, as a measure of the size of the processing phase of each logical
transaction, we count the primary entity types referenced in the processing.

Count the number of entity types referred to. Do not count the number of times they
are referred to within a transaction; eg if the customer entity-type is both read and
updated within a transaction, count only one entity reference. Similarly, count only
one entity-type, regardless of the number of occurrences of the entity-type.
(Hereinafter we will use ‘entity’ and ‘entities’ for simplicity, where there is no risk of
misunderstanding.)

Count primary entities, not non-primary entities; the latter are ‘lumped together’ into
the ‘System Entity’. The latter should also be counted as a single entity reference, if
any of its non-primary entity components are referenced in a Logical Transaction
(see further in 4.5.3 below), even though the System Entity is not considered to be a
primary entity.

It is recommended always to carry out entity-relationship analysis, or relational data
analysis to produce an entity diagram for the application before starting the Mkll FP
count. Do not count physical files, whether permanent or transient, as these could
be highly misleading.

45.2 Entity Types

An entity type is something (strictly, some type of thing) in the real world about which
the business user wants to hold information. Data element types hold information
about entity types.

For example:

‘Employee’ would be an entity-type in a personnel system. (‘Fred Bloggs’ might
be an entity occurrence.)

CPM 1.3.1 Chapter 4 40

‘Employee date of birth’ is a Data Element Type (‘DET’) which holds information
about the employee. (‘Employee date of birth’ is highly unlikely ever to be an
entity type. We do not want to know anything about it.)

If relational data analysis has been carried out leading to a set of tables, then the
subject of each table will be an entity type (but not necessarily a primary entity type).

45.3 Distinguishing Primary & Non-Primary Entity Types: the
‘System Entity’

Primary entities are the main things in the real world about which the application
being sized is required to hold data.

There are several criteria for distinguishing primary and non-primary entity types.

Criteria

Primary Entity

Non-Primary Entity

No. of Attributes

Occurrence
Frequency

Ownership

Time of change of
attribute values

Authorisation for
change of attribute
values

Entity life-cycles

Several, with values changing
frequently (eg quantities)

Count of occurrences may
change often, eg no. of orders
or payments in a system
changes all the time

Probably owned by the
application being counted

During normal system
operation

No special authorisation;
performed by normal system
user

Usually many stages or
status’s

Very few, eg only code,
name, description; values
rarely changing

Permanently fixed, or rarely
changed

May well be owned by the
organisation, and used by
several applications

Usually outside normal
system running

Performed by a system
administrator

Usually only ‘live’ or non-
existent; maybe last-period
and current attributes are
maintained

Note that there is nothing absolute about the distinction between primary and non-
primary entity types. There can also be borderline cases, for example the ‘Grade’
entity in a Personnel system, which has attributes such as Grade_Code,
Grade_Name, Lower_Salary_Limit, Upper_Salary_Limit, Date_of Validity, etc. This
has few attributes, not changing frequently, and requiring special authorisation for
changing, but being fundamental to the personnel business may well need to be
considered as a Primary entity.

Within an application, the primary and non-primary entities are classed as such for
the entire application, and this classification should not vary by transaction.

CPM 1.3.1 Chapter 4

41

However, an entity type which is non-primary for one application could be primary for
another. For example, in an application to maintain bank accounts, ‘customer-type’,
could be an attribute of the entity type ‘customer’. Third Normal Form analysis of the
whole business area would show ‘customer-type’ to be an entity, but as the ‘maintain
bank accounts’ application does not want to know anything about ‘customer type’, it
is a hon-primary entity type in this application. However, another market analysis
application might want to accumulate a lot of information each month about each
customer type, and hence for the latter application, ‘customer type’ would be a
primary entity.

The allowed values of attributes of non-primary entities are usually maintained in
‘Master Tables’, which are usually referenced for validation purposes by many types
of transactions.

As a simplifying convention of Mkll FP counting, all non-primary entity-types are
‘lumped together’ in what is known as the ‘System Entity’. The System Entity is
counted once in any Logical Transaction which references any of its component non-
primary entity-types. The System Entity should not be regarded as a Primary Entity
for the purposes of other rules in this CPM (e.g. see Chapter 5, ‘Drop-down/pop-up
List Box).

45.4 Entity Sub-Types

In some instances, it is necessary to distinguish ‘sub-entity types’, and count them
separately.

A sub-entity type (or ‘sub-entity’) is a specific type or variation of a primary entity, for
which there are distinct processing rules.

For example:

ENTITY TYPE SUB ENTITY TYPE

Account Savings Account, Deposit Account
Employee Permanent, Temporary

The characteristic type/sub-type relationship is, for example, ‘all savings accounts
are accounts, but not all accounts are savings accounts’.

Sub-Entities are counted separately when different processing logic is used in the
transaction in which the entities are involved e.g.

Transfer of funds from a ‘Savings Account’ to a ‘Deposit Account’.

Each is a sub-entity of ‘Account’ but different processing logic is involved for
each sub-entity in this transaction. Count 2.

Create a new occurrence of ‘Permanent Employee’.
Count 1 for the reference to ‘Permanent Employee’

CPM 1.3.1 Chapter 4 42

Count all Employees, referencing both Permanent and Temporary.

No distinction between Permanent and Temporary, therefore count 1 for the
reference to ‘Employee’.

List the names of all Temporary Employees and their individual pay rates (the
Temporary sub-entities have additional attributes for individual pay rate,
probation and progress).

Logically, we are only dealing with one entity-type, so count 1 for the
reference to the Temporary Employee sub-entity.

Add up total costs for all Employees.

Count 1 for the reference to the Permanent and 1 for the reference to the
Temporary sub-entity types (different processing of pay rates). Total count 2.

455 Involuted Entity Types

(Also known as ‘recursive’ or ‘self-referential’ entity types.)

There is a further exception to the above entity counting rules. If an entity-type is

related to itself, e.g. as in a parts list or customer hierarchy, then for a transaction

that traverses up and down the hierarchy, count two entity references, one for the

initial reference and one for the repetitive loop, irrespective of how many times the
hierarchy is traversed.

45.6 Logical Entities in Batch Systems

MKIl FPA is concerned with counting references to logical entity types, not physical
files. Distinguishing these in batch systems requires care. In the example batch
system of Fig. 4.11, the transaction stream may contain several logical transaction
types (e.g. create, update, delete), and the processing could involve references to,
for example two entity-types, such as Order_Header and Order_Item. The example
shows several physical files in the processing sequence, but in this case there are
only two entity references involved in each of the logical transactions. When
analysing the system using Mkll FPA, examine physical files to help identify entity
types, but only count the entity type references for each transaction, not the physical
files involved.

4.6 Counting Input and Output Data Element Types

The general rules for identifying and counting input and output Data Elements Types
(‘DET’s’) are as follows:

Types versus Occurrences
Count uniquely processed types of data element, not individual occurrences.

CPM 1.3.1 Chapter 4 43

Single, Composite, Multi-use, etc., Data Elements

Count composite DET's, eg name & address, as a single DET, unless there is a
requirement to handle (e.g. validate) the separate parts (eg post code), in which case
count the individual DET's actually processed separately.

Count dates shown as day/month/year for example as one DET, unless there is a
specific processing need to distinguish the separate parts of the date.

Count inherited input the number of times that it is used. Inherited input is where a
DET is input once, stored locally, and provides input to two or more transactions.

If the application is required to provide default values for input DET’s and displays
them to the user for acceptance or over-write, count once as normal data inputs.

Where an input DET is required to be re-displayed as output or after validation
failure, count both as input and output.

Regard all required error messages as an occurrence of element type ‘error
message’, i.e. count as 1. NB. Operating system or network error messages not
created or maintained by the project team do not attract any function points if they
are part of the technical environment used. But if the error message contains
embedded business data which varies with the occurrence of the error message,
count the DET's involved separately.

Arrays

Where data can be presented as an array, the count = (number of column types) x
(number of row types).

For example, if the user wants to display payments for 12 successive months , this
could be represented as an array with 2 columns and 12 rows:

month value
payment April 12
May 57
June 56
July 78
August 23
September 121
October 68
November 83
December 55
January 60
February 23
March 92

CPM 1.3.1 Chapter 4 44

The count would be:

2 column types [month & value]) x (1 row type [payment]) = 2.

This would be the count for this type of information, however many row occurrences
were added.

If in this example, a total was also required for the value column:

month value
payment April 12

May 57

March 92
total payments - 728

The count would be increased by the size of the new type of data as follows:

(1 column types [value]) x (1 row types [total payments]) = 1,

giving a total count for the whole table of 3.

Menus, and Transaction Initiation

Do not count menus or ‘PF Keys’ as part of any logical transaction when used simply
for navigation purposes. MkIl FP’s measure the user information processing
functions provided. The menu structure simply allows the user to move around
between the functions provided; it does not contribute to any information processing
function itself.

However, sometimes a menu is used not only to select and invoke a transaction but
also to enter data, eg parameters passed to the transaction through the menu.
Count any such parameters passed as though they had been input directly to the
transaction. A similar exception is where a PF Key or menu selection directly
initiates the transaction. Data that can be used to initiate a transaction can include
selection, comparison or permissible range parameters and these are counted as
input DET's.

When transactions are ‘automatically’ initiated the real trigger must be found. For
example a date may be a valid trigger. A change of date, for example the end of the
month, is a valid external event and is treated as an input to the application,
triggering a transaction. It is counted as one input DET. Similarly, transactions that
are run periodically are also initiated by temporal events (date or time changes).

