CHAPTER

REDUCTIONS AND
COMPLETENESS

Certain problems capture the difficulty of a whole complexity class. Logic plays
a central role in this fascinating phenomenon.

8.1 REDUCTIONS

Like all complexity classes, NP contains an infinity of languages. Of the prob-
lems and languages we have seen so far in this book, NP contains TSP (D) (recall
Section 1.3) and the SAT problem for Boolean expressions (recall Section 4.3).
In addition, NP certainly contains REACHABILITY, defined in Section 1.1, and
CIRCUIT VALUE from Section 4.3 (both are in P, and thus certainly in NP). It
is intuitively clear, however, that the former two problems are somehow more
worthy representatives of NP than the latter two. They seem to capture more
faithfully the power and complexity of NP, they are not known (or believed)
to be in P like the other two. We shall now introduce concepts that make this
intuition precise and mathematically provable.

What we need is a precise notion of what it means for a problem to be
at least as hard as another. We propose reduction (recall the discussion in
Sections 1.2 and 3.2) as this concept. That is, we shall be prepared to say that
problem A is at least as hard as problem B if B reduces to A. Recall what
“reduces” means. We say that B reduces to A if there is a transformation R
which, for every input z of B, produces an equivalent input R(z) of A. Here by
“equivalent” we mean that the answer to R(z) considered as an input for A,
“yes” or “no,” is a correct answer to z, considered as an input of B. In other
words, to solve B on input z we just have to compute R(z) and solve A on it
(see Figure 8.1).

159

160 Chapter 8: REDUCTIONS AND COMPLETENESS

I

| l

! I

! I

' |

! I

' |

I

l R R(z) Algorithm ' e
T D > : > “yes” /“no

: fOI‘ A 1 Y

I

I

I

I

I

I

I

I

Figure 8-1. Reduction from B to A.

If the scenario in Figure 8.1 is possible, it seems reasonable to say that A is
at least as hard as B. With one proviso: That R should not be fantastically hard
to compute. If we do not limit the complexity of computing R, we could arrive at
absurdities such as TSP (D) reduced to REACHABILITY, and thus REACHABILITY
being harder than TSP (D)! Indeed, given any instance z of TSP (D) (that is, a
distance matrix and a budget), we can apply the following reduction: Examine
all tours; if one of them is cheaper than the budget, then R(z) is the two-node
graph consisting of a single edge from 1 to 2. Otherwise, it is the two-node graph
with no edges. Notice that, indeed, R(z) is a “yes” instance of REACHABILITY
if and only if x was a “yes” instance of TSP (D). The flaw is, of course, that R
is an exponential-time algorithm.

Definition 8.1: As we pointed out above, for our concept of reduction to be
meaningful, it should involve the weakest computation possible. We shall adopt
log n space-bounded reduction as our notion of “efficient reduction.” That is,
we say that language L, is reducible to L, if there is a function R from strings
to strings computable by a deterministic Turing machine in space O(logn) such
that for all inputs x the following is true: z € L, if and only if R(z) € L,. R
is called a reduction from L; to L,.]

Since our focal problems in complexity involve the comparisons of time
classes, it is important to note that reductions are polynomial-time algorithms.

Proposition 8.1: If R is a reduction computed by Turing machine M, then
for all inputs £ M halts after a polynomial number of steps.

Proof: There are O(nc'°8™) possible configurations for M on input z, where
n = |z|. Since the machine is deterministic, no configuration can be repeated
in the computation (because such repetition means the machine does not halt).

8.1 Reductions 161

Thus, the computation is of length at most O(n*) for some k. []

Needless to say, since the output string R(z) is computed in polynomial
time, its length is also polynomial (since at most one new symbol can be output
at each step). We next see several interesting examples of reductions.

Example 8.1: Recall the problem HAMILTON PATH briefly discussed in Ex-
ample 5.12. It asks, given a graph, whether there is a path that visits each
node exactly once. Although HAMILTON PATH is a very hard problem, we next
show that SAT (the problem of telling whether a given Boolean expression has a
satisfying truth assignment) is at least as hard: We show that HAMILTON PATH
can be reduced to SAT. We describe the reduction next.

Suppose that we are given a graph G. We shall construct a Boolean expres-
sion R(G) such that R(G) is satisfiable if and only if G has a Hamilton path.
Suppose that G has n nodes, 1,2,...,n. Then R(G) will have n? Boolean vari-
ables, z;; : 1 < 4,7, < n. Informally, variable z;; will represent the fact “node
j is the ith node in the Hamilton path,” which of course may be either true or
false. R(G) will be in conjunctive normal form, so we shall describe its clauses.
The clauses will spell out all requirements on the z;;’s that are sufficient to
guarantee that they encode a true Hamilton path. To start, node j must ap-
pear in the path; this is captured by the clause (z1; V 22; V...V Z,;); we have
such a clause for each j. But node j cannot appear both ith and kth: This
is expressed by clause (—z;; V —xy;), repeated for all values of j, and 7 # k.
Conversely, some node must be ith, thus we add the clause (z;; VZ2V...VZip)
for each i; and no two nodes should be ith, or (—z;; V —x) for all 4, and all
j # k. Finally, for each pair (7, j) which is not an edge of G, it must not be
the case that j comes right after ¢ in the Hamilton path; therefore the follow-
ing clauses are added for each pair (¢,5) not in G and for £k = 1,...,n — 1:
(mZki V "Zk41,5)- This completes the construction. Expression R(G) is the
conjunction of all these clauses. ‘

We claim that R is a reduction from HAMILTON PATH to SAT. To prove
our claim, we have to establish two things: That for any graph G, expression
R(G) has a satisfying truth assignment if and only if G has a Hamilton path;
and that R can be computed in space logn.

Suppose that R(G) has a satisfying truth assignment T'. Since T satisfies all
clauses of R(G), it must be the case that, for each j there exists a unique % such
that T'(z;;) = true, otherwise the clauses of the form (z,;Vz2;V...Vz,;) and
(—x;; Vzkj) cannot all be satisfied. Similarly, clauses (z;1VZ2V...V ;) and
(—z;;V -z) guarantee that for each 4 there exists a unique j such that T'(z;;) =

true. Hence, T really represents a permutation (1), ..., n(n) of the nodes of G,
where 7(¢) = j if and only if T'(z;;) = true. However, clauses (—zk; V - Zk+1,5)
where (¢,) is not an edge of G and k = 1,...,n — 1 guarantee that, for all

k, (n(k),m(k + 1)) is an edge of G. This means that (7(1),7(2),...,7(n)) is a

162 Chapter 8: REDUCTIONS AND COMPLETENESS

Hamilton path of G.

