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a b s t r a c t

Recommender systems (RS) are often used as guides, helping users to discover products of their inter-

est. Many techniques and approaches to generate an effective recommendation are available for the sys-

tem designers. On the one hand, this is interesting because different application’s scenarios could have a

fittest solution but on the other it can also cause some complexity to select the best technique to address

at each state of the database. Thus, choose the best technique for each new state becomes too difficult

and frequent for manually select. One of big challenges on RS is turn the techniques more useful for

real-world scenarios. Therefore, automate or help the design decision is an important task to improve

the usability of RS and reduce its cost. Although many works aims to improve the performance of RS

for some scenarios, just a few of them try to help the designers on selection or combination of the tech-

niques through applications’ state changes. Therefore, this work proposes an evolutionary approach, called

Invenire, to automate the choice of techniques used by combining results of different recommendation

techniques. This is a new approach that uses a search algorithm to optimize the techniques combina-

tion, and can inspire hybrid methods and expert systems on how automate them. To evaluate the pro-

posal, experiments were performed with a dataset from MovieLens and different collaborative filtering

approaches. The results obtained show that the Invenire outperforms all collaborative filtering approach

separately in all contexts addressed. The improvement achieved varies from 3.6% to 118.99% depending

on the combination encountered and the experiment executed. Thus, the proposal was able to increase

the accuracy on the generated recommendations and automate the combinations of techniques.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

In order to eliminate doubts in situations where we have to

choose among products or items we are faced with, we usually

rely on recommendations passed on by others. These recommen-

dations are given to us directly (“word of mouth”) (Shardanand

& Maes, 1995) or through texts and videos. Film critics, book

reviewers, online social networks, and printed newspapers are

examples of influencer. A recommender system helps to increase

the capacity and effectiveness of transmitting and receiving sug-

gestions, a well known process in the social relationships among

human beings (Resnick & Varian, 1997). In a typical system, people

provide evaluations of items they have bought or used. These

evaluations are usually represented as ratings.1 The recommender
∗ Corresponding author. Tel.: +556282941869.

E-mail addresses: edjalmasilva@inf.ufg.br, edjalma@ambientinformatica.com.br

(E.Q. da Silva), celso@inf.ufg.br (C.G. Camilo-Junior), luizpascoal@inf.ufg.br (L.M.L.

Pascoal), thierson@inf.ufg.br (T.C. Rosa).
1 These ratings are commonly represented as a grade in the range [1, 5] or as a

number of “stars” in the same range.
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ystem uses these gradings from some users to suggest the best n

tems to others. These systems have big challenge to determine the

est combination of user expectations and adequate item (prod-

cts, services or people) to be recommended, i.e., discovering the

elationship of interest and options is a major problem (Cacheda,

arneiro, Fernandez, & Formoso, 2011a).

Adomavicius and Tuzhilin (2005) classify recommender systems

nto three major categories regarding the approach used to gen-

rate the recommendations: (i) content-based approach, in which

imilar items to those the user showed preference in the past are

ecommended; (ii) collaborative filtering, which recommends items

hosen by people with similar preferences to the user and; (iii)

ybrid approaches that combine techniques of both previous ap-

roaches to attempt to solve some problems inherent to each of

hem in isolation.

Collaborative filtering (CF) is one of the most used recommen-

ation technologies. This method calculate the similarity between

sers and uses this information to recommend items not yet tried

y the target user (Hu & Pu, 2010). The similarity is based on past

eviews of shared items. This similarity is used to generate rec-

mmendations of items that were previously evaluated by these

http://dx.doi.org/10.1016/j.eswa.2015.12.050
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2015.12.050&domain=pdf
mailto:edjalmasilva@inf.ufg.br
mailto:edjalma@ambientinformatica.com.br
mailto:celso@inf.ufg.br
mailto:luizpascoal@inf.ufg.br
mailto:thierson@inf.ufg.br
http://dx.doi.org/10.1016/j.eswa.2015.12.050


E.Q. da Silva et al. / Expert Systems With Applications 53 (2016) 204–218 205

s

(

a

g

a

e

t

b

I

fi

a

s

f

e

S

i

a

t

c

b

i

n

t

a

d

m

N

c

e

t

o

d

t

h

b

c

t

m

i

c

m

t

r

t

o

p

d

F

H

c

n

&

2

t

p

M

t

r

(

t

l

n

m

t

r

a

i

i

o

m

r

m

t

b

t

t

m

m

o

t

r

e

d

i

i

b

I

t

S

c

2

a

i

t

t

b

q

T

e

t

imilar users but that were not yet evaluated by the target user

Herlocker, Konstan, Borchers, & Riedl, 1999; Hu & Pu, 2010).

The CF has quickly become popular in the fields of academia

nd industry. Companies like Google, Amazon and Netflix make

reat use of this approach because of its significant competitive

dvantage. The CF approach basically follows four steps (Cacheda

t al., 2011a):

1. Calculate the similarity of each user to the target-user (similar-

ity metrics).

2. Select a subset of h neighbors, i.e., users with highest similar-

ity to the target-user, in order to consider the ratings of these

neighbors in the prediction.

3. Normalize ratings and compute the predictions considering the

evaluations of neighbors with their weights. The weight in this

case is the value of similarity between the neighbor and the

target-user.

4. Sort items in decreasing order of predicted scores and present

the best n items to the target-user.

The collaborative filtering algorithms can be classified into two

ypes: memory-based algorithms and model-based algorithms. They

asically differ in how they process the matrix of ratings (User χ
tem). The model-based algorithms have two distinct phases. In the

rst stage, the algorithm handles the matrix of ratings to gener-

te an efficient model that represents the original matrix. In the

econd step, this generated model is used as the input matrix

or the calculation of prediction rating for target user (Cacheda

t al., 2011a; Resnick, Iacovou, Suchak, Bergstrom, & Riedl, 1994;

hardanand & Maes, 1995). The memory-based collaborative filter-

ng uses the entire matrix to calculate its prediction. First, it use

ny similarity measure to select users (or items) that are similar to

he target-user. Then, the prediction ratings of target user are cal-

ulated from the ratings of his neighbors. Otherwise, the memory-

ased method is divided into two other algorithms. The first one

s called user-based algorithms, where the method for obtaining

eighbors is based on the user (Shardanand & Maes, 1995). And

he second one is called item-based algorithms, where neighbors

re based on item (Sarwar, Karypis, Konstan, & Riedl, 2000).

Because the algorithms are still inefficient in some cases, the

evelopment of new collaborative filtering algorithms has focused

ainly on how to provide accurate recommendations (Goldberg,

ichols, Oki, & Terry, 1992). One of the analyzed points is how one

an well calculate the similarity between users. Various techniques,

.g. Euclidean, Tanimoto and Pearson correlation, are presented in

he literature to do this. On the one hand, the large amount of

ptions is important because gives custom and good solutions for

ifferent domains. However, may cause doubt of which technique

o choose for recommendation process. Each of these approaches

ave particularities and its performance depend on the context to

e applied, therefore each case must be carefully analyzed before

hoosing which technique to adopt.

This process has high cost because the designer spends much

ime running experiments to decide the best technique. Further-

ore, even that he has chosen a good one, when significant mod-

fications happen in the database he should repeat the process be-

ause the algorithms’ performance is highly dependent of rating

atrix (created from database). Therefore, we propose the method

hat automatically combines some rankings of recommendations,

esulting from the memory-based techniques, to get better result

han any of them alone. Our key insight is that combining results

ne can get the best of each addressed technique without the com-

lexity of choose or turn them to hybrid.

As the task of discovering a good combination manually is a

ifficult task, it is desired that the combination be automated.

or such a matter, the work proposes a genetic algorithm(GA;

olland, 1975; Goldberg & Holland, 1988) able to automate the
ombination of results of different memory-based similarity tech-

iques. Although many hybrid approaches were done (Adomavicius

Tuzhilin, 2005; Burke, 2002; 2007; Lu, Wu, Mao, Wang, & Zhang,

015), the use of search algorithm for combine techniques and au-

omate the designers’ decision was not explored and has a great

otential.

The GA was chosen because it is widely used in the literature.

oreover, GAs are known for their flexibility, ease of implementa-

ion, and effectiveness in performing global search in adverse envi-

onments. In this approach, the GA should be able to generate a list

L) of n items to be recommended. These items are selected from

he ranking of techniques used in the combination. Therefore, the

ist formed by the GA depends on the performance of each tech-

ique. The techniques that achieve lower error (RMSE) will have

ore items among the n finals. An example of the composition of

his list, in case of ‖L‖ = 10, would be: 3 items coming from the

ank of technique A, 3 items coming from the rank of technique B,

nd 4 items arising from the rank of technique C, totaling 10 items

n the final list proposed by the GA.