CPM 1.3.1 Chapter 4 45

The Transaction Type Identifier

Where the input part of a logical transaction includes a 'transaction type identifier’
which is necessary for the system to know what to do with the input, this should be
counted as one DET. Consider the following: an application has two transaction-
types, each with an input message consisting of the fields Customer_ID, Account_ID
and Amount. Unless the need for a ‘transaction type’ field is recognised, the
application has no way to determine that these two transactions are, respectively,
Credit_Account and Change_Loan_Limit.

Field Headings, Headers, Footers, etc

Do not count any field labels, titles, or underlines that contain no variable information
Do not count standard headers or footers that automatically appear on every report
or screen, eg copyright messages.

Physical Screen Limitations

Ignore physical screen limitations, for example many applications have output that
consists of lists of data that spread over several physical screens, requiring paging,
and scrolling to access the whole output. The count is the number of unique DET's
displayed, regardless of the number of physical screens.

Granularity and Uniquely Processed DET’s within Input/Output Streams

If input/output data is in the form of a data stream whose structure comprises more
than one DET, then the number of input or output DET’s to be counted is identified
by applying the following logic:

1. If the logical transaction processes the data as a single DET, regardless
of the structure, there is one DET: count 1 input or output.

Example. Archiving of data records. The record structure would comprise many
DET'’s, but the whole of the record would be stored without validation or changes to
the formatting.

2. If the logical transaction processes (validating or formatting) individual
DET's or groupings of DET’s within the structure then there is one DET
counted for each distinctly processed DET or grouping of DET’s.

Example (a) Update an existing record without validation. This would typically
involve the extraction of the DET’s that represent the unique key. The unigue key
would be counted as one DET and the remainder of the DET’s would also be
counted as 1 DET.

Example (b) Update an existing record with validation before the update. Each
unique DET, or group of DET’s, required to be validated would be counted .

CPM 1.3.1 Chapter 4 46

Input/Output in Different Forms

When the same information is required to be presented in different ‘forms’ in the
input or output parts of logical transactions, great care is needed in interpreting the
MkKIl FPA counting rules.

By different ‘forms’ of presentation of the same information, we mean, for example

output in both numerical tabular form or in graphical form
(e.g. bar chart, pie chart, etc.)

input and output in different natural languages
input and/or output in both black and white, and in coloured presentations.

As the information is the same in all cases, the interpretation might be that the MKiI
FP size should only count one ‘form’ and ignore requirements for presentation in
other forms. But the stated aim of the Mkll FPA method is to produce a size which
is ‘suitable for the purposes of performance measurement and estimating in relation
to any activity associated with the software product’.

Being required to produce information in different forms requires extra work, so
ignoring the ‘extra size’ associated with producing the ‘extra forms’ (e.g.
presentations in different languages, etc.) would produce an unfairly low size
measure. The following examples are of several different ‘forms’ of presenting
information, designed to illustrate how the Mkll FP counting rules should be applied.

Example 1: An array of values is required to be printed in two forms, as a numeric
table and as a pie chart. Three cases can be distinguished, depending on what are
the finally agreed requirements.

€) One LT, with simultaneous display of the data in the two forms. Count two
output DET'’s, one for each form.

(b) The requirements are for a separate LT for each form. Count each separate
LT as per the normal counting rules.

© The requirement is to give the user the choice of which output form he wants,
depending on his selection of the value of an input DET. Count the input DET
and two output DET’s.

Example 2: A product code is required to be printed by one LT on a label in both
normal numeric form, and as a bar code. Treat as Example 1a).

Example 3: All existing output in black on white is to be converted to colour for
aesthetic reasons. Do not count any added or changed DET's in the Change project.
This type of work cannot be reliably sized with FPA.

CPM 1.3.1 Chapter 4 47

Example 4: All existing output in black on white is to be converted to colour which
adds significant information, e.g. red indicating share prices are falling, green that
they are increasing. Count all changed DET's in the size of the Change.

Example 5: Colour is introduced to highlight which fields are in error. Do not count
more than once - the normal error message rules apply.

Example 6: All field labels in one language are to be made available in a second
language, via a sign-on option. The sign-on input DET may be counted, but labels
are literals and are not normally counted in Mkll FP rules. This type of work cannot
be reliably sized with FPA.

Example 7: Field labels are required to be stored as variables, with different values
for different languages. Count the field labels as DET's.

Example 8: DET values are required to be displayed in more than one language.
These DET values have to be stored as attributes of the same entity, so each
language variation of the DET is counted, on input or output, as appropriate. Note
that only one entity reference is counted for the retrieval of these DET’s, however
many languages.

Example 9: A list of debtors with amounts owing is required to be printed in one LT
either in alphabetic order of debtor name, or as a user option, in order of increasing
debt. Count only one set of DET's for the output, as the other sequence provides the
same information. Count one input DET for the control of the sort sequence.

Example 10: A club membership reporting program enables lists of members to be
printed, sorted in various ways, and with selected sub-sets of information ranging
from a full listing, to selected names and addresses. The size depends on the
agreed user requirement:

i. The user requirement is for each report to be pre-programmed. Count one
LT for each report.

ii. The user requirement is for a tool with which the user can generate his own
ad hoc reports. Count all the input DET’s which can be used to determine the
output, all the entity references which could be required, and all the output
DET'’s which can be produced. The viewpoint here is of the logical
requirements for the tool, not the application of the tool.

Example 11: A report has been formatted for a 132 character printer, and has to be
re-formatted for an 80 character screen. Count all the DET's affected by the
Change.

Example 12: A report is normally sent to a laser printer, but the Change requires it to
be sent to another laser printer for which a new device driver is needed. Do not
count any additional DET's at the application level, because nothing is changed at
that level. (If the device driver software has to sized, develop a logical model for the
transactions of the device driver.

CPM 1.3.1 Chapter 4 48

Measurement Guidelines for
Specific Situations

5.1 Counting Graphical User Interfaces (GUIs)

5.1.1 Introduction

This Section supplements Step 5 of the Mk Il FPA process contained in Chapter 3 of
the Counting Practices Manual. It contains the guidelines to be used when applying
FPA to an application which utilises a GUI. The Section describes the rules for
measuring the logical requirements of the application implemented with the GUI, and
not for measuring the functionality of the GUI software environment itself.

5.1.2 Basic Principles

A fundamental principle of Mkll FPA is that it sizes the logical requirements,
irrespective of how they are implemented. A GUI is primarily a means of
implementing a solution to the logical functional requirements to facilitate ease of
use. Therefore in principle use of a GUI does not affect the functionality nor change
the size of the requirements. FPA counts the underlying logical requirements
represented in the GUI.

However, the features that a GUI environment provides may lead the developer to
include increased functionality that was not specifically requested. For example,
what could have been a single input Data Element Type (‘DET’) in a conventional

CPM 1.3.1 Chapter 5 49

(non-GUI) system could evolve into an input DET plus a single input enquiry in a GUI
environment. It is customary to include such additional enquiries as additional logical
transactions in the count, even though they may not have been explicitly specified as
required by the user.

A GUI provides elements enabling human-computer interaction. The table below
lists a number of such elements. Alongside each item is an indication of the
interaction it supports. The remainder of this chapter describes how the element
should be counted, if at all. Some GUI controls do not support any logical function
specific to the application being counted but contribute solely to what are referred to
in this chapter as ‘the non-functional’ characteristics. These are never counted at all.

The usual operation of the various elements is summarised below. However, new
approaches and new elements are frequently being produced by GUI tool providers,
so always carefully examine a GUI element before counting and apply the basic
principles.

5.1.3 GUI Table

GUI Element Counting Area

Check Box (not exclusive) Input/Output/Non-Functional

Combo Box (Edit Box + Drop Down)

See Edit Box/Drop Down

Control Bar (i.e. a series of icons)

See Icon

Control Button (OK, Cancel etc.)

Non-Functional

Dialog Box

Input/Output

Drag and Drop

See Icon

Drop Down/Pop Up List Box

Output/Input/Non-Functional

Edit Box (enter or display box)

Input/Output

Icon Input/Output/Non-Functional
Menu Non-Functional

Non Text Annotation Input/Output

Radio Button (mutually exclusive) Input/Output

Screen Hotspot

Non-Functional

Scroll Bar Non-Functional
Text Box Input/Output
Touch Sensitive Screen Areas See Icon

Window Control (Min, Max, Restore etc.)

Non-Functional

The GUI elements listed must be used to size an application in the same way that
screen formats, print layouts etc., are used in character-based, batch and other non-
GUI implementations.

Many GUI elements govern aspects of the GUI environment itself and thus relate to
usability, not application functionality.

CPM 1.3.1 Chapter 5 50

When sizing an application, the scope is restricted to the GUI elements that input
or display business information.

Where a GUI element physically represents both input and output the input and
output parts are counted separately with their appropriate transactions.

Check Boxes and Radio Buttons can be used in arrays and when used as such
should be counted as defined above in Chapter 4.

5.1.4 Counting Guidelines

This section describes the counting guidelines for those GUI elements which are
involved in a logical transaction. Those elements which are purely part of the non-
functional characteristics have not been listed.