Conversely, suppose that G' has a Hamilton path (7(1),7(2),...,m(n)),
where 7 is a permutation. Then it is clear that the truth assignment T'(z;;) =
true if 7 (i) = j, and T'(z;;) = false if (i) # j, satisfies all clauses of R(G).

We still have to show that R can be computed in space logn. Given G
as an input, a Turing machine M outputs R(G) as follows: First it writes n,
the number of ‘nodes of G, in binary, and, based on n it generates in its output
tape, one by one, the clauses that do not depend on the graph (the first four
groups in the description of R(G)). To this end, M just needs three counters,
i, j, and k, to help construct the indices of the variables in the clauses. For
the last group, the one that depends on GG, M again generates one by one in its
work string all clauses of the form (—=zg; V —Zg+1,;) for k =1,...,n — 1; after
such a clause is generated, M looks at its input to see whether (3, j) is an edge
of G, and if it is not, then it outputs the clause. This completes our proof that
HAMILTON PATH can be reduced to SAT.

We shall see many more reductions in this book; however, the present
reduction 'is one of the simplest and clearest that we shall encounter. The
clauses produced express in a straightforward and natural way the requirements
of HAMILTON PATH, and the proof need only check that this translation is indeed
accurate. Since SAT, the “target” problem, is a problem inspired from logic,
one should not be surprised that it can “express” other problems quite readily:
After all, expressiveness is logic’s strongest suit. []

Example 8.2: We can also reduce REACHABILITY to CIRCUIT VALUE (another
problem inspired by logic). We are given a graph G and wish to construct a
variable-free circuit R(G) such that the output of R(G) is true if and only if
there is a path from node 1 to node n in G.
The gates of R(G) are of the form g;;x with 1 < 4,5 <nand 0 < k < n,
and h;jx with 1 < 4,7,k < n. Intuitively, g;;x is true if and only if there is a
path in G from node ¢ to node j not using any intermediate node bigger than
k. On the other hand, h;j; will be true if and only if there is a path in G
from node 7 to node j again not using intermediate nodes bigger than k, but
using k as an intermediate node. We shall next describe each gate’s sort and
predecessors. For k = 0, all g;;jo gates are input gates (recall that there are no
hijo gates). In particular, g;;o is a true gate if and only if either i = j or (3, 5)
is an edge of G, and it is a false gate otherwise. This is how the structure
of G is reflected in R(G). For k = 1,...,n, h;jx is an AND gate (that is,
s(hijk) = A), and its predecessors are g; x x—1 and gk j k-1 (that is, there are
edges (i k,k—1, Rijk) and (gk,j,k—1, hiji) in R(G)). Also, for k =1,...,n, gk is
an OR gate, and there are edges (g; j k—1, gijk) and (Rijk, gijx) in R(G). Finally,
J1nn is the output gate. This completes the description of circuit R(G).
It is easy to see that R(G) is indeed a legitimate variable-free circuit, whose

8.1 Reductions 163

gates can be renamed 1,2,...,2n3 + n? (in nondecreasing order of the third
index, say) so that edges go from lower-numbered gates to higher-numbered
ones, and indegrees are in accordance to sorts. (Notice that there are no NOT
gates in R(G).) We shall next show that the value of the output gate of R(G)
is true if and only if there is a path from 1 to n in G.

We shall prove by induction on k that the values of the gates are indeed
the informal meanings described above. The claim is true when k = 0, and if
it is true up to k — 1, the definitions of h;;x as (gik,k—1 A gk,j,k—1) and of h;jx
as (hijk V gi,jx—1) guarantee it to be true for k as well. Hence, the output gate
91nn is true if and only if there is a path from 1 to n using no intermediate
nodes numbered above n (of which there is none), that is, if and only if there
is a path from 1 to n in G.

Furthermore, R can be computed in logn space. The machine would again
go over all possible indices i, j, and k, and output the appropriate edges and
sorts for the variables. Hence R is a reduction from REACHABILITY to CIRCUIT
VALUE.

It is instructive to notice that circuit R(G) is derived from a polynomial-
time algorithm for REACHABILITY, namely the well-known Floyd-Warshall al-
gorithm. As we shall see soon, rendering polynomial algorithms as variable-free
circuits is a quite general pattern. It is remarkable that the circuit uses no NOT
gates, and is thus a monotone circuit (see Problems 4.4.13 and 8.4.7). Finally,
notice that the circuit constructed has depth (length of the longest path from
an input to an output gate) that is linear in n. In Chapter 15 we shall exhibit
a much “shallower” circuit for the same problem. []

Example 8.3: We can also reduce CIRCUIT SAT (recall Section 4.3) to SAT.
We are given a circuit C, and wish to produce a Boolean expression R(C') such
that R(C) is satisfiable if and only if C is satisfiable. But this is not hard to
do, since expressions and circuits are different ways of representing Boolean
functions, and translations back and forth are easy. The variables of R(C) will
contain all variables appearing in C, and in addition, for each gate g of C' we are
going to have a variable in R(C), also denoted g. For each gate of C' we shall
generate certain clauses of R(C). If g is a variable gate, say corresponding to
variable z, then we add the two clauses (~g V z) and (g V —z). Notice that any
truth assignment T that satisfies both clauses must have T'(g) = T'(z); to put
it otherwise, (—gV) A(gV —) is the conjunctive normal form of g < z. If g is
a true gate, then we add the clause (g); if it is a false gate, we add the clause
(—g). If g is a NOT gate, and its predecessor in C' is gate h, we add the gates
(mg vV —h) and (g V h) (the conjunctive normal form of (g & —h)). If g is an
OR gate with predecessors h and h’, then we add to R(C') the clauses (-hV g),
(=h’' Vv g), and (h V k' V ~g) (the conjunctive normal form of g & (h V h')).
Similarly, if ¢ is an AND gate with predecessors h and h’, then we add to R(C)

164 Chapter 8: REDUCTIONS AND COMPLETENESS

the clauses (—gVh), (mgVh'), and (-hV-h'Vg). Finally, if g is also the output
gate, we add to R(C) the clause (g). It is easy to see that R(C) is satisfiable
if and only if C' was, and that the construction can be carried out within logn
space. []