Four experiments was designed to test the proposal. The exper-

ment one (Section 5.1) shows that proposal GA (specialist model)

utperformed the base techniques in a minimum of 9.028% and a

aximum of 48.21%. The experiment two (Section 5.2) shows the

esults for generalist model constructed by proposal. The idea is

easure the impact of generalization in the scenarios. Although

he effectiveness is worse than specialist models and then a few

ase techniques, the efficiency of generalist model is better than

he specialist ones. So, it is an option for who wants low compu-

ational cost. The experiment three (Section 5.3) shows the perfor-

ance of generalist model for different states of a database. This

odel outperformed six from 10 scenarios for a database (M1) and

btained the second best averages on all databases, very close to

he best ones. Finally, the experiment four (Section 5.4) shows the

esults from the comparison experiments between generalist mod-

ls, specialist models and base techniques on different stages of a

atabase. The specialist model outperformed others on all scenar-

os followed by generalist models. The base techniques were worse

n average.

Thus, this work has the following main contributions:

1. An automated and effective approach to select a good combina-

tion of recommendation techniques’ results.

2. The cost reduction for recommender systems design.

3. A flexible method for different application scenarios.

4. A customizable method able to combine many techniques’ re-

sults, including some from different paradigms.

The rest of the work is organized as follows: In Section 2 we

riefly review some of the research literature related to our work.

n Section 3 we present the main theoretical concepts needed

o develop this work. In Section 4 we present our proposal. In

ection 5 we present experiments and results. In Section 6, con-

lusions and future work are shown.

. Related work

The first system created using the collaborative filtering (CF)

pproach was the Tapestry (Goldberg et al., 1992; Resnick & Var-

an, 1997), which was a system with complete capabilities of fil-

ering electronic documents. For instance, a user can create a fil-

ering rules for e-mail such as “Show me all documents answered

y other members of my research group”. However, this system re-

uired the users to determine the relevant predictive relationships.

hus, it were only valuable in small closed communities where ev-

ryone was aware of the interests and duties of other users.

From this, many others works were done to improve the CF sys-

ems. There are studies that make comparisons between traditional
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CF methods and proposal of hybrid schemes (Fong, Ho, & Hang,

2008). Dellarocas (2000) suggests the use of CF techniques com-

bined with basic (field value) and advanced (frequency domain)

mechanisms to predict personalized reputation. Herlocker (2000)

proposes adjustments in the CF technique based on application of

weight on the similarity coefficient given to each rating, based on

the amount of items in common previously evaluated with the

target-user. Other work (Qingshui & Meiyu, 2010), the authors pro-

pose a hybrid model to improve CF algorithms. The proposed algo-

rithm makes use of a content-based approach to get users inter-

ested in the collection of a multi-dimensional vector model, and

then CF is applied to find their target customers interested in the

most similar “neighbors”.

Furthermore, the authors (Lampropoulos, Sotiropoulos, &

Tsihrintzis, 2012) propose a cascade hybrid recommendation to the

combination of One-Class classification and CF. The article breaks

down the problem of recommendation into a cascade recommen-

dation schema of two levels. Thus, it obtains the benefits of the CF

methodologies and content-based approach. The first level makes

use of the content-based approach by applying the One-Class clas-

sification paradigm to incorporate the user preferences individually

(subjective) in the recommendation process approach. The second

level has the purpose of assigning specific scores to items to clas-

sify them.

On a recent work, Lu et al. (2015) present a survey with a large

review of up-to-date application developments of recommender

systems. This paper clustering the applications into different

categories like e-government, e-business, e-commerce/e-shopping,

e-library, e-learning, e-tourism, e-resource services and e-group

activities. Moreover, analyze the most commonly used, for each

application categories, recommendation techniques, like traditional

methods CF, content-based, knowledge-based, and hybrid methods.

The authors emphasize that recommender systems (RS) has being

used on many real-world applications and it is thus vital improve

the quality of recommendation techniques and its applicability.

Therefore, how be useful and effective for real-world scenarios is

a big challenge for RS and a hot topic.

Some researchers have sought to combine different areas of

computer science with the recommender systems to address big

challenges. One of these areas is information retrieval, as seen in

the work of Liu, Koutrika, and Wu (2015) that addresses a common

problem nowadays of reading different documents on-line. The au-

thors report that while reading, people may have difficulty under-

standing a passage or wish to learn more about the topics covered

by it, hence they may naturally seek additional or supplementary

resources for these specifics topics. These resources should be close

to the passage both in terms of the subject matter and the read-

ing level. However, using a search engine to find such resources

interrupts the reading flow and, it is also an inefficient, because

most of web search engines and recommender systems do not sup-

port large queries or do not understand semantic topics. To address

these challenges, Liu et al. present a system that enables on-line

reading material to be smoothly enriched with additional resources

that can supplement or explain any passage from the original ma-

terial for a reader on demand. The system facilitates the learning

process by recommending learning resources (documents, videos,

etc.) for selected text passages of any length. The recommended

resources are ranked based on two criteria (a) how they match the

different topics covered within the selected passage, and (b) the

reading level of the original text where the selected passage comes

from.

Another field that has proven to be a great ally to recom-

mender systems, especially in the movie recommendation domain,

is Semantic Web. Among the papers regarding this area, the work

of Colombo-Mendoza, Valencia-García, Rodríguez-González, Alor-

Hernández, and Samper-Zapater (2015) stands out by presenting
context-aware mobile recommender system based on Semantic

eb technologies. The system uses a domain ontology primarily

erving a semantic similarity metric adjusted to the concept of

packages of single items”, in addition to also use location, crowd

nd time to compose a mobile system named RecomMetz. It has

nique features: (1) the items to be recommended have a com-

osite structure (movie theater + movie + showtime), (2) the inte-

ration of the time and crowd factors into a context-aware model,

3) the implementation of an ontology-based context modeling ap-

roach and (4) the development of a multi-platform native mobile

ser interface intended to leverage the hardware capabilities (sen-

ors) of mobile devices.

Other great ally field is the evolutionary computation (EC).

any works were done based on great optimization capacity of

volutionary algorithms. For instance, Hwang, Su, and Tseng (2010)

se genetic algorithm to optimize the recommendations based on

ersonal preferences. The work of Salehi, Pourzaferani, and Razavi

2013) proposes an evolutionary method to improve the quality of

ecommendation for learning materials based on their attributes.

oreover, the works of Bobadilla, Ortega, Hernando, and Alcalá

2011b) and Pascoal, Camilo, da Silva, and Rosa (2014) propose a

etric to measure similarity between users based on genetic algo-

ithms and the paper (Al-Shamri & Bharadwaj, 2008) proposes a

uzzy-genetic approach to create a hybrid user model.

To the best of our knowledge, just our preliminary work of

a Silva, Camilo, Pascoal, and Rosa (2014) uses EC or other search

lgorithm to combine results from recommendations systems ap-

roaches. This paper introduced the idea of use search algorithm

o combine results of recommendation techniques in order to au-

omate the choice of techniques. The experiments were very small

ust to present the idea, calibrate some parameters, and get more

nsights. Only one scenario that compare GA and base CF tech-

iques was evaluated. The results shown a potential of GA and di-

ected this new and extended work.

The most related and closest works of this paper are about hy-

rid approach, especially the mixed and weighted approach (Burke,

007). The papers based on mixed approach try to present op-

ions from different technique in a side-by-side way. For exam-

le, ProfBuilder system in Ahmad Wasfi (1999) and PTV system in

myth and Cotter (2000). Comparing with our proposal, this ap-

roach minimizes the cost of design decision too, because design-

rs can use at the same time many techniques to make recommen-

ations, and not requires of reruns during the database changes

ike our method requires. However, it increases the decision time

or the users because they have many recommended items to ana-

yze. The works based on weighted approach calculate the score of

ach item by a numerical combination of base techniques’ scores

or this item. Comparing with our proposal, this approach achieves

n effective recommendations based on techniques combination

oo, and not requires a high computational cost like our evolution-

ry method. However, it keeps a high complexity decision for sys-

em designer, who should discover the good weight for each tech-

ique previously. For example, the paper (Mobasher, Jin, & Zhou,

004) used empirical means to find the best parameters for the

ystem. Moreover, a few more works are presented in recent sur-

eys (Adomavicius & Tuzhilin, 2005; Burke, 2002; 2007; Lu et al.,

015) about mixed and weighted hybrid approaches. But none of

hem neither uses search algorithms to optimize the combinations

f results nor focus on reduce the efforts of the system designers.