5.1.5 Check Box

X Tothe Leftis a Check Eh:u:-:l
P This iz Another Check Bl:u:-:l

[This is One As el

Check Boxes allow data to be entered or output for a characteristic which has a
Yes/No answer, for example, ‘does the customer have a valid driving licence?’ They
can also be used as navigation i.e. the use of a check box can act as a menu
selection to control the display of subsequent screens.

Count each check box used to input business data for a transaction as an input
DET.

Count each check box used to output business data for a transaction as an
output DET.

If a check box is acting as a form of application navigation then it should not be
counted as part of any transaction.

5.1.6 Combo Box

1zt Item on List | | To the Left iz a Comba Box - Unopened

* | Tothe Leftiz a Combo Boy - Opened

1zt Ikem on List
2nd [tem on List
Jrd [tem on List
elc.

A Combo Box is a combination of an Edit Box and a Drop Down List. Each of these
parts should be counted separately according to its own rule.

CPM 1.3.1 Chapter 5 51

5.1.7 Dialog Box

= Print Setup

@ Default Printer:
.................................... Cancel

[currently HP Lazerdet HID on \h\uzersuppihpground [LPT2:]]

(! Specific Printer: Options. ..
IHP Lazerlet IIID on \wuzersuppihpground [LPT2:] |;I | More >3 I

‘Orientation Paper
. @ Portrait Size: [A4 210 297 mm (2]
(! Landscape Source: IUpper Trap I;I ™ Data Only
-Marginz

Left: |2.4EIEI cm Right: |2.4EIEI cm Top: IZ.-IEIEI cCm Bottom: IZ_IEIEI cCm

A Dialog Box includes a number of control items such as edit boxes and control
buttons. Each part should be counted separately according to its own rule. (In the
above illustration, the functions provided by the GUI environment, and not by the
application, should not be counted.)

5.1.8 Drop Down/Pop Up List Box

Lizt Selection1 |+ Tothe Left iz a List Box
Lizt Selection 2

Lizt S alactioe 3

List Boxes can act as input and output for different logical transactions and in some
cases they may form part of the non-functional characteristics. A Drop Down may
act as basic validation or help e.g. a Miss/Mr/Mrs prompt. It may also be used to
display logical data e.g. a list of current branches for a banking application.

The display of a list box with no reference to a primary entity is acting as a form
of basic validation or help. No separate transaction should be counted for the list
displayed (but count one input DET for the box).

The display of a list box with reference to a primary entity almost certainly
indicates a separate logical transaction.

The display of a list box counted as a transaction is counted only once in an
application no matter how many times it appears.

A list box used to select an item for input to a transaction is counted as an input
DET. If there is also a text box for typing in the data only one DET is counted for
the ability to enter the data either way.

CPM 1.3.1 Chapter 5 52

5.1.9 Edit Box

":l Tothe Left iz an Edit or Text Box

An Edit Box is used to enter data and is often used in conjunction with a drop
down list in the form of a Combo Box. Entering data via an edit box either by
selection from a list or typing the data is counted as input data for the
corresponding transaction.

An edit box which displays business data is counted as output data.

Count each text box used to enter or output data in the same way DET's are
counted for a non-GUI application.

5.1.10 Icon

An Icon, or use of an Icon with drag and drop, may provide input data to a
transaction e.g. dragging data to a report. It can also be used for data output e.g.
display of an icon to indicate an element of business data. It may also be used as a
form of application navigation i.e. non-functional.

The use of an icon to provide input data to a transaction is counted as an input
DET for the transaction.

The use of an icon to provide output data for a transaction is counted as an
output DET for the transaction.

An icon used as application navigation is not counted as it is part of the non-
functional requirements.

An icon could be a trigger to start up a logical transaction, e.g. an enquiry. If so,
count one input DET, if there is no other input.

5.1.11 Non Text Annotation

Examples of this are audio annotation, video annotation, and the scanning in of
documents. These can all be used as both input and output DET's. Almost
invariably a scanned document treated as a single unit will count as one input DET.

For each non text annotation used to input data to a transaction analyse the item
and count each unique DET as an input DET.

For each non text annotation used to output data to a transaction analyse the
item and count each unique DET as an output DET.

5.1.12 Radio Button

— Select One

® Selection 2
{3 Selection 3
) Selection 4

CPM 1.3.1 Chapter 5 53

Radio Buttons are for mutually exclusive items i.e. for each set only one button can
be selected. They are used to provide a selection of options to a user, or can be
used to display the current selection of an enquiry.

Count one input DET for each set of mutually exclusive radio buttons.

Check Boxes and Radio Buttons can be used in arrays and when used as such
should be counted as defined in the rules for array counting in chapter 4.

Count one output DET for each enquiry radio button display box.

5.1.13 Text Box

A Text Box is counted in the same way as an Edit Box.

5.1.14 Non-Functional Controls

Non-Functional Controls, such as Scroll Bars, Screen Hotspots, Control Buttons, etc.

provide ease of use capability to an application, but do not provide any business
application functionality. They are not counted for FPA purposes.

CPM 1.3.1 Chapter 5

54

5.2 Approximate Sizing of Application Portfolios

As always the sizing method employed must be appropriate to the purpose in view.
The most common reasons for measuring a portfolio are to monitor maintenance
and/or support productivity, or to help estimate for a conversion programme. Before
embarking on the sizing of an application portfolio one should, therefore, explicitly
determine the degree of accuracy required. The degree of accuracy of the results
should subsequently be stated (e.g. + or - 10%, 20%, 50%).

The principle of materiality also applies. The cost of a measurement exercise can
exceed the value gained from the information. The cost of conducting a rigorous
function point count of a live portfolio of ‘legacy’ systems, in the absence of up to
date requirements documentation, can be very much higher than if there is high
quality, up-to-date documentation. Note that the documentation gathered and the
understanding of those systems gained from such an exercise may be valuable in
future maintenance: however, a cost benefit analysis should be undertaken before
any major undertaking.

A simple and cheap-to-apply sizing method, eschewing function points, may be
appropriate where the application portfolio is quite homogeneous. For example, if
the business domains involved are comparable, and the technical architectures are
similar and there is no requirement for external comparisons, then for such purposes
measurement of the size of the source lines of code (‘SLOC’) according to some
convention, or even of the compiled code, for example, may be sufficient.

Another approximation method which can be used where there is less homogeneity
is Capers Jones' ‘backfiring’. This is described in his publications and elsewhere. It
depends upon a count of the source lines of code (SLOC) in each programming
language for the systems involved. Definitions of lines of code are available from
various sources. A number of tools (principally for IBM MVS mainframes) support
automated SLOC counting. The results may be very variable and dependent on
design and programming style. Best results will be obtained if the portfolio is
predominantly 3GL rather than 4GL and using a limited number of languages. For
some 4GLs the concept of a SLOC is meaningless. SLOC counts can be converted
into function points using tables produced by Capers Jones and others, and then
using other approximate conversion relationships to Mk Il function points, if required.

A further alternative to a full function point count which will be more accurate than
straightforward backfiring is to use ‘sampling and extrapolation’. In this approach the
following steps would be taken:

i. Identify groups of systems with similar characteristics (e.g. financial, MVS
COBOL).

ii. Within those groups identify discrete areas of functionality and their
corresponding physical implementation.

ii. Identify readily countable characteristics of the physical implementations that
may have a plausible correlation with functional size (e.g. size of source
libraries, lines of code in various languages, numbers of screens, numbers of
modules, numbers of database tables, numbers of logical entities).

iv. Perform a function point count on a random sample of those areas of
functionality (or even better of a carefully chosen representative sample of
functionality).

V. Perform multiple regression analysis (MRA) to determine for those areas the
correlation(s) between the readily countable characteristics and the
corresponding function point counts, and the confidence levels that may be
had in the correlations. MRA is built into various spreadsheets. It may be

CPM 1.3.1 Chapter 5 55

desirable to have the assistance of a colleague with some statistical or
mathematical expertise to advise.

Vi. Apply the correlation relationships thus determined for those readily
countable characteristics to the areas that have not been function point
counted in order to extrapolate and derive the total portfolio size in function
points. If SLOC have been used then this constitutes a change of the
backfiring method.

Vii. Results should be published with the confidence level derived from the use of
MRA attached to the results.

Finally, another alternative approach to a full FP count is to estimate the functionality
using a scheme similar to the following. All the logical transactions are identified and
classified in some way, e.g. as ‘simple’, ‘average’ or ‘complex’. An average FP size
for each of the chosen classes is determined locally by sampling for the application
area concerned.

Process / Function Transaction Create & Enquiry Delete
Update

s |aj]cCc|S aj|cCc |a

Total Transactions

multiplied by 4(1

o
~

Total Function
Points

s =simple a=average c =complex

Note that the choice of classes and the calibration of the multiplying factors (average
FP size per transaction-type for each class) should be determined in the local
environment.

5.3 Sizing Changes

(N.B. The term ‘Change’ is now preferred and is used for any project involving
functional changes, i.e. additions, maodifications and deletions to existing software for
whatever reason; in CPM 1.2 this was referred to as ‘Maintenance’ work, and in CPM
1.3 as ‘Changes’)

Input, process and output functionality which is part of or affected by a Change
project is identified and categorised according to the same rules as any other

CPM 1.3.1 Chapter 5 56

functionality. Only the rules for adding up the functionality to get the total sizes
associated with the Change differ from the normal rules.

For each logical transaction required to be added, or to be changed or deleted for the
Change, identify the affected input DET’s, output DET'’s, and entity references.
Categorise each affected component as added, changed or deleted.

