Algumas coisas nao vistas no encontro 2:

Inclusdes basicas de classes:

Claim 2.4 Let EXP = |J,_,. Then P C NP C EXP. o

Proor: (P = NP): Suppose L « P is decided in polynomial-time by a TM N. Then
I. € NP, since we can take N as the machine M in Definition 2.1 and make p(x) the
zero polynomial (in other words, i is an empty string).

(NP C EXP): If L € NP and M, p() are as in Definition 2.1, then we can decide L
in time 29?") by enumerating all possible strings u and using M to check whether u is
a valid certificate for the input x. The machine accepts iff such a u is ever found. Since
p(n) = O(n°) for some ¢ > 1, the number of choices for u is 2°}_ and the running
time of the machine is similar. W

Se decidir é polinomial, entdao buscar solugao é polinomial

Theorem 2.18 Suppose that P = NP. Then, for every NP language L and a verifier TM
M for L (as per Definition 2.1}, there is a polynomial-time TM B that on input x € L
outputs a certificate for x (with respect to the language L and TM M ). O

Depois da prova do teorema, ver esta obversag¢ao interessante:

The proof of Theorem 2.18 shows that SAT is downward self-reducible, which means
that given an algorithm that solves SAT on inputs of length smaller than n we can solve

SAT oninputs of length n. This property of SAT will be useful a few times in the rest of the
book. Using the Cook-Levin reduction, one can show that all NP-complete problems
have a similar property.

Exercicios interessantes:

213,  Recall that a reduction f from an NP-language L to an NP-languages L' is par-
simonious if the number of certificates of f is equal to the number of certificates
of fix).

(a) Prove that the reduction from every NP-language L to SAT presented in the
proof of Lemma 2.11 can be made parsimonious.

2.30.  (Berman's Theorem 1978) A language 1s called unary 1t every string in 1t 15 of the
form 17 (the string of i ones) for some i > 0. Show that if there exists an NP-complete
unary language then P = NP. (See Exercise 6,9 for a strengthening of this result.)
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Assuntos do encontro 3:

Duas definigoes de coNP:

DﬂﬁﬂMnLN.mNP:[LfEeNPL

Definition 2.20 (coNP, alternative definition) For every L < {0, 1}*, we say that L €
coNP if there exists a polynomial p : M — ¥ and a polynomial-time TM M such that
for every x € {0, 1}*,

xeL e Vue{0, 1P Mx,u)=1 <

Problema coNP-completo

The following language is coNP-complete:

TAUTOLOGY ={g: ¢is a tawtology—a Boolean formula

that is satisfied by every assignment}

It is clearly in coNP by Definition 2.20, and so all we have to show is that for every
L coNP, L <, TAUTOLOG 'fl But this is easy: Just modify the Cook-Levin reduction
from L (which is in NP) to SAT. For every input x & {0, 1}* that reduction produces a
formula ¢, that is satisfiable iff x € L. Now consider the formula —g,. Itisin TAUTOLOGY
iff x € L, and this completes the description of the reduction.




O Argumento do preenchimento:

Theorem 2.22 I[fEXP £ NEXP, then P = NP. o
Devo provar isso no quadro

Proor: We prove the contrapositive: Assuming PP = NP, we show EXP = NEXP.
Suppose L € NTIME(2™ ) and NDTM M decides it. We claim that then the language

Lped = |12y : xeL (2.4)

is in NP. Here is an NDTM for Lp,4: Given y, first check if there is a string z such that

v = (z.,lsz}. If not, output 0 (i.e., halt without going to the state gaccept ). If y is of this
form, then simulate M on z for 21° steps and output its answer. Clearly, the running
time is polynomial in |y|, and hence Lpag € NP. Hence if P = NP, then Lpag is in P.
But if Lpag is in P then L is in EXP: To determine whether an input x is in L, we just
pad the input and decide whether it is in Lyag using the polynomial-time machine for
Lpad- ] Nicollas disse gue vai trazer um exemplo

(ou exercicio, esqueci agora) sobre padding.
The padding techni used in this proof, whereby we transform a language by

“padding” every string in a language with a string of (useless) symbols, is also used in
several other results in complexity theory (see, e.g., Section 14.4.1). In many settings,
it can be used to show that equalities between complexity classes “scale up™; that is, if
two different types of resources solve the same problems within bound T'(n), then this
also holds for functions T larger than T". Viewed contrapositively, padding can be used
to show that inequalities between complexity classes involving resource bound T'(n)
“scale down” to resource bound T'(n).



Teorema da Hierarquia de Tempo:

P E e b G Ry [ R L P B Bl e s T v e e e e T s g T Tl e e T R R T e A AT e s e T

Theorem 3.1 Time Hierarchy Theorem |HS65|
If . g are time-constructible functions satisfying f(n) log f(n) = o(g(n)), then

OBS: esse gap logaritmico vem do
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Proor: To showcase the essential idea of the proof of Theorem 3.1 with minimal
notation, we prove the simpler statement DTIME(n) € DTIME(n!-).

Consider the following Turing machine D: “On input x, run for |x|'* steps the
Universal TM U of Theorem 1.9 to simulate the execution of Mgn x. If U outputs some
bit b = {0, 1} in this time, then output the opposite answer (L. m{i&gﬁe\!ﬁ? Egingﬁfﬁ_ﬂuﬁﬂ)muf
0.” Here M, is the machine represented by the string x.nm,que:{ - fung3o & temgo consinutivel E

By definition, D halts within n!# steps and hence the language 1. decided bByDE ™
in DTIME(n"®). We claim that L € DTIME(n). For contradiction’s sake, assume that
there is some TM M and constant ¢ such that TM M, given any input x < {0, 1}*, halts
within c|x| steps and outputs D(x).

The time to simulate M by the universal Turing machine I{ on every inpul x is at
most ¢'c|x|log |x| for some number ¢’ that depends on the alphabet size and number
of tapes and states of M but is independent of |x|. There is some number ng such that
n'# = ¢'enlogn for every n = ng. Let x be a string representing the machine M whose
length is at least ng (such a string exists since M is represented by infinitely many strings).

Then, D(x) will obtain the output b = M(x) within |x|!# steps, but by definition of D,
we have D(x) =1 — b # M(x). Thus we have derived a contradiction.

The proof Theorem 3.1 for general f. g is similar and uses the observation that the
slowdown in simulating a machine using I{ is at most logarithmic. B

Uma das conclusoes deste teorema: P != EXP.