. Basic concepts

This section presents some background concepts used in this

ork as recommender systems (Section 3.1), collaborative filtering

Section 3.1.1), root mean squared error (Section 3.1.2) and genetic

lgorithm (Section 3.2).
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Fig. 1. Taxonomy of recommender systems proposed by Schafer et al. (2001) for e-commerce.
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.1. Recommender systems

Recommender systems (RS) have become an important area of

esearch since the emergence of the first articles on collaborative

ltering in the mid-1990s. There has been much work performed

n industry and academia with regard to development of new ap-

roaches to RS over the last decade.

Over the years RS were classified in different ways by several

uthors; however, there is not a classification completely accepted

y the user community, professionals and researchers. Schafer,

onstan, and Riedl (2001) modeled the architecture of a recom-

ender system and produced a fairly comprehensive taxonomy

hat considers various characteristics of an RS.

The taxonomy architecture (see Fig. 1) proposed by Schafer

t al. (2001) for e-commerce involves three distinct modules, each

f which can be modeled and implemented in different ways. This

ivision into blocks facilitates the understanding of these systems.

he blocks are separated as follows: Target-User is the module re-

ponsible for collecting information about the target-user; Commu-

ity is information about interactions of the target-user and other

sers with the system. These interactions occur at the time when

he user evaluates a product, for example; And Output represents

he system response as a suggestion of product or service. The flow

f interaction between these three modules may be observed in

ig. 1.

Also, according to Schafer et al. (2001), applications aimed at

enerating “recommendations” to users in e-commerce systems

ombine information about the target-user with the communities
here products and the user are located. Thus, the websites use

ecisions on the level of customization and delivery method to

ransform them into specific recommendation packages, ensuring

ersonalized recommendations. Comments and ratings of a user

bout the recommendation received or even about a specific prod-

ct can generate additional inputs for future recommendations.

In accordance with Bobadilla, Ortega, Hernando, and Gutier-

ez (2013), the taxonomy divides the methods of recommenda-

ion into two categories: model-based and memory-based. Memory-

ased methods (Adomavicius & Tuzhilin, 2005; Candillier, Meyer,

Boullé, 2007; Symeonidis, Nanopoulos, & Manolopoulos, 2009)

an be defined as methods that (a) act only on the ratings ma-

rix of users and (b) does the use of any generated before the

valuation process reference (that is, the results are always up-

ated). Memory-based methods usually use the similarity met-

ics described in Table 2 for the distance between two users or

wo items, based on their matrix ratings. Model-based methods

Adomavicius & Tuzhilin, 2005; Su & Khoshgoftaar, 2009) use the

atings matrix to learn a model which is then used to make pre-

ictions of ratings. Among the most widely used models have

ayesian classifier (Park, Hong, & Cho, 2007), neural networks (Roh,

h, & Han, 2003), fuzzy systems (Yager, 2003), genetic algorithms

Ho, Fong, & Yan, 2007), latent features (Hofmann, 2004; Zhong &

i, 2010) and the matrix factorization (Luo, Xia, & Zhu, 2012), among

thers.

The graph in Fig. 2 (Bobadilla et al.) shows the traditional meth-

ds of recommendation techniques and algorithms for recommen-

ation process, as well as their relationships and groupings.
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Fig. 2. Traditional recommendations models and their relationships (Bobadilla et al., 2013).

Table 1

Example of a rating matrix.

Item(i1) Item(i2) Item(i3)

User(u1) 5.0 3.0 2.5

User(u2) 2.0 2.5 5.0

User(u3) 2.5 − −
User(u4) 5.0 − 3.0

User(u5) 4.0 3.0 2.0
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3.1.1. Recommender systems based on collaborative filtering

A system based on CF assumes that if two users have similar

interests, then users will demonstrate interest for the same prod-

ucts. In general, consider a list of users U = {u1, u2, . . . , u‖U‖} and

a list of items I = {i1, i2, . . . , i‖I‖}.

Each user ui has a list of items m for which he has expressed

interest. Thus, if m ⊂ I (it is possible that m is a null set), there is

a distinguishable user Ua ∈ U, called target-user a, for which it is

a task of collaborative filter to find an item of interest, in particu-

lar seeking recommendations. Thus, there will be a list of n items,

n ⊂ I, in which the target-user will be more interested. The recom-

mended list should be of items not evaluated by the target-user,

sorted in decreasing order of values of predicted scores by the col-

laborative filter. This interface of collaborative filtering algorithms

is also known as “Top-N” Recommendation (Karypis, 2001).

Taking Table 1 as an example, we can show how to apply in

practice the collaborative filtering. The first step of the CF system

is based on searching for users with similar habits of consumption,
.e., calculating the similarity among users. When analyzing users

and 5, for the item i1, the difference between their ratings is 1.0;

n i2 there is no difference and for (i3) the difference is 0.5. Thus,

e could say that users 1 and 5 are similar. By the same reasoning,

sers 1 and 2 would not be so similar. The calculation of similarity

an occur only on items that both users have expressed preference.

able 1 is usually referred to as a rating matrix.

To calculate the similarity between users there are several tech-

iques (Cacheda et al., 2011a; Owen, Anil, Dunning, & Friedman,

011). The most common are shown in Table 2, where:

• wa, u is the correlation of the target-user a with a given user u.
• ra, i is the rating that the target-user gave for the item i.
• ra is the average of all ratings of the target-user (a).
• wa is the expected utility of the item i for user a.
• d is the default rating (generally a non-committal rating, or

slightly negative).
• α is the half-life. The half-life is the rank of the item on the

list such that there is a 50% chance that the user will view that

item.

The second step of the CF-based system is to select a subset

f users with higher similarity. After that, the next step is to cal-

ulate the predictions. The prediction is the act of inferring what

ppraised value would give the user a product that he has not

ssessed yet. An example of this calculation, noting the Table 1,

ould be filling in the gaps left by the user u3 on items i2 and

3 and user u4 on the item i2. Therefore, the prediction is made

ndependent of the technique used, because it is generated by a
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Table 2

Techniques for calculating similarity.

Technique Equation Reference

Pearson correlation 1 Adomavicius and Tuzhilin (2005)

Euclidean 2 Manning, Raghavan, and Schütze (2008)

Cosine 3 Adomavicius and Tuzhilin (2005)

Spearman ranka 1 Herlocker (2000)

Tanimoto 4 Marmanis and Babenko (2009)

Loglikelihood test 5 Breese, Heckerman, and Kadie (1998); Herlocker (2000)

Equation

wa,u =
∑m

i=1(ra,i − ra)(ru,i − ru)√∑m
i=1(ra,i − ra)2

∑m
i=1(ru,i − ru)2

(1)

wa,u =
√

m∑
i=1

(ra,i − ru,i)2 (2)

wa,u =
∑m

i=1(ra,i ∗ ru,i)√∑m
i=1(ra,i)2

√∑m
i=1(ru,i)2

(3)

wa,u = |ma ∩ mu|
(|ma| + |mu|) − (|ma ∩ mu|) (4)

wa =
∑

i

max(ra,i − d, 0)

2(i−1)/(α−1)
(5)

a The Spearman rank correlation coefficient is similar to Pearson, but rather than compute a corre-

lation based on the original preference values (Eq. (1)), it computes a correlation based on the relative

rank of preference values (Herlocker, 2000).
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eighted average of ratings of neighbors that have an acceptable

oefficient of similarity. According to the authors (Adomavicius

Tuzhilin, 2005; Bobadilla, Hernando, Ortega, & Bernal, 2011a;

acheda et al., 2011a), the prediction can be calculated by Eq. (6).

pa,i = ra +
∑h

u=1(ru,i − ru) ∗ wa,u∑h
u=1 |wa,u|

(6)

here h is the amount of best neighbors and it is at the discretion

f each system that uses collaborative filtering.

Finally, the sorting is performed in decreasing order of values of

he predictions and returns the best n items as recommendations.