The functional size of Change work (i.e. the work output of the project)
= added + changed + deleted functionality.
The size of the software after the Change
= the size of the software before the Change + added - deleted functionality.

The steps for measuring a Change to an existing application are as follows.

Step 1 Isolate Logical Functionality

Step 2 Identify and Count New Logical Transactions Required

Step 3 Identify and Count Existing Logical Transactions No
Longer required

Step 4 Identify the Existing Logical Transactions Affected

Step 5 Count the Individual Inputs, Outputs and Entity References
Affected

Step 6 Calculate the Functional Size of the Change, and of the

changed software
Step 7 (Optional) Determine the Technical Complexity Adjustment

Step 1 - Isolate Logical Functionality

Identify the logical task elements of the Change project being measured, then identify
the logical transactions involved. They may not be specifically stated in the
requirements document. It is the responsibility of the analyst to identify them from
the available information.

For example - Business Requirement - ‘Client address information to include
postcode’

Work element - capture Postcode in all new addresses, and updates to existing
records

Transaction - Enter new client details
Transaction - Update client details
Work Element - Prints involving addresses including postcode
Transaction - Produce reminder letter 1
Transaction - Produce policy schedule.

The collection of all the above elements defines the scope of the project being
measured and will identify the new transactions needed to satisfy the requirement,
the transactions that are no longer needed and the transactions that already exist
but must be modified in some way.

CPM 1.3.1 Chapter 5 57

Step 2 - Identify and Count New Logical Transactions
Required

From the scope defined in Step 1, identify and count those transactions which are
wholly new.

For example, the user needs to capture details about a new type of insurance policy.
This Policy Type did not exist before, it does now, and it satisfies a separate and
unique business need. A new transaction is therefore required.

In contrast, in an application that already holds information about clients, the addition
of Postcode to a client's address does not need a new transaction. The facilities to
capture and update addresses were already included in the application; all that has
been added is one input type to an existing transaction.

Step 3 - Identify and Count Existing Logical Transactions No
Longer Required

From the scope defined in Step 1, identify and count those transactions which must
be entirely removed from the application.

For example, the user no longer requires a monthly report of new sales leads, as this
information now forms part of a monthly sales performance report. Therefore, the
transaction which used to produce the report is to be deleted from the application.

Step 4 - Identify the Existing Logical Transactions Affected

A transaction is affected by the project if an input data element type, an output data
element type or an entity reference contained within that transaction has changed as
the result of the Change work. A change includes the addition, deletion or
modification of any input DET, output DET or entity reference, for whatever reason.

For example, the addition of Postcode to the client's address information affects
transactions which capture new clients' addresses, update existing addresses, and
print addresses. Requirements for modifications to position or formatting of input and
output DET’s are considered as changes.

Any alteration of the business rules is also regarded as a change, even if the actual
counts of input or output data element types and of entity types referenced do not
change. For example, if the business requires a change of validation of an input data
element type range from £100 - £499, to £500 - £999, then for function point counting
purposes this is counted as a change of one input data element type, even though no
new data element types are introduced and no existing data element types are
deleted.

It is not essential that there be a change in either an input or output component. A
change to an entity reference alone is possible. For example, the user might wish to
keep a record of aggregated stock sales , instead of recording the items sold by each
salesperson individually. An input, ‘Quantity Sold’, was previously an attribute of one
entity (‘Salesperson’) and is to become an attribute of a different entity (‘Stock’). The
input is unchanged, but one entity reference, to Salesperson, has been deleted and
one, to Stock, has been added, so two entity references are affected by the change.

CPM 1.3.1 Chapter 5 58

Step 5 - Count the Individual Inputs, Outputs and Entity
References Affected

This step is carried out only for transactions affected by the Change project.

For each logical transaction affected by the changes, count the number of individual
inputs, outputs and entity references which are affected: that is, added, changed, or
deleted.

For example, in the transaction ‘Add New Client’, the inputs might be Name, Address
and Telephone Number. The Address input has changed, by having a Postcode
added to it. Telephone Number is a new input: total count is thus 2 input data
element types. The input ‘Name’ has not been changed; therefore this input should
not be counted, even though it is part of the transaction affected.

Analysis involves recording, for each individually affected input, output and entity
reference, whether it has been added, modified or deleted as a result of the change.

Step 6 - Calculate the Functional Size of the Change project
and of the enhanced software

See formulae given above.

Step 7 (Optional) - Determine the Technical Complexity
Adjustment

(N. B. The TCA is now no longer recommended as part of the Mkll FP size.)

If the TCA has changed in the course of the Changes then there will be 2 TCA
figures. The old TCA should be applied to the Functional Size for deleted
transactions. The new TCA should be applied to the Functional Size for new and
amended transactions. This subtlety may be regarded as somewhat of a false
refinement. In any case the TCA is frequently unaffected by changes to an
application.

CPM 1.3.1 Chapter 5 59

54 Changes to make software Year 2000 compliant

In principle the Mkll FP method may be used to size Changes needed to make
software Year 2000 compliant, for estimating purposes. Users are strongly
recommended to carry out their own calibration of the method in their own
environments for this purpose. Note that modifications for Y2000 compliance will not
change the Functional Size of an item of software

5.5 Counting Application Packages

The following assumes that we are dealing with packages brought in by the
developers, which may be tailored, enhanced and complemented by bespoke
software before being delivered to the users. This section is concerned with
application packages, i.e. vertical market software and not general purpose software
like spreadsheets, memory management, communication packages, operating
system utilities, etc.

In all stages of the life cycle there is likely to be a need to distinguish between
functionality obtained from the package and bespoke functionality, for which
separate counts and baselines will be maintained.

A general observation on the accuracy and repeatability of counts: a lower level of
accuracy will frequently be sufficient, although care will be needed where there are
contractual considerations. The reasons are (i) that the requirements tend not to be
known in detail and (ii) that the size of the package component of the application is a
much less reliable indicator of the likely size of the system development project than
it can be for a conventional bespoke development. For guidance on approximate
function point counts see Section 5.2 of the Counting Practices Manual.

The earliest stage at which a FP count may be required is typically at the package
evaluation stage. A possible approach is to size the available packages to compare
against a breakdown (transaction by transaction) of the function point count of the
user's requirements specification. This would reveal what percentage of the total
functionality required would be satisfied by the various packages, and therefore what
percentage of the functionality would need to be delivered by bespoke development
or Change of the base package.

From this point it is essential to include only function points relating to functionality
required by the user. The list of functions provided by the package will frequently be
listed in the table of contents of the user guide. Ticking those functions believed to
correspond to user requirements should enable one to abstract the part of the
package that is required. (Be very wary of FP counts provided by the package
supplier - these may bear little relation to a Mk Il FP count based on the Logical
Transactions of the user’s requirements.)

The principles involved in deciding what should be included in the count are the
same for application packages as for other bought-in or reused functionality. The
general rule is that the FP’s should be counted if they were (to quote Symons
paraphrasing Albrecht) ‘selected, maybe modified, integrated, tested, or installed by
the project team’. Package functionality that is irrelevant to the application needed
by the user should be ignored in the FP count.

There will be the following categories of components that could or should be
separately sized:

(a) transactions from the package that do not require modification
(b) additional transactions that have to be created by the project team

CPM 1.3.1 Chapter 5 60

© Changes required to the package (the logical sum of additions, changes and
deletions)

(d) the net change (an increase or decrease) in the overall application size as a
result of (c)

(e) transactions from the package requiring deletion

The solution delivered to the customer = (a) + (b) + (d) - (e).
The size of the software development aspect of the project = (b) + (c) + (e).

The size maintained of a package-based system depends on the manner in which
the package component is supported If, for example, a proportion of the system is
unmodified and maintained by the third-party supplier then that part of the system
should not be counted as part of the size of the maintenance workload of the in-
house support team.

End user report generators and query tools introduce further considerations. Given
the growing importance of such tools they should not be left out of any measurement
programme. There are several possible ways of approaching the sizing of such
tools. The solution chosen should be auditable and seen to be fair by both
developers (who will be installing and supporting it) and the end users.

The ideal way is to count the sizes of the transactions resulting in reports produced
by or for the users, perhaps summing these over a period, and dividing by the effort
involved to get an average performance measure. This may, however, require a lot
of work to record all the FP counts and time in relation to the value of the information
obtained. A sampling approach over a trial period may therefore give an adequate
answer to illustrate the benefit of the tool.

Other possibilities have to be examined therefore, including (neither of these is
particularly satisfactory):

consider the use to be made of such a tool - in other words ascribe a size to it
equal to the size of all the reports that the users actually produce

count one single report transaction, whose size will be equal to the sum of all
possible inputs, all entity references and all possible outputs - in other words
count all the data items, but only once.

The problem is that these report generators and query languages are tools, not
applications. (Itis the use of these tools which is an application, which can be sized
with MKIl FPA.) Tools are function-rich, whereas business applications, for which
MKl FPA was designed, are data-rich. A tool has a functional size, dependent on
the functions it provides, but existing FPA methods do not adequately deal with the
types of functions found in tools.

CPM 1.3.1 Chapter 5 61

Calculating the Adjusted Function
Point Count

The Function Point Index measures the functional or pure information processing
size of the application as seen by the user. As well as the information processing
size, FPA offers a means of taking into account the technical complexity and certain
guality requirements of the application. These are sometimes referred to as the ‘non-
functional requirements’. When the FPI is multiplied by the Technical Complexity
Adjustment, the result is called the Adjusted Function Point Index.