Example 8.4: One trivial but very useful kind of reduction is reduction by
generalization. We say, informally, that problem A is a special case of problem
B if the inputs of A comprise an easily recognizable subset of the inputs of B,
and on those inputs A and B have the same answers. For example, CIRCUIT
VALUE is a special case of CIRCUIT SAT: Its inputs are all circuits that happen
to be variable-free; and on those circuits the CIRCUIT VALUE problem and the
CIRCUIT SAT problem have identical answers. Another way to say the same
thing is that CIRCUIT SAT is a generalization of CIRCUIT VALUE. Notice that
there is a trivial reduction from CIRCUIT VALUE to CIRCUIT SAT: Just take R
to be the identity function. (]

There is a chain of reductions that can be traced in the above examples:
From REACHABILITY to CIRCUIT VALUE, to CIRCUIT SAT, to SAT. Do we then
have a reduction from REACHABILITY to SAT? That reductions compose re-
quires some proof:

Proposition 8.2: If R is a reduction from language L, to L, and R’ is a
reduction from language Lo to L3, then the composition R - R is a reduction
from L; to Ls.

Proof: That x € L, if and only if R'(R(z)) € L3 is immediate from the fact
that R and R’ are reductions. The nontrivial part is to show that R- R’ can be
computed in space logn.

One first idea is to compose the two machines with input and output, Mg
and Mg, that compute R and R’ respectively (Figure 8.2) so that R(z) is first
produced, and from it the final output R’'(R(z)). Alas, the composite machine
M must have R(z) written on a work string; and R(z) may be much longer
than log |z|. '

The solution to this problem is clever and simple: We do not explicitly
store the intermediate result in a string of M. Instead, we simulate Mg on
input R(z) by remembering at all times the cursor position ¢ of the input string
of Mg/ (which is the output string of Mg). i is stored in binary in a new string
of M. Initially ¢ = 1, and we have a separate set of strings on which we are
about to begin the simulation of Mg on input z.

Since we know that the input cursor in the beginning scans a b, it is easy
to simulate the first move of Mg. Whenever the cursor of Mg/’s input string
moves to the right, we increment i by one, and continue the computation of
machine Mg on input x (on the separate set of strings) long enough for it to
produce the next output symbol; this is the symbol currently scanned by the
input cursor of Mg/, and so the simulation can go on. If the cursor stays at the

8.2 Completeness 165

R'(R(z))

Figure 8-2. How not to compose reductions.

same position, we just remember the input symbol scanned. If, however, the
input cursor of Mg moves to the left, there is no obvious way to continue the
simulation, since the previous symbol output by Mz has been long forgotten.
We must do something more radical: We decrement 7 by one, and then run Mg
on z from the beginning, counting on a separate string the symbols output,
and stopping when the ¢th symbol is output. Once we know this symbol, the
simulation of Mg/ can be resumed. It is clear that this machine indeed computes
R - R’ in space logn (recall that |R(z)| is at most polynomial in n = |z|, and
so ¢ has O(logn) bits). [

8.2 COMPLETENESS

Since reducibility is transitive, it orders problems with respect to their difficulty.
We shall be particularly interested in the maximal elements of this partial order:

Definition 8.2: Let C be a complexity class, and let L be a language in C.
We say that L is C-complete if any language L’ € C can be reduced to L. []

Although it is not a priori clear that complete problems exist, we shall soon
show that certain natural and familiar problems are NP-complete, and others
~ P-complete; in future chapters we shall introduce PSPACE-complete problems,
NL-complete ones, and more.

Complete problems comprise an extremely central concept and method-

166 Chapter 8: REDUCTIONS AND COMPLETENESS

ological tool for complexity theory (with NP-complete problems perhaps the
best-known example). We feel that we have completely understood and catego-
rized the complexity of a problem only if the problem is known to be complete
for its complexity class. On the other hand, complete problems capture the
essence and difficulty of a class. They are the link that keeps complexity classes
alive and anchored in computational practice. For example, the existence of
important, natural problems that are complete for a class lends the class a sig-
nificance that may not be immediately clear from its definition (NP is a case
in point). Conversely, the absence of natural complete problems makes a class
suspect of being artificial and superfluous. However, the most common use of
completeness is as a negative complexity result: A complete problem is the
least likely among all problems in C to belong in a weaker class C' C C; if it
does, then the whole class C coincides with the weaker class C’ —as long as C’
is closed under reductions. We say that a class C’ is closed under reductions
if, whenever L is reducible to L’ and L’ € C’, then also L € C’. All classes of
interest are of this kind:

Proposition 8.3: P, NP, coNP, L, NL, PSPACE, and EXP are all closed
under reductions.

Proof: Problem 8.4.3. [J

Hence, if a P-complete problem is in L, then P = L, and if it is in NL then
P = NL. If an NP-complete problem is in P, then P = NP. And so on. In
this sense, complete problems are a valuable tool for showing complexity classes
coincide:

Proposition 8.4: If two classes C and C’ are both closed under reductions,
and there is a language L which is complete for both C and C’, then C = C’.

Proof: Since L is complete for C, all languages in C reduce to L € C’. Since C’
is closed under reductions, it follows that C C C’. The other inclusion follows
by symmetry. []

This result is one aspect of the usefulness of complete problems in the study
of complexity. We shall use this method of class identification several times in
Chapters 16, 19, and 20.

To exhibit our first P-complete and NP-complete problems, we employ
a useful method for understanding time complexity which could be called the
table method (recall the reachability method for space complexity). Consider
a polynomial-time Turing machine M = (K, %, 6, s) deciding language L. Its-
computation on input z can be thought of as a |z|* x |z|* computation table
(see Figure 8.3), where |z|* is the time bound. In this table rows are time steps
(ranging from 0 to |z|* — 1), while columns are positions in the string of the
machine (the same range). Thus, the (¢, j)th table entry represents the contents
of position j of the string of M at time 7 (i.e., after ¢ steps of the machine).

8.2 Completeness 167

> 0 1 1 0 U U U UUUUUUUuU
> > 1z 1 O U U U U U U U U U UuUuUu
> > 1 1, 0 U U U U UUUUUUU
> b 1 1 0 U U U U U U U U U U U
> > 1 1 0 Up U U U UUUUUUU
> > 1 1 0 U UUUUUUUULULU
> > 1 1, U U U UUUUUUUUUU
> > 1 1 g U U U U U U Uy U Uy
> Dby 1 1 g U U u U U uuuuuuoguy
> > 1 1 g U uv U U U U U U U oy
> > > 1, U U U U U U UUUUUU
> b D 1 U, U U UUUUDUUUUUU
> > > lgy U U U UUUUUUUULU
> b b U U U U U U U U UUUUUU
> > > U4 U U U U U U U U U U U U
> > > “yes” U U U U U U U U U U U U

Figure 8.3. Computation table.