.1.2. Evaluation of recommending systems

The input to a recommender system is a rating matrix M,

imilar to that presented in Table 1. To evaluate a recommender

lgorithm A, another matrix Mt is obtained from M by removing

ratings. Matrix Mt is used as input to the recommending algo-

ithm to be evaluated. The objective of algorithm A is to predict

orrectly the values of the ratings absent from the matrix. Let

= {r1, r2, . . . , rx} be the set of ratings absent from Mt. Algorithm

produces a set of predictions P = {p1, p2, . . . , px} when trying to

uess the corresponding values in R. The evaluation of A is done by

omputing the accumulated error produced by A in its predictions.

There are different metrics used to compute the error of a rec-

mmender algorithm. In this work we use the root mean squared

rror (RMSE), which became extremely popular in recent years, af-

er being used in the Netflix Prize competition (Cacheda et al.,

011a). For a given algorithm A the RMSE is computed as described

n Eq. (7).

MSEA =
√∑x

i=1(pi − ri)2

x
(7)

here x is the amount of items that were recommended, pi the

rediction of the algorithm and ri the corresponding true rating.

he most accurate algorithm is the one with the slowest RMSE

alue for a given matrix Mt.
.2. Genetic algorithm—GA

The first step when using GA is to represent each possible so-

ution χ in the solution-space as a sequence of symbols chosen

rom a finite alphabet A, which varies according to the target

roblem. Each sequence s represents an individual (solution) and

an be seen (metaphorically) as a chromosome. Each symbol in s

s considered a gene. Most GA solutions use a constant-size pop-

lation of chromosomes and each chromosome has also a fixed

ize (Engelbrecht, 2007; Lones, 2011). After definition of each chro-

osome for the specific problem to be solved by an GA, an ini-

ial population POP0 of candidate chromosomes (solutions for the

roblem) is created.

GAs are iterative algorithms and in each iteration a new popu-

ation is derived from the population existing at the begin of the

teration. The control flow of a GA corresponds to the following

teps (Mitchell, 1998):

1. Create the initial population POP0 of chromosomes.

2. Evaluate each chromosome in the current population.

3. Chose parent chromosomes to generate new chromosomes.

4. Apply genetic operators to the chosen parents in order to gen-

erate new chromosomes which will compose the next popula-

tion (the next generation).

5. Kill the old population.

6. Evaluate each new chromosome. whether time is over or the

best chromosome has been found, stop; otherwise, go to step

3.

In this work we use GA to automatically combine memory-based

ollaborative filtering techniques derived from distinct similarity

easures, with the objective to demonstrate our proposed hypoth-

sis. The next section discusses how we use an GA to perform this

ombination.

. Proposal

In this section we describe a proposal, called Invenire, that

roduces a list (L) of items to be recommended. L is composed

f the best items from the rankings produced by each individual
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Fig. 3. General flow of Invenire.
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collaborative filtering technique used (Pearson, Euclidean distance,

Spearman, Tanimoto an Loglikelihood). The GA is used as a search

algorithm to optimize the results combination of CF-techniques.

Thus, the aim of the GA is to obtain a good solution (chromo-

some) to the problem of choosing the appropriate number of ele-

ments on the top of each individual ranking produced by the ba-

sis techniques. The chosen elements are used to compose the final

ranking. Consequently, each position (gene) in a candidate solution

represents an amount of a base ranking (from basis techniques) to

be used in the final ranking L, see Section 4.4.1. The choice of GA

will be justified by the analysis in Section 4.1.

4.1. Mathematical modeling of the problem

This problem can be defined as a combination of the results

of many recommendation techniques with the goal of producing

a recommended item list with lowest prediction error. Thus, we

define T = {t | t is a technique of recommendation} as a set of ba-

sis techniques for recommendation. This set has a cardinality c be-

longing to the set of natural numbers N ∗.

Each technique produces a list of recommendations Lt = {i ∈ I
| i is a recommendation of technical t }. This list has a cardinality l

belonging to the set of natural numbers N ∗.

Thus we have l lists of recommendations, each of size s, where

s is the number of items recommended by each technique. Thus,

s × l recommended items may occur. However the system should

ultimately recommend only s items to the target user. At this time

the Invenire acts to combine the results from each list to gener-

ate a list Lfinal of cardinality s. This list Lfinal should be a list that

achieves lower error rate prediction for all users.

This problem becomes complex because of the amount of exist-

ing techniques and their possible combinations. In this work, each
imilarity measure, normally applied to RS-techniques, is consid-

red a basis technique, such as the Pearson correlation, Euclidean

istance, the measure of Cosine, among others. However, without

oss of generality, a technique can be regarded as a complete rec-

mmendation method, for example, a model-based approach.

.2. Architecture of Invenire

The objective of software architecture is to define the compo-

ents of a system, their external properties and their relationship

ith humans, other systems and sensors (Lopes, Silveira, Silveira,

tepaat, & Kung, 2012).

Fig. 3 shows the architecture used in Invenire where:

• RS is a recommender system.
• LPEA, LEUC, LSPE, LTAN and LLOG are lists of recommended items

from each collaborative filtering techniques configured in In-

venire.
• GA is the genetic algorithm.
• S1, S2 and St are candidate solutions, each of which represents

a chromosome (individual) in the GA’s population.
• L10 is a list of ten items to be recommended.

As shown in Fig. 3, the architecture is divided into two mod-

les:

1. Recommender system: Aims to generate lists of the items to be

recommended to the target user. Each base technique produces

one list.

2. Genetic algorithm: Aims to choose the best combination of

items produced by the previous module.

Fig. 3 also shows an element termed “Environment External

onnector”. This connector is responsible for converting the data
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Fig. 4. The structure of a chromosome used by the proposed GA.
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Table 3

Examples of chromosomes (each line one chromo-

some).

PEA EUC SPE TAN LOG

X k X k X k X k X k

3 0 2 0 2 0 1 0 2 0

1 0 6 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 10 0

a

t

G

c

u

i

u

o

N

s

T

c

n

o

c

E

M

W

q

rom the external environment into useful information for Invenire.

hus, the Invenire can abstract representations of the types of in-

ormation from different data sources.

.3. Computational costs

To be able to define the final list Lfinal, the lists of all the tech-

iques in evaluation is necessary. Making an asymptotic analysis,

ssume that the recommendation generated by each technique is

(u × n) (Cacheda, Carneiro, Fernandez, & Formoso, 2011b), where

is the number of users and n is the number of items not rated

n a database.

For simplicity, we assume that the user and textititems not

ated have the same cardinality. Thus, we have that each technique

s quadratic (O(n2)). The Invenire has to calculate the lists of t tech-

iques, so the complexity in the module 1 is given by:

(t × n2) (8)

If the search technique used is exhaustive in the module 2 the

omplexity is O(2s × t), given the search space defined in Eq. (9).

(s × t)!

s! × ((s × t) − s)!
(9)

Thus, the problem to be solved has complexity O(2s × t). We can

ee that even with a few techniques, the computational cost is very

igh. Therefore, we opted for the use of a genetic algorithm (meta-

euristic) in the module 2.

.4. The proposed GA

The initial population POP0 used by the GA is created randomly,

ith xi receiving any random values since the sum of them satis-

es the constraint in Eq. (10).

‖T‖

t=1

xt = ‖L‖ (10)

here ‖L‖ is the size of the final ranking produced by GA, which

s a value known in advance.

.4.1. Chromosome representation

Consider the set of techniques T = {t1, t2, t3, . . . , t‖T‖}. A chro-

osome (individual) is composed of ‖T‖ genes, where each gene

orresponds to a pair as shown in Fig. 4.

The xi represents the quantity of items obtained from the list

ranking) produced by technique ti ∈ T that will be used to com-

ose the final ranking. The second element of the pair (ki) corre-

ponds to the number of ratings that are removed from the rating

atrix M to generate the reduced matrix Mt.

Table 3 shows a sample of chromosomes that satisfy the restric-

ion in Eq. (10) for ‖L‖ = 10.

.4.2. Workflow of the AG

For each chromosome in a given population POP (initially POP =
OP0) the GA computes the accumulated RMSE (RMSEt) for each

echnique t. The accumulated values of RMSE for techniques are

sed to compose the fitness function that is used to evaluate each

hromosome as will be explained later in this section.
Fig. 5 shows how the GA computes the RMSE for each technique

nd how these partial RMSE computations are totalized to generate

he RMSE for a chromosome. Where:

• t is one of the technique in T.
• u is one user in M.
• Mfull is the complete matrix containing all ratings of users to

items as exemplified in Table 1. In addition to giving the result

in matrix M, the matrix Mfull aims to provide the value of the

actual rating (ri) that the user entered for the item and this

value is then used for the calculation of RMSEu.
• M is the matrix composed by the ratings of 5% of the users

contained in Mfull −283 the first users found in Mfull.
• k is the number of ratings made by the target-user u, removed

from M to obtain the matrix Mt.
• Mt is the resulting reduced matrix obtained from the rating ma-

trix M by eliminating k of the ratings of user u.
• x is the number of recommendations to be generated for the

computation of RMSE user u in the technique t.
• RMSEu is the value of RMSE for the predictions of a technique

t to a given user u.
• RMSEt is the accumulated values of RMSEu due to the predic-

tions made by technique t for each user u.