The method attempts to measure the influence on the size of the application of each
of 19 (or more) technical characteristics on a scale of 0 to 5. (These technical
characteristics are listed in Appendix 1 to this manual.)

The sum for all characteristics is used to compute the factor to be applied. This
factor is known as the Technical Complexity Adjustment (TCA) .

If the total of the scores for each of the 19 (or more) characteristics is called the Total
Degrees of Influence (TDI), then:

TCA =(TDI *C) + 0.65
where the current industry average value of C is 0.005.

CPM 1.3.1 Chapter 6 62

The TCA can thus vary between 0.65 and 1.15 (if all the characteristics have the
minimum or maximum influence, respectively).

The adjusted function point calculation is expressed as:
AFPI = FPI * TCA
where
AFPI = Adjusted Function Point Index
FPI = Function Point Index
TCA = Technical Complexity Adjustment

NB: The Technical Complexity Adjustment (or the ‘Value Adjustment Factor’ as it is
known in the IFPUG method), was introduced originally by Albrecht, then modified
only slightly for the MK Il FP method. Recent statistical analysis suggests that
neither the VAF nor the TCA represent well the influence on size of the various
characteristics they try to take into account. The TCA definition is included here for
continuity with previous versions, but it would be preferable for now when sizing
applications within a single technical environment (where the TCA is likely to be
constant) to ignore it altogether. Where size comparisons are needed across
applications built with very different technical and quality requirements, it may be
preferable to use a locally-calculated Adjustment until such time as a revised TCA is
demonstrated to be valid.

CPM 1.3.1 Chapter 6 63

Measuring Effort

Organisations have many different ways of measuring effort. In order to satisfactorily
measure productivity, (see Chapter 8 on productivity measurement), it is essential to
have a consistent measure of effort.

Some organisations use person-days, and some use person-months to measure
effort. Both of these measures can have various definitions, dependent on the
number of practical work-hours in a month, or in a day. Itis more likely that we will
get consistent measures across different groups and time-recording systems if we
use ‘work-hours’ as the unit of measure for effort.

Given that we will use work-hours as our unit of measurement, there are four further
elements of effort we have to define:

When does a project start?
When does it end?

Whose time do we include?
What time do we include?

CPM 1.3.1 Chapter 7 64

7.1 Project Start

A project starts when it has been agreed and approved that work should be
undertaken to deliver an IS solution. This is usually after a Feasibility Study, or
Project Investigation has been carried out.

The clock starts when one or more staff have been allocated to the project, and start
working on it.

7.2 Project End

The measurement of a development or change project effort ends, when the
application is made ‘live’ by moving it into the production environment for the first
time, and the users make use of it.

7.3 Whose time included?

The project effort should include that of staff who are clearly allocated to the project
and who work according to the project requirements. The time of a user being
interviewed, for instance, would not be included, whereas the time of a user allocated
for a significant amount of time to the project team would be included. (‘Significant’ is
of course a vague criterion; the first criterion above, that the user is simply ‘clearly
allocated... project requirements’, is more precise, and to be preferred.)

7.4 What time is included?

The work effort should be measured in units of a ‘productive’ or ‘net’ work-hours,
which is defined as:

‘One hour of work by one person, including normal personal breaks, but excluding
major breaks, such as for lunch’.

Productive work-hours therefore excludes
time away from work (vacation, public holidays, absence through iliness, etc.).

time at work, but away from the project (receiving education not specific to the
project, at office-wide meetings, on activities related to other projects, etc.).

Where effort is not recorded systematically, it may be possible to derive project effort
for a member of a project team from the elapsed time the team member spends on
the project.

We can derive ‘net’ or ‘productive’ work-hours from ‘gross’ or ‘employed’ work-hours
if we have an average utilisation, that is, we know the average percentage productive
work-hours across the year. For example, suppose the employment is for 52 weeks
per year at 40 hours per week, i.e. 2080 gross work-hours/year. If the average
utilisation across the year is 75%, then the average available effort is 1560 work-
hours per year, i.e. 0.75 * 2080.

7.5 Project duration

Project duration is the calendar time from project start to project end.

CPM 1.3.1 Chapter 7 65

Measuring Productivity and Other
Aspects of Performance

8.1 Development Productivity
Productivity is defined in terms of what you get out divided by what you put in, that is:
Productivity = Output / Input

Examples often quoted include Number of Cars produced per worker per year in the
car industry, or Amount of Profit generated per square foot per annum of retail space
in the supermarket business.

In the Information Systems world, our output, what we produce, is application
software, and what we put in, our input, is effort. The definition of effort has been
covered in Chapter 7, and the size of an application produced, the output, is
represented by the Function Point Index (FPI).

Application development productivity is therefore defined as:
Productivity = FPI/Effort

As we discussed in Chapter 7, effort is best given in work-hours, therefore,
productivity is measured in Function Points per Work-Hour.

CPM 1.3.1 Chapter 8 66

8.2 Change Productivity

As well as development productivity, productivity of change projects can also be
measured. In this instance the work-output is the size of the change work carried
out, as defined in Rule 2.5 of Chapter 2, and elaborated in Section 5.3.

Note that more refined measures of change productivity are possible which would
take into account, for example, that the productivity of adding, changing, or deleting
transactions may not be equal.

8.3 Maintenance and Support Productivity

Support work, i.e. maintaining the application according to the existing functional
specification, carrying out perfective maintenance and supporting users, can be
measured by considering the size of the application being maintained and the effort
required, i.e.

Application Size / Effort per period

8.4 Measuring and Understanding Performance in Software
Activities: The Wider Issues

The general subject of measuring performance in software development, change and
maintenance and support activities is beyond the scope of this manual, but a few
words of elaboration are necessary.

Productivity, defined as Size / Effort, is the most commonly quoted performance
measure, but it is just one aspect of overall performance in software activities, which
really have three main ‘dimensions’, namely, effort, time and quality. To gain a fuller
picture of performance therefore, we need to measure not only productivity, but also
other performance measures such as:

Delivery Rate (= FPI/ Elapsed Time)
Quality measures such as Defect Density (= no. of defects found per period / FPI)

Depending on the business objectives, it is quite possible that speed of delivery
could be more important than productivity. For some applications, very high quality
is of paramount importance.

To understand why performance measures vary across different application projects,
we need not only the above performance measures, but also measures or
assessments of many factors which may be the cause of the observed variations,
such as the experience of the project team, the methods and tools used, the stability
of the user requirements, etc.

For example, the technical environment for a 4GL or PC development is likely to be
more productive than that for a 3GL environment. Vague and shifting requirements
is a common cause of reduced productivity.

Change (or ‘Enhancement’) projects are likely to be less productive than
development projects because of the need to understand and test the application
being changed, and not just the changed part. The degree of productivity loss will
depend on, for example, the available tools and documentation.

Caution: FPA is a powerful normalising factor for generating measures of
productivity, quality and other performance factors. All the authorities, including the
major software services providers, concur that the results of FPA should be used to
provide process measures, not individual productivity measures capable of use for
staff appraisal.

CPM 1.3.1 Chapter 8 67

Estimating Effort using Mkll FPA

Determining the size of an item of application software in Mkll FP’s from a statement
of its requirements or from its functional specification, can be a valuable first step in a
process of estimating the effort and time needed for its development. A full process
is given in the Mkll FP Estimating method (see Bibliography).

In outline this process is as follows.

1.
2.

Estimate the software size, in Mkll FP’s

Determine the ‘normative’ effort and elapsed time for the project, using
historical relationships of development productivity (size/effort) and delivery
rate (size/elapsed time) versus software size, for the technology environment
to be used (‘Normative’ means that which we would expect from past
experience.)

Break down the normative effort and time so as to obtain their distribution
over the project phases, using historical distributions of development effort
and time, for the technology environment to be used

Review the effort and time associated with each phase for the risk involved,
and any other factors which might speed up or slow down the process by
comparison with the normative effort and time, and adjust the effort and time
appropriately

CPM 1.3.1 Chapter 9 68

5. Finally, use a historically established trade-off relationship between effort and
time, or other knowledge, to allow for any delivery date or staffing constraints,
to arrive at the final best estimate for effort and time. (This step might,
alternatively, be carried out after step 2.)

The accuracy of this process can be improved by local calibration, that is using
weights in the Mkl formulae that are specific to the technology which will be used to
develop the software. When the MKIl formulae are used in this way with locally
calibrated weights, the weights can be adjusted so that the formulae predict the
software size in units of standard-hours needed to develop the software (‘standard’ in
the local environment).

Note that for consistency with the International Standard ISO 14143/1 on Functional
Size Measurement (see Bibliography), software sizes obtained using the MKII
formulae, but with local weights (rather than the industry-standard weights) should
not be referred to as Functional Sizes.

CPM 1.3.1 Chapter 9 69

Glossary

MkIl FPA Terms

Adjusted Functional Size

A size based on the Function Point Index multiplied by
the Technical Complexity Adjustment. The Function
Point Index (previously known as the ‘Unadjusted
Function Point Count’ is generally preferred today as a
measure of Functional Size.

Albrecht 1984

Original document of the function point concept, written
by Alan Albrecht in November 1984.