We shall standardize the computation table a little, so that it is more simple
and flexible. Since we know that any k-string Turing machine can be simulated
by a single-string machine within a polynomial, it is not a loss of generality to
assume that M has one string, and that on any input z it halts after at most
|z|¥ — 2 steps (we can take k high enough so that this holds for z > 2, and we
ignore what happens when |z| < 1). The computation table pads the string
with enough L’s to its right end so that the total length is |z|¥; since Turing
machine strings are extended during the computation by U’s, this padding of
the computation table is no departure from our conventions. Notice that the
actual computation will never get to the right end of the table, for lack of time.
If at time ¢ the state is ¢ and the cursor scans the jth position, then the (¢, j)th
entry of the table is not just the symbol o contained at position j at time ¢, but
a new symbol o,, and thus cursor position and state are also recorded nicely.
However, if ¢ above is “yes” or “no”, then instead of the symbol o, we simply
have “yes” or “no” as an entry of the table.

We further modify the machine so that the cursor starts not at >, but at
the first symbol of the input. Also, the cursor never visits the leftmost >; since
such a visit would be followed immediately by a right move, this is achieved by
telescoping two moves of the machine each time the cursor is about to move to
the leftmost >. Thus, the first symbol in every row of the computation table is
a > (and never an b,). Finally, we shall assume that, if the machine has halted

168 Chapter 8: REDUCTIONS AND COMPLETENESS

before its time bound of n* has expired, and thus one of the symbols “yes” or
“no” appear at a row before the last, then all subsequent rows will be identical
to that one. We say that the table is accepting if Tjyx_; ; = “yes” for some j.

Example 8.5: Recall the machine of Example 2.3 deciding palindromes within
time n2. In Figure 8.3 we show its computation table for input 0110. It is an
accepting table. []

The folowing result follows immediately from the definition of the compu-
tation table:

Proposition 8.5: M accepts z if and only if the computation table of M on
input z is accepting. []

We are now ready for our first completeness result:
Theorem 8.1: CIRCUIT VALUE is P-complete.

Proof: We know that CIRCUIT VALUE is in P (this is a prerequisite for a
problem to be P-complete, recall Definition 8.2). We shall show that for any
language L € P there is a reduction R from L to CIRCUIT VALUE.

Given any input z, R(z) must be a variable-free circuit such that z € L
if and only if the value of R(z) is true. Let M be the Turing machine that
decides L in time n*, and consider the computation table of M on z, call it T..
When i = 0, or j =0, or j = |z|¥ — 1, then the value of T}; is a priori known
(the jth symbol of x or a LI in the first case, a b in the second, a L in the third).

Consider now any other entry T;; of the table. The value of T;; reflects
the contents of position j of the string at time i, which depends only on the
contents of the same position or adjacent positions at time ¢ — 1. That is, T;;
depends only on the entries T;_; ;_1, T;—1,j, and T;_1 j+1 (see Figure 8.4(a)).
For example, if all three entries are symbols in ¥, then this means that the
cursor at step ¢ is not at or around position j of the string, and hence T;; is
the same as T;_; ;. If one of the entries T;_; j_1, T5—1,j, or Ti—1 j+1 is of the
form o4, then T;; may be a new symbol written at step ¢, or of the form o, if
the cursor moves to position j, or perhaps again the same symbol as T;_; ;. In
all cases, to determine T;; we need only look at T;_; j_1, T;—1,5, and T;_1 j41.

Let I denote the set of all symbols that can appear on the table (symbols
of the alphabet of M, or symbol-state combinations). Encode next each symbol
o € T as a vector (s1,...,8m), where s1,...,8,m € {0,1}, and m = [log|T|].
The computation table can now be thought of as a table of binary entries S;;,
with0<i<nkF—-1,0<j<nfF—1and1<?¢<m,. By the observation in
the previous paragraph, each binary entry S;;, only depends on the 3m entries

Si—1,j-1,', Si—1,j,er, and S;_1 j+1,, where ¢ ranges over 1,...,m. That is,
there are m Boolean functions Fi,..., F,, with 3m inputs each such that, for
all4,5 >0

Sije = Fo(Si—1,j-1,1- -1 Si=1,j—-1,ms Si=1,5,1, - - -y Si=1,j+1,m)

8.2 Completeness 169

Si—1,j-1,1 Si—1,j+1,m
NN
i—1,j—1| i-1,5 [i—1,j+1
C
i,J
S,;jl...S,;jm
(a) (b)
AN RN

| HIEEEEEEEEEEREEEREEN

C C C
HERRERERRRERR
()

Figure 8-4. The construction of the circuit.

(we call these functions Boolean by disregarding for a moment the difference
between false-true and 0-1). Since every Boolean function can be rendered as
a Boolean circuit (recall Section 4.3), it follows that there is a Boolean circuit C
with 3m inputs and m outputs that computes the binary encoding of T;; given
the binary encodings of T;_; j_1, T;—1,, and T;_1 ;41 foralli =1,...,|z|F and
j=1,...,]z|* — 1 (see Figure 8.4(b)). Circuit C depends only on M, and has
a fixed, constant size, independent of the length of z.

170 Chapter 8: REDUCTIONS AND COMPLETENESS

We are now ready to describe our reduction R from L, the language in P
decided by M, to CIRCUIT VALUE. For each input z, R(z) will basically consist
of (|z|*¥ —1) - (|z|* —2) copies of the circuit C (Figure 8.4(c)), one for each entry
T;; of the computation table that is not on the top row or the two extreme
columns. Let us call C;; the (¢, j)th copy of C. For ¢ > 1, the input gates of
Cij will be identified with the output ga.tes of Ci—-l,j—-l, Ci—-l,j, and Ci_1’j+1.
The input gates of the overall circuit are the gates corresponding to the first
row, and the first and last column. The sorts (true or false) of these gates
correspond to the known contents of these three lines. Finally, the output gate
of the R(x) is the first output of circuit C|;x_;; (here we are assuming, with
no loss of generality, that M always ends with “yes” or “no” on its second string
position, and that the first bit of the encoding of “yes” is 1, whereas the of “no”
is 0). This completes the description of R(z).