To compute the accumulated RMSEt for each technique t the

A produces a matrix Mt for each user u. Matrix Mt is obtained by

opying the ratings from M and next removing kt ratings of user

, where kt corresponds to the second component of the tth gene

n the chromosome. Then, predictions (pi) are generated for user u

sing technique t applied over the matrix Mt. The real values (ri)

f each item are obtained by performing queries on matrix Mfull.

ext, the value of RMSEu is computed for user u using Eq. (7), sub-

tituting x in the equation for the value of xt in the chromosome.

he value of RMSEu is then accumulated in RMSEt . The above pro-

essing is repeated for each user.

The accumulated values RMSEt are computed for each tech-

ique t as just explained and these values are also summed up to

btain the grand total RMSEtotal.

After the accumulated values RMSEt have been computed the

hromosome is evaluated using the fitness function expressed in

q. (11).

IN( f (x)) = w1

∑‖T‖
t=1

RMSEt + w2

∑‖T‖
t=1

(1 − q)

‖T‖ (11)

here:

• RMSEt is the accumulated value of RMSE for technique t.
• w1 and w2 are input parameters for technique t for the GA,

with values in the range [0, 1]. The w1 is used as a weight of

the importance of the technique in the composition of the fi-

nal ranking produced by GA. The w2 corresponds to the weight

given to the quantity of ratings that are removed for the target-

user when generating the matrix (Mt) as shown in Fig. 5.
• q is the value computed by Eq. (12), where R is the quantity of

ratings of each user in the rating Matrix M.

= k

R − 1
(12)
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Fig. 5. Computation of the RMSE for each technique and for the chromosome (candidate solution).

Fig. 6. RMSE of CF-techniques for each size of final list L.
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The fitness function (Eq. (11)) is composed of two components.

The first component (
w1

∑‖T‖
t=1

RMSEt

‖T‖ ) is responsible for the summa-

rization of the error in the prediction process. To do this, the RMSE

was chosen as a metric, because it has been used in many studies

that measures the accuracy of predictions (Cacheda et al., 2011a).

The second component (
w2

∑‖T‖
t=1

(1−q)

‖T‖ ) represents the total perfor-

mance of each technique taking into account the complexity of the

scenario in which it was inserted. The complexity to generate pre-

dictions is related to the amount of the target-user ratings. Thus,

the sum of these components guide the GA through search space.

The whole process described above is repeated for each chro-

mosome of population POP. Then the chromosomes are operated

by genetic operators (crossover and mutations) to produce a new

population POP′. Finally, the GA repeats the whole process with

the new population POP′. The generation of new populations is re-

peated until the stop condition is achieved.

5. Experiments and results

We want to evaluate our proposal comparing it with tradi-

tional methods of CF, using Pearson’s correlation, Euclidean dis-

tance, Spearman Correlation, Tanimoto coefficient and Loglikeli-

hood. In this work we used the approaches of collaborative filter-

ing because they are widely adopted in literature.

We used also the movieLens dataset (MovieLens 1M Data Set

(.zip) 2) to perform the experiments. These files contain 1, 000, 209

anonymous ratings of approximately 3900 movies made by 6040

MovieLens users who joined MovieLens in 2000. We called this

database as 1M Data Set. The 5% of 1M Data Set as M was used

in the experiments, which corresponds to 283 users with 10 rat-

ings each. To implement the proposed model we used two frame-

works enshrined in their respective fields, Apache Mahout3(Owen

et al., 2011) as recommender and Jenes 2.04 as the GA engine. Fi-

nally, the experiments described in the following sub-sections are
2 The database may be obtained through the page link: http://www.grouplens.

org/node/73
3 http://mahout.apache.org
4 http://jenes.intelligentia.it/

t

c

w

n extension of the work described in da˜Silva et al. (2014), thus

he configuration of the GA parameters are the same.

.1. Experiment one—GA vs CF in isolation techniques

In this experiment we fixed the values of every kt in the chro-

osomes of the populations to zero. This was done because the

ntent of this experiment was to compare the accuracy of the com-

ination of results produced by GA with the accuracy of each tech-

ique alone.

Table 4 shows an example of the target users, 22, 23 and 26,

here R is the actual rating given by the user to the item and P

s the forecast provided by the recommender. Taking as an exam-

le the item 111 for the user 22, it is observed that it was recom-

ended by all CF-techniques. In Pearson’s list it appears in the first

osition, in the Spearman’s list it is the second and for Euclidean,

animoto and Loglikelihood it is the sixth item in the lists. Thus

e can see that the items fluctuate the position in recommenda-

ion lists and that the items recommended by a technical t1 will

ot necessarily be generated by the technique t2, for example.

Fig. 6 shows the results of RMSE for each of the five selected

echniques. Where PEA is the result obtained using the Pearson

orrelation alone, EUC for Euclidian, SPE for Spearman, TAN for Tan-

imoto and LOG for Loglikelihood. The PEA and SPE were the worst

and more affected by the size of final list L.

Fig. 7 shows the RMSE values obtained in each technique,

hether used a single technique to recommend a final list L of size

http://www.grouplens.org/node/73
http://mahout.apache.org
http://jenes.intelligentia.it/
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Table 4

Forecast by CF-techniques for some users.

Pearson Euclidiana Spearman Tanimoto Loglikelihood

Usuário Item R P Item R P Item R P Item R P Item R P

22 111 4 5 296 3 4.73 318 5 5 104 3 4.48 318 5 4.49

163 3 5 858 4 4.6 111 4 4.37 318 5 4.4 104 3 4.34

318 5 4.94 457 3 4.56 296 3 4.36 296 3 4.35 296 3 4.25

112 2 4.31 288 2 4.39 112 2 4.09 457 3 4 457 3 4

104 3 4.11 318 5 4.38 288 2 4 288 2 4 288 2 4

344 2 4 111 4 4.3 457 3 4 111 4 3.88 111 4 3.99

288 2 4 608 5 4.21 223 4 4 165 3 3.76 16 4 3.71

457 3 4 234 3 4.17 344 2 4 70 4 3.7 165 3 3.67

95 4 3.98 589 4 4 16 4 3.77 16 4 3.6 70 4 3.62

292 3 3.84 480 2 4 231 3 3.71 10 3 3.55 145 2 3.59

23 29 3 4.71 29 3 4.81 296 5 4.53 29 3 4.44 29 3 4.37

260 5 4.66 296 5 4.72 111 3 4.52 6 3 4.2 6 3 4.11

296 5 4.62 260 5 4.63 29 3 4.52 260 5 4.17 260 5 4.01

6 3 4.15 608 4 4.61 260 5 4.5 70 4 3.87 296 5 3.98

111 3 4.1 162 2 4.48 6 3 4 296 5 3.82 70 4 3.75

52 4 4 595 3 4.36 593 4 4 111 3 3.78 11 3 3.75

161 2 3.78 111 3 4.35 457 3 4 161 2 3.7 161 2 3.74

34 3 3.74 589 4 4.33 52 4 4 52 4 3.67 11 2 3.59

70 4 3.64 235 3 4.28 70 4 3.82 11 2 3.66 34 3 3.58

318 3 5 6 3 4.27 161 2 3.79 34 3 3.6 52 4 3.57

26 3 2 5 593 3 5 318 4 5 260 3 4.89 260 3 4.87

168 4 4.79 1196 2 5 160 3 5 318 4 4.45 318 4 4.49

318 4 4.66 480 4 4.83 48 3 5 356 5 4.45 356 5 4.47

260 3 4.65 356 5 4.73 62 4 4.78 104 2 4.4 104 2 4.34

207 5 4.43 260 3 4.68 260 3 4.41 16 4 3.83 1 3 3.98

1 3 4.16 377 4 4.5 168 4 4.33 1 3 3.83 207 5 3.98

104 2 4 318 4 4.4 1 3 4.14 539 2 3.67 364 3 3.84

45 5 3.4 780 3 4.33 207 5 4.12 364 3 3.64 122 2 3.81

16 4 3.37 207 5 4.11 356 5 4 207 5 6.56 16 4 3.75

261 2 3.33 364 3 4 11 3 3.43 339 5 3.5 168 4 3.62

Fig. 7. RMSE of basic techniques and GA.
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0. This graphic also shows the GA’s result. The GA made the com-

ination of techniques and got a great solution who had 3 items

f Tanimoto and 7 items of Loglikelihood, totaling 10 items in the

nal list.