Application

A coherent collection of automated procedures and data
supporting a business objective. Frequently a synonym
for ‘system’, the word ‘application’ is preferred in this
manual since it expresses more precisely the nature of
the subject matter of Functional Size Measurement.

Application Function Point
Count

A count that provides a measure of the functionality the
application provides to the end-user.

Attribute

A unique item of information about an entity. For the
purposes of FPA, attributes are generally synonymous
with Data Element Types (DET'’s).

CPM 1.3.1 Glossary 70

Baseline Function Point
Count

Application Function Point Count taken of the
functionality at a point in time, from which changes can
be measured.

Boundary

The conceptual interface between the software under
study and its users. The boundary determines what
functions are included in the function point count, and
what are excluded.

Data Element Type (DET)

A unique user recognisable, non-recursive item of
information. The number of DET's is used to determine
the input and output size of each Logical Transaction.

Degree of Influence (DI)

A numerical indicator of the impact of each of the 19 (or
more) Technical Complexity Adjustment Factors, ranging
from O (no influence) to 5 (strong influence, throughout).
These indicators are used to compute the Technical
Complexity Adjustment.

Development

The specification, construction, testing and delivery of a
new application or of a discrete addition to an existing
application.

Development Project
Function Point Count

A count that measures the work-output associated with
functionality provided to the end users with the first
installation of the software developed when the project is
complete.

Enhancement

The modification of an existing application comprising
additions, changes and deletions.

Enhancement Project
Function Point Count

A count that measures the work-output arising from
modifications to an existing application that add, change
or delete user functions delivered when the project is
complete.

Entity (or Data Entity Type)

A fundamental thing of relevance to the user, about which
information is kept. An association between entities that
has attributes is itself an entity.

Entity Subtype

A subdivision of an Entity Type. A subtype inherits all the
attributes and relationships of its parent entity type, and
may have additional unigue attributes and relationships.

Function Point Index

A measure of the specific functionality provided to a user
by a project or application, obtained by summing the size
of all the Logical Transactions. Previously known as
‘Unadjusted Function Point Count’.

Function Point Analysis
(FPA)

A form of Functional Size Measurement (FSM) that
measures the work product of software development,
change and maintenance activities associated with
Business Applications, from the customer's point of view.
The MKIlI FPA Method is intended to comply with ISO
standard 14143/1 on Functional Size Measurement.

CPM 1.3.1 Glossary 71

Functional Size

(ISO Definition) A size of the software derived by
guantifying the Functional User Requirements.

Functional Size Measurement
(FSM)

(ISO Definition) The process of measuring Functional
Size.

Functional User
Requirements

(ISO Definition) A sub-set of the user requirements. The
Functional User Requirements represent the user
practices and procedures that the software must perform
to fulfil the user needs. They exclude Quality
Requirements and any Technical Requirements.

General System
Characteristics

IFPUG terminology for the Technical Complexity
Adjustment Factors.

Installed Function Point
Count

An ‘Application Function Point Count’ related to a set of
installed systems.

IFPUG The International Function Point User Group, which
maintains the definition of the direct descendent of the
Albrecht 1984 FPA method.

Interactive When the user communicates with the computer in a

conversational-type manner, eg by use of menus,
command lines etc.

Logical Transaction

The basic functional component of Mk 1l FPA. The
smallest complete unit of information processing that is
meaningful to the end user in the business. It is triggered
by an event in the real world of interest to the user, or by
a request for information. It comprises an input, process
and output component. It must be self-contained and
leave the application being counted in a consistent state.

Navigational Aids

Features of software that help the user to navigate
around a computer application, eg shortcut keys to move
through a dialogue faster.

Non-Primary Entity

A data entity-type arrived at by Third Normal Form
analysis which is not one of the main entity-types for
which the application in question has been built. Non-
primary entities have only very few attributes, e.g. code,
description - see also System Entity, and Section 4.5 of
this CPM.

Primary Entity-Type

In MKk 1l FPA one of the main entity-types which has the
attributes that the application has been designed to
process and/or store.

Quality Requirements

(ISO Definition) Any requirements relating to software
quality as defined in ISO 9126.

Scope Creep

Additional functionality that was not specified in the
original requirements but is identified as the requirements
and scope are clarified and the functions are defined.

CPM 1.3.1 Glossary 72

SLOC Source Lines of Code, the number of lines of
programming language code in a program before
compilation.

System See Application.

System Entity

In MK Il FPA a contrivance which ‘lumps together’ all the
non-primary entities of an application.

Technical Complexity
Adjustment

A factor which attempts to take into account the influence
on application size of Technical and Quality
Requirements, which may be used to adjust the Function
Point Index to give the Adjusted Functional Size. (The
TCA is not included within the ISO standard

ISO/IEC 14143, nor is its use generally recommended).

Technical Complexity
Adjustment Factors

The set of 19 factors that are taken into account in the
Technical Complexity Adjustment (TCA).

Each factor has a Degree of Influence (DI) of between 0
and 5.

Technical Requirements

(ISO Definition) Requirements relating to the technology
and environment for the development, maintenance,
support and execution of the software. Examples of
technical requirements include programming languages,
testing tools, operating systems, database technology
and user interface technologies.

Unadjusted Function Point
Count.

See ‘Function Point Index’.

User

(ISO Definition) Any person that specifies Functional
User Requirements and/or any person or thing that
communicates or interacts with the software at any time.

CPM 1.3.1 Glossary 73

Appendix |

Technical Complexity Adjustment

There are 19 characteristics that contribute to the Technical Complexity Adjustment
for an application. This step involves a value judgement representing the ‘Degree of
Influence’ of each of them according to the following scale:

0.

o~ W PE

Not present, no influence
Insignificant influence
Moderate influence

Average influence
Significant influence

Strong influence, throughout

This is a general guide. To assist in evaluating the individual characteristics, more
specific rules are given below for each of the characteristics.

CPM 1.3.1 Appendix | 74

1 Data Communication - Data and control information use
communications facilities

For terminals connected remotely or locally, score as:

0.

P w DR

Pure batch processing or stand-alone PC
Batch with remote data entry or printing
Batch with remote data entry and printing
On-line data collection TP front end

More than just a front end, but the application supports only 1
type of TP communications protocol

More than just a front end, the application supports more than
1 type of TP communications protocol

2 Distributed Function - Application spread over two or
more processors

Distributed data or processing incorporated into the application, score as:

0.

Does not aid the transfer of data or processing function
between components of the application

Application prepares data for end-user processing on another
component of the application

Application prepares data for processing on a different
machine (not end-user)

Distributed processing, on-line, data transfer in one direction
only

Distributed processing, on-line, data transfer in both directions

Processing functions are dynamically performed on the most
appropriate component of the application

3 Performance - Application response/throughput
influence the application

Application performance objectives, agreed by the user, influence the design,
development, installation and support; score as:

0.
1.

No special requirements

Performance requirements stated and reviewed but no special
actions were required

On-line response critical during peak hours. No special design
for CPU utilisation

On-line response critical during business day. No special
design for CPU utilisation. Processing deadline affected by
interfacing applications

Performance requirements need performance analysis during
design

CPM 1.3.1 Appendix | 75

5. Performance analysis tools are used in the design,
development and/or installation phases to meet stated user
performance requirements

4 Heavily Used Configuration - The equipment that will run
the application is already heavily used

Target configuration heavily used and need is taken into account in development;
score as:

0-3 Typical application run on standard production machine, no
stated operation restrictions

4 Stated operational restrictions require special constraints on
the application in the (single) central processor

5 In addition, there are special constraints on the application in
distributed components of the application

5 Transaction Rates - The high rate of arrival of
transactions causes problems beyond those of
Characteristic 3

The transaction rates influence design, development, installation and support of the
application; score as:

0. No peak transaction period anticipated
10% of transactions affected by peak traffic
50% of transactions affected by peak traffic
All transactions affected by peak traffic
Performance analysis in the design phase

o~ W PE

Performance analysis tools used in design, development and
installation

6 On-Line Data Entry - Terminal used for input
Score as:

All transactions batch

1 to 7% of transactions are interactive data entry

8 to 15% of transactions are interactive data entry
16 to 23% of transactions are interactive data entry
24 to 30% of transactions are interactive data entry

o b~ w DN P o

>30% of transactions are interactive data entry

CPM 1.3.1 Appendix | 76

7 Design for End-User Efficiency - Human factors
considered in design

Users require on-line functions to help in the use of the application; e.qg.:

Score as:

Navigational aids

Menus

On-Line help

Automated cursor movement
Scrolling

Remote Printing

Pre-assigned Function Keys

Batch Jobs from on-line transactions
Cursor selection of screen data
Heavy use of monitor facilities (colour, highlighting etc.)
Hard copy of on-line transactions
Mouse

Windows

Minimum screens

Bi-lingual

Multi-lingual

0. None of the above

1. 1-3 of the above

2. 4-5 of the above

3. >6 of the above

4, In addition to the above, design tasks for human factors

5. In addition to the above, prototyping or special tools needed to

demonstrate special human factors objectives have been met

8 On-Line Update - Data updated in real time

Data is updated in real time, i.e. the application reflects the real world at all times;

Score as:

None

1-2 On-Line update of control files. Volume of updating is low and
recovery is easy

3 On-Line update of major logical internal files
In addition, protection against data loss is essential

5 In addition, high volumes bring cost considerations into the
recovery process

CPM 1.3.1 Appendix | 7

9 Complexity of Processing - Internal complexity beyond
that dealt with by entity counting conventions
Which of the following apply:

Sensitivity control (e.g. special audit processing) and/or application
specific security processing

Extensive logical processing
Extensive mathematical processing

Much exception processing, many incomplete transactions, and much

reprocessing of transactions

Complex processing to handle multiple I/O possibilities; e.g. multi-
media, device independence?