We claim that the value of circuit R(z) is true if and only if £ € L. Suppose
that the value of R(z) is indeed true. It is easy to establish by induction on %
that the values of the outputs of circuits C;; spell in binary the entries of the
computation table of M on z. Since the output of R(z) is true, this means
that entry Tj;x_,,; of the computation table is “yes” (since it can only be “yes”
or “no”, and the encoding of “no” starts with a 0). It follows that the table is
accepting, and thus M accepts z; therefore z € L.

Conversely, if x € L then the computation table is accepting, and thus the
value of the circuit R(z) is true, as required.

It remains to argue that R can be carried out in log |z| space. Recall that
circuit C is fixed, depending only on M. The computation of R entails con-
structing the input gates (easy to do by inspecting z and counting up to |z|¥),
and generating many indexed copies of the fixed circuit C and identifying appro-
priate input and output gates of these copies—tasks involving straightforward
manipulations of indices, and thus easy to perform in O(log |z|) space. []

In CIRCUIT VALUE we allow AND, OR, and NOT gates in our circuits (be-
sides the input gates, of course). As it turns out, NOT gates can be eliminated,
and the problem remains P-complete. This is rather surprising, because it is
well-known that circuits with only AND and OR gates are less expressive than
general circuits: They can only compute monotone Boolean functions (recall
Problem 4.4.13). Despite the fact that monotone circuits are far less expressive
than general circuits, monotone circuits with constant inputs are as difficult to
evaluate as general ones. To see this, notice that, given any general circuit we
can “move the NOTs downwards,” applying De Morgan’s Laws at each step
(basically, changing all ANDs to ORs and vice-versa) until they are applied
to inputs. Then we can simply change —true to false (creating a new input
gate each time), or vice-versa. This modification of the circuit can obviously
be carried out in logarithmic space. We therefore have:

8.2 Completeness 171

Corollary: MONOTONE CIRCUIT VALUE is P-complete.

For other special cases of CIRCUIT VALUE see Problems 8.4.7.

We next prove our first NP-completeness result, reusing much of the ma-
chinery developed for Theorem 8.1.

Theorem 8.2 (Cook’s Theorem): SAT is NP-complete.

Proof: The problem is in NP: Given a satisfiable Boolean expression, a non-
deterministic machine can “guess” the satisfying truth assignment and verify it
in polynomial time. Since we know (Example 8.3) that CIRCUIT SAT reduces
to SAT, we need to show that all languages in NP can be reduced to CIRCUIT
SAT.

Let L € NP. We shall describe a reduction R which for each string z
constructs a circuit R(z) (with inputs that can be either variables or constants)
such that z € L if and only if R(z) is satisfiable. Since L € NP, there is
a nondeterministic Turing machine M = (K, X, A, s) that decides L in time
nk. That is, given a string z, there is an accepting computation (sequence of
nondeterministic choices) of M on input z if and only if x € L. We assume
that M has a single string; furthermore, we can assume that it has at each step
two nondeterministic choices. If for some state-symbol combinations there are
m > 2 choices in A, we modify M by adding m — 2 new states so that the same
effect is achieved (see Figure 8.5 for an illustration). If for some combination
there is only one choice, we consider that the two choices coincide; and finally
if for some state-symbol combination there is no choice in A, we add to A the
choice that changes no state, symbol, or position. So, machine M has exactly
two choices for each symbol-state combination. One of these choices is called
choice 0 and the other choice 1, so that a sequence of nondeterministic choices

is simply a bitstring (c1,€2,- -+, C)ze—1) € {0, 1}|“’|k—1,

Figure 8-5. Reducing the degree of nondeterminism.

172 Chapter 8: REDUCTIONS AND COMPLETENESS

Since the computation of nondeterministic Turing machines proceeds in
parallel paths (recall Figure 2.9), there is no simple notion of computation table
that captures all of the behavior of such a machine on an input. If, however,
we fix a sequence of choices ¢ = (co,cz,...,C|zx—1), then the computation is
effectively deterministic (at the ith step we take choice ¢;), and thus we can
define the computation table T'(M, z, c) corresponding to the machine, input,
and sequence of choices. Again the top row and the extreme columns of the
table will be predetermined. All other entries T;; will depend only on the
entries T;_1 -1, Ti-1,5, and T;_1 ;41 and the choice c;—; at the previous step
(see Figure 8.6). That is, this time the fixed circuit C has 3m + 1 entries
instead of 3m, the extra entry corresponding to the nondeterministic choice.
Thus we can again construct in O(log|z|) space a circuit R(z), this time with
variable gates co,ci,...,Cjzx_1 corresponding to the nondeterministic choices
of the machine. It follows immediately that R(x) is satisfiable (that is, there
is a sequence of choices cp,ci,...,cgx_1 such that the computation table is
accepting) if and only if z € L. []

Si—1,j-1,1 Si—1,j+1,m

HEEEEEEEEEET Ci—1

C

Sij1..- Sijm

Figure 8-6. The construction for Cook’s theorem.

We shall see many more NP-complete problems in the next chapter.

8.3 LOGICAL CHARACTERIZATIONS

Theorems 8.1 and 8.2, establishing that two computational problems from logic
are complete for our two most important complexity classes, are ample evidence
of the close relationship between logic and complexity. There is an interesting
parallel, pursued in this section, in which logic captures complexity classes in
an even more direct way. Recall that we can associate with each expression ¢
of first-order logic (or of existential second-order logic, recall Section 5.7) in the
vocabulary of graph theery a computational problem called ¢-GRAPHS, asking
whether a given finite graph satisfies ¢. In Section 5.7 we showed that for any
expression ¢ in existential second-order logic ¢-GRAPHS is in NP, and it is in
P if ¢ is Horn. We shall now show the converse statements.

8.3 Logical Characterizations 173

Let G be a set of finite graphs—that is, a graph-theoretic property. The
computational problem corresponding to G is to decide, given a graph G,
whether G € G. We say that G is expressible in existential second-order logic
if there is an existential second-order logic sentence 3P¢ such that G |= 3P¢ if
and only if G € G.