The GA was the best among the methods with only 0.22022 er-

or, which represents a decrease of 9.028% in the RMSE compared

o the best result obtained using a single CF technique to generate

ecommendations (Loglikelihood). If we compare with Pearson the

ifference increases to 48.21%. Thus, it is evident that the combi-

ation of the techniques outputs can reach a smaller error than the

se of only one in the recommendation process based on CF.

.2. Experiment two—The learned model in a matrix M applied to

ther matrices

The previous experiment demonstrated that the combination of

he CF techniques is better than the choice of one isolated. During

he execution of the GA using the matrix M as input, we verified

hat the best combination (best individual) is the one making use
f 3 items from Tanimoto technique and 7 items from Loglikeli-

ood to compose a final list (Ln) of 10 items; we called it as GAM

specialist on M).

According to Table 5, the GA takes about 13 hr and 13 min to

nd the best combination. This time is very high when compared

o how much time it takes to generate the recommendation using

n isolated CF technique (about 1 s).

Therefore, the objective of this experiment is to verify whether

he best individual (GAM) is generalizable to other M (input ma-

rix), which would considerably reduce the computational cost.

We executed the GAM using M1 as an input matrix and after

hat we did the same procedure with the chosen CF techniques.

he same procedure was also performed using the matrix M2. In

his experiment we set kt = 0.

The creation of M1 and M2 follows the same criteria that was

sed for matrix M. M1 and M2 are matrices formed by the extrac-

ion of 5% of the users contained in Mfull (283 users from Mfull

ifferent from M). It is worth noting that M1 ∩ M2 = ∅.

Thus, to compute the RMSE of each technique and GAM, we re-

laced the matrix M from Fig. 5 with the matrix M1 and the result

an be observed in Table 5. We also replace the matrix M of Fig. 5

ith the matrix M2 and the result can be seen in Table 5 too.

Table 5 shows that the learned individual (GAM) in a matrix (M)

an be utilized in another matrix (M1 e M2) without a large in-

rease of error (RMSE) and execution time, in comparison to the

dopted CF-techniques.

In M1, the GAM underperformed the LOG (reduction in RMSE

f 1.05%) and EUC (reduction in RMSE of 11.98%); However, if we

ompare with the techniques of TAN (increase in RMSE of 1.36%),

PE (increase in RMSE of 47.02%) and PEA (increase in RMSE of

5.96%), the GAM outperformed them.

Comparing the results achieved by GAM and other techniques

n M2, it is observed that the LOG (reduction in RMSE of 7.83%)

nd TAN (reduction in RMSE of 15.33%) achieve better than GA .
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Table 5

Results of the generalist GA (GAM) learned in the matrix M and applied in the matrices

M1 and M2

M M1 M2

RMSE Time RMSE Time RMSE Time

PEA 0.4253 00:00:01,10 0.3866 00:00:01,04 0.3076 00:00:01,02

EUC 0.2677 00:00:01,06 0.1951 00:00:01,07 0.2065 00:00:01,06

SPE 0.3837 00:00:01,07 0.3230 00:00:01,07 0.2619 00:00:01,05

TAN 0.2450 00:00:01,04 0.2227 00:00:01,09 0.1557 00:00:01,10

LOG 0.2421 00:00:01,06 0.2174 00:00:01,15 0.1695 00:00:01,13

GAM 0.2202 12:19:55 0.2197 00:00:01,98 0.1839 00:00:01,97

GA 0.2202 12:19:55 0.1610 11:29:11 0.1557 13:23:55

Table 6

Results from GAM and the CF-techniques in the M1 and M2 matrices varying kt .

PEA EUC SPE TAN LOG GA_M

K M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

0 0.3866 0.3076 0.1951 0.2065 0.3230 0.2619 0.2227 0.1557 0.2174 0.1695 0.2197 0.1839

1 0.4326 0.3659 0.2076 0.2110 0.2840 0.2570 0.2175 0.1726 0.2398 0.1769 0.2474 0.1773

2 0.4079 0.3740 0.2003 0.1781 0.3321 0.2477 0.2202 0.1837 0.2278 0.1935 0.2294 0.1896

3 0.3896 0.4057 0.2021 0.1864 0.3639 0.3150 0.2061 0.2010 0.2117 0.1897 0.1980 0.1706

4 0.4232 0.5113 0.2082 0.1774 0.3841 0.3618 0.2244 0.1871 0.2139 0.1763 0.2050 0.1782

5 0.5965 0.6212 0.2062 0.1666 0.4544 0.4844 0.2071 0.1567 0.2099 0.1708 0.2033 0.1657

6 0.7200 0.6648 0.2237 0.2203 0.5328 0.4610 0.2173 0.2239 0.2162 0.2180 0.2145 0.2304

7 0.8533 0.8545 0.2188 0.2248 0.6452 0.5731 0.2206 0.2440 0.2203 0.2562 0.2047 0.2544

8 1,0000 0.9025 0.2516 0.2860 0.8849 0.6769 0.2598 0.2843 0.2596 0.2969 0.2440 0.2859

9 1,0000 1,0000 0.3733 0.4757 1,0000 1,0000 0.3606 0.4734 0.3606 0.4734 0.3668 0.4847

MD 0.6209 0.6007 0.2286 0.2333 0.5204 0.4639 0.2356 0.2282 0.2377 0.2321 0.2332 0.2321
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However, EUC (increase in RMSE of 12.28%), SPE (increase in RMSE

of 42.41%) and PEA (increase in RMSE of 67.26%) achieve worse

results than the GAM.

Thus, the generalization brings an increase in the error, but the

execution time of GAM in M1 and in M2 decreased significantly

compared to the execution in M. Thus, in a real scenario that pri-

oritizes the computational cost, the generalist model (GAM on M1

and GAM in M2) can be adopted without encountering large in-

crease of RMSE.

Given the results of the experiments carried out here, we come

across a new hypothesis. The hypothesis that the individual ob-

tained by running the GA, both in the matrices M1 and M2, is

better than the individual obtained from the generalization model

(GAM). To confirm this hypothesis, further experiments were per-

formed and the results can be seen in Table 5, where we estab-

lished that:

• To M1:

– GAM is the generalized model (learned) in M and RMSE of

0.2197.

– GAM1 is the specialist model, where the best individual (9

items of Euclidean technique and 1 item of Tanimoto tech-

nique) obtained RMSE of 0.1610.
• To M2:

– GAM is the generalized model (learned) in M and RMSE of

0.1839.

– GAM2 is the specialist model, where the best individual (10

items of the Tanimoto technique) obtained RMSE of 0.1557.

Thus, the GAM1 was 26.74% better than GAM in M1. The GAM2

was 15.34% better than GAM in M2. Therefore, a real scenario that

prioritizes the computational cost, the designer can choose the

generalist model (GAM), and this does not involve large increase in

the RMSE. However, if the designer’s priority is the quality (lower

error RMSE) of the recommendation without care about the com-

putational cost, the specialist model (GA and GA ) are better.
M1 M2
.3. Experiment three—The effect of variation of kt on the CF

echniques and at GAM

In da˜Silva et al. (2014) it is demonstrated that the Spearman

nd Pearson techniques are sensitive to removal of reviews real-

zed by the target-user in the matrix M. Thus, the purpose of this

xperiment is to verify whether the best individual (GAM) is gen-

ralizable to the input matrices (M1 and M2) in scenarios where

e vary the amount of target-user reviews (kt). The creation of M1

nd M2 follow the same criteria of the experiment performed in

ection 5.2.

For all the selected techniques and to GAM, we varied the value

f kt (second gene of the individual chromosome) that corresponds

o the number of reviews that will be removed from the target-

ser.

We conduct experiments varying kt from 0 to 9. In the first sce-

ario we obtain chromosomes where the value of each kt is de-

ned as 0. In the second scenario, the values of each kt is defined

s 1, meaning that all the target-users in M1 and M2 will have 1

ess review. We repeat this until all the kt of each chromosome are

efined as 9.