Score as:

None apply

1 of the above applies
2 of the above apply
3 of the above apply
4 of the above apply

o b~ w DN PEFE o

All of the above apply

10 Usable in Other Applications - The code is designed to
be shared with or used by other applications. Do not
confuse with factor 13.

Score as:

No reusable code

Reusable code is used within the application

<10% of the application considered for reuse

>= 10% of the application considered for reuse

A W N L O

Application was specifically packaged/documented to aid
reuse, and application customised at source code level

5 Application was specifically packaged/documented to aid
reuse, and was customised by means of parameters

11 Installation Ease - Data conversion and ease of
installation were considered in design
Score as:

0. No special conversion and installation considerations were
stated by the user

CPM 1.3.1 Appendix |

78

No special conversion and installation considerations were
stated by the user but special set-up required for installation

Conversion and installation requirements were stated by the
user and installation guides were provided and tested

In addition, the impact was considered important

In addition to 2 , conversion and installation tools were
provided and tested

In addition to 3, conversion and installation tools were provided
and tested

12 Operations Ease - Ease of operation was considered in

design
Score as:
0
1-4
5

No special operational considerations were stated by the
customer

Select from the following, each has a point value of 1 unless
otherwise indicated:

Application-specific start-up, backup and recovery
processes were required, provided and tested, but operator
intervention necessary

As above but no operator intervention required (2 Points)
The application minimises the need for tape mounts
The application minimises the need for paper handling

Application is designed for unattended operation, that means
no operator intervention except for start-up and shutdown;
error recovery is automatic

13 Multiple Sites - The application is to be used in many
sites and/or many organisations

Score as:

No user requirement to consider the needs of more than one
user site

Multiple sites considered in design but there would be identical
hardware and software

Multiple site considered in design but there would be similar
hardware and software

Multiple sites considered in design but there would be different
hardware and software

Add 1 for each of the following:

Documentation and support plans are provided and tested to
support the application at multiple sites

The sites are in different countries

CPM 1.3.1 Appendix | 79

14 Facilitate Changes - Future changes to the application a
consideration in design

The application has been specifically designed and developed to facilitate future
change to user requirements. Add the relevant scores below:

Score as:

No special user requirement to design the application to
minimize or facilitate change

Flexible query capability is provided that can handle simple
logical enquiries

Flexible query capability is provided that can handle average
enquiries

Flexible query capability is provided that can handle complex
logical enquiries

Add for the following:

1

OR

If significant control data kept in tables that are maintained with

on-line interactive processes with changes taking place at a
later time,

If Significant control data kept in tables that are maintained
with on-line interactive update

15 Requirements of Other Applications - Interfaces

Score as:

The application is completely stand-alone

Application requirements for interfaces or data sharing have to

be synchronised with other applications. Count 1 for each
applicationup to 5

16 Security, Privacy, Auditability - Special features of
confidentiality/security

Add the relevant scores below

1

If the application has to meet personal, possibly legal, privacy

requirements

If the application has to meet special auditability requirements

If the application has to meet exceptional security
requirements

If encryption of data communications is required

CPM 1.3.1 Appendix |

80

17 User Training Needs - Specific requirements

Score as:

a s~ w D P o

If no special training materials or courses are developed
Standard tutorial help is provided

‘Hypertext’ style tutorial help provided

Training course material provided

On-Line training course material provided

Requirements for a separate complete application or simulator
for training purposes

18 Direct Use by Third Parties - Degree of use/connection
to the application

Score as:

0. No third party connection to the application

Data is sent to or received from known third parties

2. Known third parties (e.g. Closed User Group) are connected

directly to the application in read-only mode

3. Known third parties are connected directly to the application
with on-line update capability

4, Known third parties are connected directly to the application

with on-line create, update and delete capability
5. ‘Unknown’ third parties can access the application

19 Documentation

Count one for each document-type listed below which is delivered and up-to-date at
the end of the project:

Functional Specification (process and data)
Technical Specification

Program Documentation (at least flow charts type)
Data Element Library

Data Element/Record/Program Cross-Reference
User Manual

Operations Manual

Application Overview or Brochure

Test Data Library

User Training Course Material

Application Cost/Benefit Tracking Document
Change Request/Error Report Log

CPM 1.3.1 Appendix | 81

Score as follows:

0 -2 Document Types
3 -4 Document Types
5-6 Document Types
7 - 8 Document Types
9-10 Document Types

o b~ w DN PP o

11 - 12 Document Types

20 User Defined Characteristics

The above list of nineteen technical complexity characteristics may be extended by
the organisation employing MK Il function point analysis but great care should be
taken to ensure that only appropriate characteristics are added. They must be
characteristics which arise from the user requirements.

As a general rule try to fit requirements into the existing nineteen characteristics and
extend the list only if really necessary. Examples of characteristics which have been
added to the list include:

requirement for graphical output

requirement for special output in the form of bar code and special large letters for
labels, which had to be provided specifically for the application

requirement for the application to cater for input and output in more than one
natural language.

CPM 1.3.1 Appendix | 82

Appendix I

Data Collection Forms

The Function Point Analysis process must be documented, for two main reasons:
It provides a traceable audit trail of exactly what was counted during the analysis
It forms the basis of further analysis on the same application in the future.

Function Point Analysts must be free to devise their own counting sheets and other
documentation. The following sheets and instructions are offered as a suggestion.

The purpose of the Function Point Analysis Record Sheets is to comply with the
above requirements, and to ensure that the way FP analysis is documented is
consistent throughout the Application Development areas. Practitioners should be
able to extract much of the required information from the CASE tools they use. The
use of spreadsheets may be considered, especially if data may be extracted from a
CASE tool.

CPM 1.3.1 Appendix Il 83

Record Sheets - a Possible Structure
Overall Summary and Totals
Technical Complexity Adjustment
Logical Transaction Summary
Logical Transaction Analysis Detail

Documentation Process

The following is a complete process, in which the names of every component
counted is required to be recorded on a ‘Logical Transaction Analysis Detail’ sheet.
There will be many situations where this detailed level of documentation is not
required, and it will be sufficient to record the component counts directly on a ‘Logical
Transaction Summary’ sheet. The FP Analyst should determine the future use that
will be made of the FP counting documentation, e.g. for audits, or as a basis for
monitoring future changes to the applications, and hence decide the level of
permanent documentation needed.

For traceability, the header information should be completed for all worksheets.
This is best achieved by completing a template, then producing sufficient
photocopies for the analysis. Note the requirement to number each sheet
individually.

It is recommended to include in the documentation any entity-relationship
diagram, or other data model produced for the FP analysis

Record each of the Logical Transactions that are to be analysed on the Logical
Transaction Summary Sheet.

For each Logical Transaction, create a Detail Sheet.

Where the application involves Add, Change and Delete functions, a separate
Detail is to be used for each type.

On the Detall, record the information as follows:

Inputs

Record the name of the Source of the Inputs. This information may
be required for audit purposes; it is not used in the actual count.

Below the name of the source, record the name of each Input Data
Element Type (‘DET’) associated with the source. Record each
name only once.

Continue on new sheets as required, remembering to number them
correctly.

When all Sources and Input DET’s for the transaction have been
recorded, count the Input DET names and enter the total at the
bottom of the last sheet used for that transaction.

Entities

Record the names of all the Non-Primary components of the
System Entity. Bracket them together to emphasise they are to be
considered as a single Primary Entity.

Record the name of each Primary Entity referenced in the
transaction. The entity name usually appears only once in each

CPM 1.3.1 Appendix Il 84

transaction, however many references to it there are. (For a
possible exception, see Section 4.5.5 on Involuted entities)

Continue on new sheets as required.

When all Primary Entity references for the transaction have been
recorded, count the Entity Names, treating all the components of
the System Entity as a single Primary Entity. Enter the total at the
bottom of the last sheet used for that transaction.

Outputs

Record the name of the Destination. This information may be
required for completeness, but it is not used in the actual count.

Below the name of the Destination record the name of each Output
DET associated with the Destination. Record each name only
once.

Continue on new sheets as required.

When all Destinations and Output DET's for the transaction have
been recorded, count the Output names and enter the total at the
bottom of the last sheet used for that transaction.

When all the transactions have been analysed, transfer the Input, Entity and
Output totals to the appropriate place on the Logical Transaction Summary. Take
care to record Additions, Modifications and Deletions separately. Total each
column.

Transfer the totals to the appropriate place in the Function Point Index area of the
Overall Summary.

(These last three steps are optional) Complete the Technical Complexity
Adjustment Questionnaire and calculate and record the TCA factor.

Transfer the TCA factor to the Overall Summary.
Calculate and record the Adjusted Function Point Index on the Overall Summary.