Naturally, there are many computational problems that do not correspond
to properties of graphs. It can be argued, however, that this is an artifact of
our preference for strings over graphs as the basis of our encodings. Graphs are
perfectly adequate for encoding arbitrary mathematical objects. For example,
any language L can be thought of as a set of graphs G, where G € G if and only
if the first row of the adjacency matrix of G spells a string in L. With this in
mind (and only in this section) we shall denote by P the sets of graph-theoretic
properties whose corresponding computational problem is in P, and the same

for NPT,

Theorem 8.3 (Fagin’s Theorem): The class of all graph-theoretic properties
expressible in existential second-order logic is precisely NP.

Proof: If G is expressible in existential second-order logic, we already know
from Theorem 5.8 that it is indeed in NP. For the other direction, suppose
that G is a graph property in NP. That is, there is a nondeterministic Turing
machine M deciding whether G € G for some graph G with n nodes in time n*
for some integer kK > 2. We shall construct a second-order expression 3P¢ such
that G |= 3P¢ if and only if G € G.

We must first standardize our nondeterministic machines a little more. We
can assume that the input of M is the adjacency matrix of the graph under
consideration. In fact, we shall assume that the adjacency matrix is spread
over the input string in a rather peculiar way: The input starts off with the
(1,1)st entry of the adjacency matrix, and between any two entries we have
nk=2 — 1 UW’s. That is, the input is spread over n* positions of the string; since
the machine may start by condensing its input, this is no loss of generality.

We are now ready to start our description of 3P¢. P will be a relation
symbol with very high arity. In fact, it will be much more clear to describe an
equivalent expression of the form JP, ...dP,, ¢, where the P;’s are relational
symbols; P will then be the Cartesian product of the P;’s. We call the P;’s the
new relations, and describe them next.

First, S is a binary new relation symbol whose intention is to represent a
successor function over the nodes of G; that is, in any model M of ¢, S will be
a relation isomorphic to {(0,1),(1,2),...,(n — 2,n — 1)} (notice that here we

T If the reader feels uncomfortable with this sudden change in our most basic conventions,
there is another way of stating Theorem 8.3: NP is precisely the class of all languages
that are reducible to some graph-theoretic property expressed in existential second-order
logic; similarly for Theorem 8.4. See Problem 8.4.12.

174 Chapter 8: REDUCTIONS AND COMPLETENESS

assume that the nodes of G are 0,1,...,n — 1 instead of the usual 1,2,...,n;
this is, of course, inconsequential). We shall not describe now how S can be
prescribed in first-order logic (Problem 8.4.11); most of the work has already
been done in Example 5.12 where a Hamilton path was specified.

Once we have S, and thus we can identify the nodes of G with the integers
0,1,...,n — 1, we can define some interesting relations. For example, {(z) is
an abbreviation of the expression Vy—S(y,x), which states that node z is 0,
the element with no predecessor in S; on the other hand, 7(j) is an expression
which abbreviates Vy—S(z,y), stating that node z equals n — 1.

Since the variables stand for numbers between 0 and n — 1 (whatever n —1
may be in the present model), k-tuples of variables may be used to represent
numbers between 0 and n* — 1 with k the degree of the polynomial bound of
M. We shall abbreviate k-tuples of variables (z1,...,2%) as x. In fact, we can
define a first-order expression Sy with 2k free variables, such that Sk(x,y) if
and only if y encodes the k-digit n-ary number that comes after the one encoded
by x. That is, Sk is the successor function in {0, 1,...,n* —1}.

We shall define S; inductively on j. First, if j = 1 then obviously S; is
S itself. For the inductive step, suppose that we already have an expression
Si—1(z1,...,Tk-1,Y1,-..,Yj—1) that defines the successor function for j — 1
digits. Then the expression defining S; is this (universally quantified over all
variables):

[S(zj,y;)) AN(@1=y1) A A(Zj—1 = yj-1))]V
[77(933') AC(Y) ASj—1(zr, -, Tjm1, 01, -+ -, Yj—1)

That is, in order to obtain from z, ... z; the n-ary description of its succes-
sor yi ...y; (least significant digit first) we do this: If the last digit of x is not
n — 1 (first line), then we just increment it and keep all other digits the same.
But if it is n — 1, then it becomes zero, and the remaining j — 1-digit number is
incremented, recursively. Thus, Sk(x,y) is indeed a first-order expression, in-
volving O(k?) symbols, satisfied if and only if x and y are consecutive integers
between zero and n* — 1. It will appear in several places in the expression 3P¢
described below.

Now that we have Sk, and therefore “we can count up to n*,” we can
describe the computation table for M on input z. In particular, for each symbol
o appearing on the computation table, we have a 2k-ary new relation symbol T .
T,(x,y) means that the (z,j)th entry of the computation table T is symbol o,
where x encodes i and y encodes j. Finally, for the two nondeterministic choices
0 and 1 at each step of M we have two k-ary symbols Cy and C}; for example,
Co(x) means that at the ith step, where x encodes ¢, the Oth nondeterministic
choice is made. These are all the new relations; the second-order formula will
thus be of the form 35375, ... 3T, ICoAC, ¢.

i

8.3 Logical Characterizations 175

All that remains is to describe ¢. ¢ essentially states (besides the fact that
S is a successor relation, which we omit) the following:

(a) The top row and the extreme columns of T are as they should be in a legal

computation table of M on input z.

(b) All remaining entries are filled according to the transition relation of M.
(c) One nondeterministic choice is taken at each step. Finally,
(d) The machine ends accepting.

For part (a) we have to state that, if x encodes 0 then Ti,(x,y), unless
the last k¥ — 2 components of y are all 0, in which case T1(x,y) or Tp(x,y),
depending on whether or not G(y;,y2), where G is the input graph (recall our
peculiar input convention). This is the only place where G occurs in ¢. Also
for part (a) we must state that, if y encodes 0 then T}, (x,y), while if y encodes
n* — 1 then T, (x,y)

For part (b), we must require that the computation table reflects the
transition relation of M. Notice that the transition relation of M can be ex-
pressed as a set of quintuples (e, 3,7, ¢, o) where a, 3,7, 0 are table symbols,
and ¢ € {0,1} is a nondeterministic choice. Each such quintuple means that,
whenever T'(: —1,j—1) =, T(i —1,5) = 8 T(i—1,j + 1) = «, and the choice
¢ was made at the ¢ — 1st step, then T'(¢,j) = 0. For each such quintuple we
have the following conjunct in ¢:

[Sk(x', %) ASk(y', ¥) ASk(y,¥") ATa(X,y') ATp(x', y) ATy (%, ") A Ce(x)]
= Ty (x,y).