Thus, to compute the RMSE of each technique and GAM, we re-

laced the M matrix of Fig. 5 by the M1 matrix, and the result can

e observed in Table 6. We rerun the experiment replacing the M

atrix of Fig. 5 by the M2 matrix and the result also can be ob-

erved in Table 6.

From Table 6 and comparing the scenario of k = 0 versus k = 9,

ll technical and GAM presented an increase of RMSE in both ma-

rices M1 and M2. In M1 Spearman had an increase of 67.70% of

MSE, Pearson was increased by 61.33%, the Euclidean distance

y 47.74%, Tanimoto by 38.22%, GAM by 40.10%, and finally Log-

ikelihood by 39.69%. This demonstrates that the Spearman and

earson techniques were sensitive to the withdrawals reviews.

his also demonstrates that Tanimoto, GAM and Loglikelihood can

eep RMSE low when the target-user has few reviews (in M1).

n M2, Spearman had an increase of 73.81% for RMSE, Pearson
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as increased by 69.24%, Tanimoto in 67.11%, Loglikelihood by

4.19%, GAM by 62.07% and the Euclidean distance by 56.59%. This

hows that all the techniques and the GAM worsened compared to

1. Only the Euclidean distance technique remained stable, while

he other techniques and GAM demonstrated sensitivity to ratings

ithdrawal of the target-user.

Table 6 shows that a learned individual (GAM) from matrix (M)

an be used in another matrix (M1 or M2) without a large increase

n RMSE compared to CF-techniques adopted, even when there are

ew evaluations of the target user. The results demonstrate that the

GAM) is better in 6 (k = 3, 4, 5, 6, 7 and 8) of the 10 created sce-

arios in M1. Looking at M1, the GAM (0.2333) compared to the

uclidean distance technique (0.2287) had a higher average RMSE,

ut this value was not significant (p = 0.84). Still in M1, if we com-

are the average RMSE of GAM with remaining techniques we ob-

erve that the GAM get the lowest average RMSE. In M2, the GAM

utperformed the techniques only in the scenario where k = 3, but

he result of GAM on the other scenarios are satisfactory because it

pproached of the best technique for each scenario. Comparing the

verage of GAM (0.2320) with all the other techniques, we see that

he GAM has the largest RMSE only in comparison to the Tanimoto

echnique (0.2282), but this value was not significant (p = 0.93).

hen we compare the GAM with the other techniques, the GAMhas

he lowest average RMSE. It is also possible to notice that the GAM

s better than the Pearson and Spearman techniques in any sce-

ario, both for M1 and M2.

Thus, it is evident that generalization does not always reach the

owest RMSE. Therefore, it is recommended to rerun the AG and

et an individual best adapted to each scenario from M.

.4. Experiment four—The specialist and generalist models in the

cenario of changing the amount of reviews

In previous experiments, the removal of kt reviews are made

nly on the target user, simulating a user with less reviews com-

ared to the others. But in this experiment, we aim to remove kt

eviews of all the users at the same time, simulating a gradual in-

rease of the database through the time.

For conducting the experiments, the matrix used as input is still

− M contains 283 users and each one of these users have 10

eviews, totaling 2830 evaluations. The matrices Mk are generated

rom M having as parameter the value of kt (second gene of the

ndividual chromosome), where k represents the amount of with-

rawal of ratings from all the users of the database. For example,

upposing that k = 8, this means that the new matrix Mk8 will

ave the first two reviews of each user present in M, thus con-

aining a total of 566 reviews. If k = 7, then the new matrix Mk7

ill have 849 reviews, and so on.

The flow for calculating the RMSE of each strategy, for a list (Ln)

f recommendation with size of 10 is shown in Fig. 8.

Table 7 shows the result of the RMSE for each of five tested

echniques along with the GAs behavior, where:

• matriz (Mk8 until Mk0) are matrices created by varying kt = 8

until kt = 0, being used as input for the GA.
• GAMk8 is the specialist in Mk8 and generalist when applied in

other scenarios. The specialist GAMk8 consists of the combina-

tion of one item from the Euclidean technique, one item from

Tanimoto and eight items from Loglikelihood.
• GAMk5 is the specialist in Mk5 and generalist when applied in

other scenarios. The specialist GAMk5 consists of the combina-

tion of eight items from the Euclidean technique, one item from

Tanimoto and one item from Loglikelihood.
• GAMk0 is the specialist in Mk0 and generalist when applied in

other scenarios. The specialist GA consists of the combina-
Mk0
tion of three items from the Tanimoto technique and seven

items from Loglikelihood.
• GAMkE is the specialist in each Mkt

.

– Mk8 and Mk7 are composed by the combination of one item

from the Euclidean technique, one item from Tanimoto and

eight from Loglikelihood.

– Mk6 is composed by the combination of six items from the

Euclidean technique, three items from Tanimoto and one

from Loglikelihood.

– Mk5 is composed by the combination of eight items from the

Euclidean technique, one item from Tanimoto and one from

Loglikelihood.

– Mk4 is composed by 10 items from the Euclidean technique.

– Mk3 is composed by the combination of three items from

the Tanimoto technique and seven from Loglikelihood.

– Mk2 is composed by 10 items from the Tanimoto technique.

– Mk1 is composed by the combination of one item from the

Euclidean technique and nine from Loglikelihood.

– Mk0 is composed by the combination of three items from

the Tanimoto technique and seven from Loglikelihood.

From Table 7 and comparing the scenario Mk8 versus Mk0, all

he techniques and all the GAs present a reduction in RMSE with

n increase of reviews in the matrix. The Pearson technique re-

uced its RMSE by 57.47%, Euclidean reduced by 60.71%, Spearman

n 61.63%, Tanimoto by 63.99% and Loglikelihood by 64.41%. In this

ame scenario, the GAMk0 showed a reduction in RMSE of 66.91%,

he GAMkE reduced in 65.71%, the GAMk8 in 61.33% and the GAMk5

n 61.02%. This shows that when increasing the number of ratings

n the matrix both GA and techniques CF improve its performance,

hereby reducing the prediction error in calculating the rating.

Table 7 demonstrates that the individual GAMk8, resulting from

he execution of the GA in Mk8, continues with lower RMSE than

he CF techniques when applied into a matrix Mk7. Note that the

atrix Mk7 has more information (about all users) than the ma-

rix Mk8. The GAMk8 applied to Mk6 and to Mk5 also obtained lower

MSE than the CF techniques. However the generalization of GAMk8

s no longer advantageous in Mk4.

Analyzing the performance of GAMk5 we perceive that it is use-

ul in scenarios of Mk5 (specialist), in Mk6 (generalist), and in Mk7

generalist). Note that in scenarios where GAMk5 was better, there

as always a reduction in the amount of user ratings in the ma-

rix. Thus, the GAMk5 has a lower generalization than the GAMk8

hether we compare scenarios of growth in the amount of user

atings in the matrix. In the case of GAMk0, its generalization al-

ays results in a reduction of the amount of user ratings in the

atrix. When compared with CF techniques GAMk0 is less sensitive

f reduction on the number of reviews in Mk. The generalization of

AMk0 outperformed them in Mk0, Mk3, Mk5, Mk6, Mk7 and in Mk8.

Still in accordance with Table 7, it is noticeable that the mean

MSE of GAMk8 is lower than the mean of all the CF-techniques,

ven the GAMk8 having learned from less information about the

arget-user than the CF techniques. Comparing the mean of GAMk8

ith the lowest mean among the CF techniques (Loglikelihood),

he reduction of RMSE corresponds to 4, 3%. If compared with the

ighest mean among the CF techniques (Pearson) the reduction is

f 105.32%. The mean of GAMk5 is also lower than the mean of all

he CF techniques. Comparing the mean of GAMk5 with the lowest

ean among the CF techniques (Loglikelihood), the reduction of

MSE corresponds to 3.6% and if compared with the highest mean

mong the CF techniques (Pearson), the reduction is of 103.93%.

he mean of GAMk0 is also lower than the mean of all the CF

echniques. Comparing the mean of GAMk0 with the lowest mean

mong the CF techniques (Loglikelihood), the reduction of RMSE

orresponds to 4.3% and if compared with the highest mean among

he CF techniques (Pearson), the reduction is of 106.25%. So, still
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Fig. 8. Calculating the RMSE for each technique and the chromosome (candidate solution).