CPM 1.3.1 Appendix Il 85

FUNCTION POINT ANALYSIS RECORD SHEETS
TEMPLATES

Contents

Overall Summary

Technical Complexity Adjustment
Logical Transaction Summary
Logical Transaction Analysis

CPM 1.3.1 Appendix Il

86

FUNCTION POINT ANALYSIS - OVERALL SUMMARY & TOTALS

APPLICATION CODE APPLICATION TITLE TEAM
PROJECT CODE PROJECT TITLE PHASE
ANALYSIS DATE EFFORT (WorkHours)

ANALYST(S)

SUMMARY OF LOGICAL TRANSACTIONS

Online Batch Both (tick)
FUNCTION ADDED
Input Types x0.58 =
Entity References x1.66 =
Output Types x0.26 = TOTAL
FUNCTION CHANGED
Input Types x 0.58 =
Entity References x 1.66 =
Output Types x0.26 = TOTAL
FUNCTION DELETED
Input Types x0.58 =
Entity References x1.66 =
Output Types x0.26 = TOTAL
ITOTAL FUNCTION POINT INDEX :
Technical Complexity Adjustment X[1]

ITOTAL ADJUSTED FUNCTION POINT INDEX :

CPM 1.3.1 Appendix Il 87

FUNCTION POINT ANALYSIS - TECHNICAL COMPLEXITY ADJUSTMENT

APPLICATION CODE APPLICATION TITLE TEAM
PROJECT CODE PROJECT TITLE PHASE
ANALYSIS DATE ANALYST(S)
REF NAME NOTE VALUE
1 Data Communications
2 Distributed Function
3 Performance
4 Heavily Used Configuration
5 Transaction Rates
6 On-Line Data Entry
7 Design for End-User Efficiency
8 On-Line Update
9 Complexity of Processing
10 Usable in Other Applications
11 Installation Ease
12 Operations Ease
13 Multiple Sites
14 Facilitate Changes
15 Requirements of Other Applications
16 Security, Privacy and Auditability
17 User Training Needs
18 Direct use by Third Parties
19 Documentation
20 User Defined Characteristics

TOTAL D. OF INFLUENCE

TCA = Total *0.005 + 0.65 =

Comments

CPM 1.3.1 Appendix Il 88

FUNCTION POINT ANALYSIS - LOGICAL TRANSACTION SUMMARY

APPLICATION CODE APPLICATION TITLE TEAM
PROJECT CODE PROJECT TITLE PHASE
ANALYSIS DATE ANALYST(S)

SUMMARY OF LOGICAL TRANSACTIONS
Online Batch Both

(tick)

ADDED MODIFIED DELETED
REF TRANSACTION NAME IN ENT ouT IN ENT ouT IN ENT ouT
TOTALS
CPM 1.3.1 Appendix Il 89

FUNCTION POINT ANALYSIS - LOGICAL TRANSACTION ANALYSIS DETAIL

APPLICATION CODE APPLICATION TITLE TEAM
PROJECT CODE PROJECT TITLE PHASE
ANALYSIS DATE ANALYST(S)

ANALYSIS FOR LOGICAL TRANSACTIONS

Online | Batch | Both | Add | Modify | Delete |
INPUT TYPES ENTITIES REFERENCED OUTPUT TYPES
TOTAL TOTAL TOTAL

CPM 1.3.1 Appendix Il 90

Bibliography

The International Standard:

ISO/IEC 14143/1: 1998 - Information Technology - Software Measurement -
Functional Size Measurement - Definition of Concepts, 18 December 1996

General texts on software measurement with Mkll FPA:

‘Software Sizing and Estimating: Mkll Function Point Analysis’, Charles Symons, J.
Wiley and Sons, 1991

‘Software Sizing and Estimating in Practice’, Stephen Treble and Neil Douglas,
McGraw Hill, 1995

Use of MklIl FPA in Estimating

‘Estimating with MKkIl Function Point Analysis, CCTA, Her Majesty’s Stationery Office,
London, 1991

CPM 1.3.1 Bibliography 91

Other Relevant Publications

C Ashworth and M Goodland, ‘'SSADM: A Practical Approach’, McGraw Hill, 1990,
ISBN 0 07 707213 8.

J S Hare, ‘'SSADM for the Advanced Practitioner’

C J Date, ‘An Introduction to Database Systems’, Addison Wesley

Counting Practices Manual, Release 4.0 - IFPUG

‘Function Points As An Asset - Reporting to Management’ - IFPUG

P Goodman, ‘Practical Implementation of Software Metrics’, McGraw Hill, 1993,
ISBN 0 07 707665 6

CPM 1.3.1 Bibliography

92

	Frontispiece
	Title Page
	UKSMA Contact Details
	Contents
	Foreword by Charles Symons
	Ch.1 Introduction
	1.1 Definition and Purpose
	1.2 Purpose of the CPM
	1.3 Who should read this document ?
	1.4 Albrecht/IFPUG FPA
	1.5 Applicability of MkII FPA
	1.6 Manual Structure
	1.7 Metrics Practices Committee
	1.8 Procedure for raising a Query or Issue with the MPC

	Ch.2 The MkII FPA Rules
	Rule 1 Boundary
	Rule 2 Functional Size and Logical Transactions
	Rule 3 Processing Component of Logical Transactions
	Rule 4 Input and Output Components of Logical Transactions
	Rule 5 Logical Transaction Size
	Rule 6 Reporting a MkII Function Point Count

	Ch.3 Measurement Steps
	Step 1 Determine the Viewpoint, Purpose and Type of the Count
	Step2 Define the Boundary of the Count
	Step 3 Identify the Logical Transactions
	Step 4 Identify and Categorise the Data Entity Types
	Step 5 Count the Input DETs, the Data Entity Types References and the Output DETs
	Step 6 Calculate the Functional Size
	Step 7 Determine the Project Effort
	Step 8 Calculate Productivity and other Performance Parameters
	Step 9 Score the Degrees of Influence
	Step 10 Calculate the Technical Complexity Adjustment
	Step 11 Calculate Adjusted FP Size and PerformanceParameters

	Ch.4 General Guidelines for MkII FP Counting
	4.1 Determining the Viewpoint, Purpose and Type of the Count
	4.1 Drawing the boundary for a count
	4.3 Interfaces
	4.4 Identifying Logical Transactions
	4.4.1 What is a Logical Transaction ?
	4.4.2 CRUDL - Create, Read, Update, Delete, List
	4.4.3 Cataloguing Logical Transactions
	4.4.4 The Three Elements of a Logical Transaction
	4.4.5 Logical Transactions at Application Program Interfaces
	4.4.6 Accounting for Housekeeping
	4.4.7 Batch Programs
	4.4.8 Camouflaged Transactions

	4.5 Identifying Entity Types
	4.5.1 Basic Rules for Counting Entity Type References
	4.5.2 Entity Types
	4.5.3 Distinguishing Primary & Non-Primary Entity Types: the 'System Entity'
	4.5.4 Entity Sub-Types
	4.5.5 Involuted Entity Types
	4.5.6 Logical Entities in Batch Systems

	4.6 Counting Input and Output Data Element Types

	Ch.5 Measurement Guidelines for Specific Situations
	5.1 Counting Graphical User Interfaces (GUIs)
	5.1.1 Introduction
	5.1.2 Basic Principles
	5.1.3 GUI Table
	5.1.4 Counting Guidelines
	5.1.5 Check Box
	5.1.6 Combo Box
	5.1.7 Dialog Box
	5.1.8 Drop Down/Pop Up List Box
	5.1.9 Edit Box
	5.1.10 Icon
	5.1.11 Non Text Annotation
	5.1.12 Radio Button
	5.1.13 Text Box
	5.1.14 Non-Functional Controls

	5.2 Approximate Sizing of Application Portfolios
	5.3 Sizing Changes
	Step 1 - Isolate Logical Functionality
	Step 2 - Identify and Count New LTs Required
	Step 3 - Identify and Count Existing LTs No Longer Required
	Step 4 - Identify the Existing LTs Affected
	Step 5 - Count the Individual Inputs, Outputs and Entity References Affected
	Step 6 - Calculate the Functional Size of the Change project and of the enhance software
	Step 7 (Optional) - Determine the Technical Complexity Adjustment

	5.4 Changes to make software Year 2000 compliant
	5.5 Counting Application Packages

	Ch.6 Calculating the Adjusted FP Count
	Ch.7 Measuring Effort
	7.1 Project Start
	7.2 Project End
	7.3 Whose time is included ?
	7.4 What time is included ?
	7.5 Project duration

	Ch.8 Measuring Productivity and Other Aspects of Performance
	8.1 Development Productivity
	8.2 Change Productivity
	8.3 Maintenance and Support Productivity
	8.4 Measuring and Understanding Performance in Software Activities: The Wider Issues

	Ch.9 Estimating Effort using MkII FPA
	Glossary: MkII FPA Terms
	App.I Technical Complexity Adjustment
	1 Data Communications
	2 Distributed Function
	3 Performance
	4 Heavily Used Configuration
	5 Transaction Rates
	6 On-Line Data Entry
	7 Design for End-user Efficiency
	8 On-Line Update
	9 Complexity of Processing
	10 Usable in Other Applications
	11 Installation Ease
	12 Operations Ease
	13 Multiple Sites
	14 Facilitate Changes
	15 Requirements of Other Applications
	16 Security, Privacy, Auditability
	17 User Training Needs
	18 Direct USe by Third Parties
	19 Documentation
	20 User Defined Characteristics

	App.II Data Collection Forms
	Record Sheets - a Possible Structure
	Documentation Process
	Templates of Sample Forms
	Summary & Totals Form
	Technical Complexity Adjustment Form
	Summary of Logical Transactions
	Logical Transaction Analysis Detail Form

	Bibliography