The appearances of Sy in this expression are independent copies of the expres-
sion defined ‘inductively earlier in the proof.
Part (c) states that at all times exactly one of the nondeterministic choices
is taken:
(Co(x) V C1(x)) A (=Co(x) V ~C1(x)). (1)

Interestingly, this is a crucial part of the construction—for example, it is the
only place where we have a non-Horn clause!

Part (d) is the easiest one: 6(x,y) = —T«,,»(X,y) where §(x,y) abbre-
viates the obvious expression stating that x encodes n* — 1 and y encodes 1
(recall our convention that the machine stops with “yes” or “no” at the first
string position). The conjunction of all these clauses is then preceded by 5k
universal quantifiers, corresponding to the variable groups x, x/, y, y/, y”. The
construction of the expression is now complete.

We claim that a given graph G satisfies the second-order expression above
if and only if G € G. The expression was constructed in such a way that it is
satisfied by exactly those graphs G which, when input to M, have an accepting
sequence of nondeterministic choices, and thus an accepting computation table;
that is, precisely the graphs in G. [1

176 Chapter 8: REDUCTIONS AND COMPLETENESS

We would have liked to conclude this section with the converse of Theorem
5.9, stating that the set of properties expressible in Horn existential second-
order expressions is precisely P. Unfortunately, this is not true. There are
certain computationally trivial graph-theoretic properties such as “the graph
has an even number of edges” which cannot be expressed in Horn existential
second-order logic (see Problems 8.4.15). The difficulty is of a rather unex-
pected nature: Of all the ingredients needed to express deterministic polyno-
mial computation (in the style of the previous proof), the only one that cannot
be expressed in the Horn fragment is the requirement that S be a successor. If,
however, we augment our logic with a successor relation, we obtain the desired
result.

Let us define precisely what we mean: We say that a graph-theoretic prop-
erty G is expressible in Horn existential second-order logic with successor if
there is a Horn existential second-order expression ¢ with two binary relational
symbols G and S, such that the following is true: For any model M appropriate
for ¢ such that SM is a linear order on the nodes of GM, M |= ¢ if and only if
GM e g.

Theorem 8.4: The class of all graph-theoretic properties expressible in Horn
existential second-order logic with successor is precisely P.

Proof: One direction was proven as Theorem 5.9. For the other direction, given
a deterministic Turing machine M deciding graph-theoretic property G within
time n*, we shall construct an expression in Horn existential second-order logic
that expresses G (assuming, of course, that S is a successor). The construction is
identical to that of the previous proof, except a little simpler. The constituents
of P are now just the T,’s, since S is now a part of our basic vocabulary. More
importantly, there is no Cy or C1, since the machine is deterministic. As result,
the expression produced is Horn. The proof is complete. []

Recall now the special case of SAT with Horn clauses, shown polynomial in
Theorem 4.2.
Corollary: HORNSAT is P-complete.

Proof: The problem is in P by Theorem 4.2. And we know from the proof
of Theorem 5.9 that any problem of the form ¢-GRAPHS, where ¢ is a Horn
expression in existential second-order logic, can be reduced to HORNSAT. But
Theorem 8.4 says that this accounts for all problems in P. []

8.4 Notes, References, and Problems 177

8.4 NOTES, REFERENCES, AND PROBLEMS

8.4.1 There are many different kinds of reductions; our logarithmic-space reduction is
about the weakest kind that has been proposed (and is therefore more useful and con-
vincing as evidence of difficulty); but see Problem 16.4.4 for even weaker reductions,
useful for L and below. Surprisingly, it is all we need in order to develop the many
completeness results in this book—besides, demonstrating that a reduction can be
carried out in logarithmic space is usually very easy. Traditionally NP-completeness
is defined in terms of polynomial-time many-one reduction (also called polynomial
transformation, or Karp reduction); and logarithmic-space reductions are only used
for P and below. It is open whether NP-complete problems under the two definitions
coincide.

A polynomial-time Turing reduction or Cook reduction is best explained in terms
of oracle machines (see the definition in Section 14.3): Language L Cook-reduces to
L' if and only if there is a polynomial-time oracle machine M’ such that M L' decides
L. In other words, polynomially many queries of the type “x € L'?” are allowed (and
not just one and in the end as with Karp reductions). Polynomial Turing reductions
appear to be much stronger (see Section 17.1).

There is an intermediate form of reduction called polynomial-time truth-table
reduction. In this reduction we can ask several “r € L'?” queries but all must be
asked before any of them is answered. That is, we obtain the final answer as a
Boolean function of the answers (hence the name). For interesting results concerning
the four kinds of reductions see

o R. E. Ladner, N. A. Lynch, and A. L. Selman “A comparison of polynomial time
reducibilities,” Theor. Comp. Sci., 1, pp. 103-124, 1975.

But there are many other kinds of reductions: For nondeterministic reductions see
Problem 10.4.2, and for randomized reductions see Section 18.2. In fact, studying
the behavior of different kinds of reductions (in their broader sense that includes
oracles) and making fine distinctions between them comprises a major part of the
research activity in the area known as structural complexity (whose annual conference
is referenced many times in this book). For a nice exposition of that point of view of
complexity see

o J. L. Balcdzar, J. Diaz, J. Gabarrd Structural Complexity, vols. I and 11, Springer-
Verlag, Berlin, 1988.

Obviously, this direction is rather orthogonal to our concerns here.

8.4.2 Problem: A linear-time reduction R must complete its output R(z) in O(|z|)
steps. Prove that there are no P-complete problems under linear-time reductions.
(Such a problem would be in TIME(n*) for some fixed k > 0.)

8.4.3 Problem: Prove Proposition 8.3, namely that the classes P, NP, coNP, L,
NL, PSPACE, and EXP are closed under reductions. Is TIME(n?) closed under
reductions?

8.4.4 Generic complete problems. Show that all languages in TIME(f(n))
reduce to {M;x : M accepts z in f(|z|) steps}, where f(n) > n is a proper complexity

178 Chapter 8: REDUCTIONS AND COMPLETENESS

function. Is this language in TIME(f(n))?
Repeat for nondeterministic classes, and for space complexity classes.