Table 7

Result of the learned GA from a matrix and applied in other matrices versus CF-techniques.

matriz PEA EUC SPE TAN LOG GAMk8 GAMk5 GAMk0 GAMkE

Mk8 1.0000 0.6815 1.0000 0.6803 0.6803 0.6423 0.6528 0.6656 0.6423

Mk7 1.0000 0.3855 1.0000 0.3780 0.3780 0.2856 0.2878 0.3373 0.2856

Mk6 0.9438 0.3141 0.6909 0.3155 0.3135 0.2738 0.2670 0.2805 0.2652

Mk5 0.8618 0.3036 0.5608 0.2980 0.3019 0.2647 0.2498 0.2800 0.2498

Mk4 0.5854 0.3038 0.4756 0.3303 0.3279 0.3295 0.3211 0.3129 0.3038

Mk3 0.4777 0.3276 0.5103 0.3213 0.3074 0.3240 0.3199 0.2895 0.2895

Mk2 0.4722 0.3443 0.4099 0.3351 0.3358 0.3864 0.3843 0.3562 0.3351

Mk1 0.4481 0.2798 0.3943 0.2663 0.2691 0.2722 0.3105 0.2708 0.2464

Mk0 0.4253 0.2677 0.3837 0.2450 0.2421 0.2483 0.2544 0.2202 0.2202

MD 0.6905 0.3564 0.6028 0.3522 0.3507 0.3363 0.3386 0.3348 0.3153
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observing the mean of RMSEs of the CF techniques and GAs, it is

observed that the GAMkE always reached the minimal RMSE value.

The reduction of RMSE of GAMkE compared to the lower mean RM-

SEs among the CF techniques (Loglikelihood) was of 11.23% and

for the highest mean of RMSEs among the CF techniques (Pear-

son) was of 118.99%. The reduction of RMSE achieved by GAMkE can

be explained by the fact that it is always executed to each ma-

trix Mk; instead it increases the computational cost of this proce-

dure. Finally, comparing the mean RMSE between GAMk0 (0.3348),

GAMk5 (0.3386) and GAMk8 (0.3363), it is observed that the differ-

ence between them is small, which validates the hypothesis that

the combination method is robust even applied in scenarios where

there is some degree of generalization, for example, in scenarios

of GAMk8. However, there is always the possibility of improving the

RMSE whether the designer opts for a specialist strategy (GAMkE).

Observing the column GAMkE of Table 7, it is clear that the Spe-

cialist GA (execute every scenario), taking as input the current ma-

trix (Mkt
), has the lowest RMSE among all technical and other GAs.

It is validated the hypothesis that combining is better than choos-

ing a technique isolated, even in scenarios where there is an in-

crease in the amount of reviews about all users in the matrix.

Still according to the column GAMkE of Table 7 it is possible to

verify that by running the GA in Mk0 the RMSE was 0.2202, making

the use of 5% of Mfull. And when running the GA in Mk5 the RMSE

was 0.2498, making the use of 2.5% of Mfull. Thus, the difference of

the RMSE between GAMk0 and GAMk5 increased 0.029, which we do

not consider significant. But between GAMk0 and GAMk8 the incre-

ment on RMSE (0.422) gives us an indication that there is a thresh-
 t
ld of tolerance to use the generalization. It is worth noting that

hen there is a great reduction in the percentage of the matrix

sed for training, this difference tends to increase a lot.

Fig. 9 shows the performance of the GAs and the CF techniques.

ote, in the chart A, that the GAMk8 (specialist in Mk8) starts with a

erformance similar to GAMkE, and as the database grows, it wors-

ns in relation to the specialist. Thus, we can conclude that the

eneralization of GAMk8 is no longer advantageous in Mk4. In the

hart B, the GAMk5 starts with a performance close to GAMkE (in

k8, Mk7, Mk6, Mk5) and after that its performance starts to dete-

iorate in relation to the specialist. In the chart C, the GAMk0, for

ven this being trained with plenty of reviews in the matrix, its

MSE is bad in Mk8 and improves when approaching Mk0. Also it

s noted from the chart D, that:

• The GAMk8 decreases the RMSE as there are insertions of new

reviews in the matrix.
• The GAMk5 increases the RMSE in both cases, that is, increasing

or decreasing the number of evaluations on the matrix.
• The GAMk0 increases the RMSE as there is removal of reviews in

the matrix.

Therefore, we conclude that the results achieved in other exper-

ments keeps valid even when the removal of reviews is applied to

ll users of the matrix. In other words, we can conclude that the

A learned in a matrix Mk8, e.g. can be applied in future matrices

Mk7) but when the volume of data increases significantly it is pru-

ent to rerun the GA and get an individual better adapted because

he GA specialist always reaches a lower RMSE.



E.Q. da Silva et al. / Expert Systems With Applications 53 (2016) 204–218 217

Fig. 9. RMSE performance of the GAs and CF techniques.

6

e

g

t

w

g

u

r

d

s

t

c

h

s

w

s

m

g

S

t

b

t

(

m

t

t

a

m

t

t

s

o

r

i

r

n

b

r

b

(

c

a

w

a

o

t

b

t

t

c

n

t

B

s

i

a

p

a

v

n

t

r

R

A

A

A

. Conclusion and future work

This work had as a main objective the implementation of an

volutionary approach to combine results of RS-techniques. The

enetic algorithm was chosen as a search algorithm and CF-based

echniques were choose as examples of RS-techniques. Our insight

as that an automated combination of techniques by a search al-

orithm could reach a great recommendation, and avoids the man-

al selection of the best technique for an application by designers.

Many experiments were run to evaluate the performance of

ecommendations for different scenarios, e.g. different states of

atabase and different specialization levels of the model. The re-

ults showed that the combination of different techniques reduces

he error (RMSE) compared to the basis approach alone. The spe-

ialist model got the best results in all experiments but had the

ighest computational costs. The generalist models got great re-

ults and low computational costs. The Loglikelihood and Tanimoto

ere the best between CF-based techniques in average.

Based on results, if one application do not change the database

tate frequently and thus do not require frequent updates in the

odel, e.g. every hour, it can use a specialist model, which brings

reat benefits because reaches very low values of RMSE (see

ection 5.2). But this model obtained the high computational cost,

hus an alternative of specialist model is the generalist one which

rings great benefits because reduces considerably the computa-

ional cost and reaches solutions with satisfactory values of RMSE

see Section 5.2). The experiment 5.3 shows that the specialist

odel for a given matrix can be used successfully in another ma-

rix (as generalist model), even when there are few ratings from

he target-users. Finally, Section 5.4 showed that even when just

few number of rating are available for all users, the generalist

odel reached a satisfactory solution and specialist model is still

he most effective.

Despite of the great performance of proposal, some limita-

ion were identified. The method is totally dependent of the ba-

is recommendation methods initially selected to combine. If none

f them has good performance, the combination of them cannot

each good results either. Another limitation is the need of tun-

ng the GA’s parameter. For some applications the tuned GA could

each better results than a canonical one. Lastly, the proposal could
ot be applied in a very small database or initial-stage applications

ecause is necessary a representative dataset, with items already

anked by the application’s users, to evaluate the RMSE of each

asis RS-technique.

The RS should improve the applicability in real-world problems

Lu et al., 2015). This work highlighted two ways to address this

hallenge, first by improving the performance of the techniques,

nd second by automation of the RS’s design process. Thus, this

ork contributes with RS field with a proposal that uses search

lgorithm as a new automated way to optimize the combination

f results from different techniques, which presented a great effec-

iveness. This initiative could inspire others hybrid approaches to

e more automated and effective. Also, this method could be ex-

ended for many subfields of Expert and Intelligent Systems, since

he proposal is a technique-independent approach and the results

ombination is a good way to obtain the strength of basis tech-

iques without the complexity of match them as a new method.

Thus as future work, we suggest the use of different approaches

o RS, such as content-based algorithms and hybrid approaches.

esides the recommendation techniques, the literature has several

trategies from other areas of computer science that are used to

mprove the accuracy of the recommendations, e.g. web semantic

nd information retrieval, as described in Section 2. Thus, this pro-

osal can also combine the results obtained from these strategies

nd RS-techniques to demonstrate the benefits of Invenire with di-

erse approaches and reduce the limitation of RS-techniques. Fi-

ally, we suggest to use parallel programming techniques in order

o reduce the computational cost of GA or other evolutionary algo-

ithms (Camilo-Junior & Yamanaka, 2007, 2011) in this method.
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