8.4.5 If C is a complexity class, a language L is called C-hard if all languages in C
reduce to L but L is not known to be in C. C-hardness implies that L cannot be in
any weaker class closed under reductions, unless C is a subset of that class. But of
course L could have much higher complexity than any language in C, and thus it fails
to capture the class. For example, many languages decidable in exponential time or
worse are trivially NP-hard, but they certainly are not as faithful representatives of
NP as the NP-complete problems. We shall not need this concept in this book.

8.4.6 Cook’s theorem is of course due to Stephen Cook:

o S. A. Cook “The complexity of theorem-proving procedures,” Proceedings of the
3rd IEEE Symp. on the Foundations of Computer Science, pp. 151-158, 1971.

A subsequent paper by Richard Karp pointed out the true wealth of NP-complete
problems (many of these results are proved in the next chapter), and therefore the
significance of NP-completeness:

o R. M. Karp “Reducibility among combinatorial problems,” pp. 85-103 in Com-
plexity of Computer Computations, edited by J. W. Thatcher and R. E. Miller,
Plenum Press, New York, 1972.

Independently, Leonid Levin showed that several combinatorial problems are “univer-
sal for exhaustive search,” a concept easily identified with NP-completeness (Cook’s
theorem is sometimes referred to as the Cook-Levin theorem).

o L. A. Levin “Universal sorting problems,” Problems of Information Transmission,
9, pp.- 265-266, 1973.

The P-completeness of the CIRCUIT VALUE problem (Theorem 8.1) was first pointed
out in:

o R. E. Ladner “The circuit value problem is log space complete for P,” SIGACT
News, 7, 1, pp. 18-20, 1975.

8.4.7 Problem: (a) Prove that CIRCUIT VALUE remains P-complete even if the
circuit is planar. (Show how wires can cross with no harm to the computed value.)

(b) Show that CIRCUIT VALUE can be solved in logarithmic space if the circuit is
both planar and monotone. (The two parts are from

o L. M. Goldschlager “The monotone and planar circuit value problems are com-
plete for P,” SIGACT News 9, pp. 25-29, 1977, and

o P. W. Dymond, S. A. Cook “Complexity theory of parallel time and hardware,”
Information and Comput., 80, pp. 205-226, 1989

respectively. So, if your solution of Part (a) did not use NOT gates, maybe you want
to check it again...)

8.4.8 Problem: (a) Define a coding k to be a mapping from X to X, (not necessarily
one-to-one). Ifx = 01...0, € £*, we define k() = k(01) ... k(0n). Finally, if L C ¥*
is a language, define k(L) = {k(x) : ¢ € L}. Show that NP is closed under codings.

8.4 Notes, References, and Problems 179

In contrast, P is probably not closed under codings, but of course, in view of (a), we
cannot prove this without establishing that P # NP. Here is the best we can do:

(b) Show that P is closed under codings if and only if P = NP. (Use SAT.)

8.4.9 Problem: Let f(n) be a function from integers to integers. An f(n)-prover
is an algorithm which, given any valid expression in first-order logic that has a proof
in the axiom system in Figure 5.4 of length ¢, will find this proof in time fo). 1f
the expression is not valid, the algorithm may either report so, or diverge (so the
undecidability of validity is not contradicted).

(a) Show that there is a k™-prover, for some k > 1.

In a letter to John von Neumann in 1956, Kurt Godel hypothesized that an n*-prover
exists, for some k > 1. For a full translation of this remarkable text, as well as
for a discussion of modern-day complexity theory with many interesting historical
references, see

o M. Sipser “The history and status of the P versus NP problem,” Proc. of the
24th Annual ACM Symposium on the Theory of Computing, pp. 603-618, 1992.

Problem: Show that there is an n*-prover, for some k > 1, if and only if P = NP.

8.4.10 Fagin’s theorem 8.3 is from
o R. Fagin “Generalized first-order spectra and polynomial-time recognizable sets,”
pp.- 43-73 in Complexity of Computation, edited by R. M. Karp, SIAM-AMS
Proceedings, vol. 7, 1974.

Theorem 8.4 was implicit independently in

o N. Immerman “Relational queries computable in polynomial time,” Information
and Control, 68, pp. 86—104, 1986;

o M. Y. Vardi “The complexity of relational query languages,” Proceedings of the
14th ACM Symp. on the Theory of Computing, pp. 137-146, 1982; and

o C. H. Papédimitriou “A note on the expressive power of PROLOG,” Bull. of the
EATCS, 26, pp. 21-23, 1985.

The latter paper emphasizes an interesting interpretation of Theorem 8.3 in terms
of the logic programming language PROLOG: Functionless PROLOG programs can
decide precisely the languages in P. The current statement of Theorem 8.4 is based
on
o E. Gréadel “The expressive power of second-order Horn logic,” Proc. 8th Symp. on
Theor. Aspects of Comp. Sci., vol. 480 of Lecture Notes in Computer Science,
pp. 466-477, 1991.

8.4.11 Problem: Give an expression in first-order logic describing the successor
function S in the proof of Fagin’s theorem (Theorem 8.3). (Define a Hamilton path
P as in Example 5.12, only without requiring that it be a subgraph of G, and then
define a new relation S that omits all transitive edges from P.)

8.4.12 Problem: We can state Fagin’s theorem without redefining NP as a class of
sets of graphs, as follows: NP is precisely the class of all languages that are reducible

180 Chapter 8: REDUCTIONS AND COMPLETENESS

to a graph-theoretic property which is expressible in existential second-order logic.
(a) Prove this version of Fagin’s theorem. (Encode strings as graphs.)
(b) State and prove a similar version of Theorem 8.4.

8.4.13 Problem: Show that NP is precisely the set of all graph-theoretic properties
which can be expressed in fixpoint logic with successor (recall Problem 5.9.14).

8.4.14 Problem: Sketch a direct proof of Cook’s theorem from Fagin’s theorem.

8.4.15 It turns out that any graph property ¢ expressible in Horn existential second-
order logic obeys a powerful zero-one law: If all graphs on n nodes are equiprobable,
then the probability that a graph with n nodes satisfies ¢ is either asymptotically
zero, or asymptotically one as n goes to infinity; see

o P. Kolaitis and M. Vardi “0 — 1 laws and decision problems for fragments of
second-order logic,” Proc. 3rd IEEE Symp. on Logic In Comp. Sci, pp. 2-11,
1988.

Problem: Based on this result, show that there are trivial properties of graphs, such
as the property of having an even number of edges, which are not expressible in Horn
existential second-order logic without successor. (What is the probability that a graph
has an even number of edges?)

