Chapter 19

FITNESS LANDSCAPES

Colin R. Reeves
School of Mathematical and Information Sciences
Coventry University, UK

19.1 HISTORICAL INTRODUCTION

One of the most commonly-used metaphors to describe the process of heuristic methods such as local search in solving a combinatorial optimization problem is that of a “fitness landscape”. However, describing exactly what we mean by such a term is not as easy as might be assumed. Indeed, many cases of its usage in both the biological and optimization literature reveal a rather serious lack of understanding.

The landscape metaphor appears most commonly in work related to evolutionary algorithms, where it is customary to trace the usage of the term back to a paper by the population geneticist Sewall Wright (Wright, 1932), although Haldane had already introduced a similar notion (Haldane, 1931). The metaphor has become pervasive, being cited in many biological texts that discuss evolution.

Wright’s original idea of a fitness landscape was somewhat ambiguous. It appears that what he initially had in mind concerned within-species variation where the “axes” of a search space represented unspecified gene combinations, but Dobzhansky’s subsequent enthusiastic use of the metaphor (Dobzhansky, 1951) seems to have established the consensus view of the axes of the search landscape as the frequency of a particular allele of a particular gene in a particular population. This can be seen in many textbooks on the subject of evolution, such as Ridley (1993). In the hands of Simpson, who seems to have thought primarily in terms of phenotypic characters (Simpson, 1953), the story became even more highly developed, although even more divorced from empirical reality. Despite Wright’s later attempts to clarify the situation (Wright, 1967; Wright, 1988), the ambiguity remains. There is thus an interesting paradox in evolutionary biology: according to Futuyma (1998, p. 403),

[The] adaptive landscape is probably the most common metaphor in evolutionary genetic[s]
yet nobody seems sure what exactly is the reality to which the metaphor is supposed to relate! However, it remains extremely popular: the book of Dawkins (1996), for example, makes considerable use of the notion, as its title *Climbing Mount Improbable* suggests.

Although we may have a vague idea of what the search space is, it is rather harder to define any axes for such a search space, as we have seen. Fitness in evolutionary biology is also a rather slippery concept. It is discussed as if there is some objective a priori measure, yet as usually defined, "fitness" concerns an organism’s reproductive success, which can only be measured a posteriori.¹ Add to this the confusion over what the search space axes represent, and it becomes almost impossible to relate them to some quantifiable measure of fitness. It is thus generally dealt with by prestidigitation, and so, for all its popularity, the popular idea of a fitness landscape in biology is a mirage, displaying what is to a mathematician a distressing lack of rigor. (Happily some biologists agree, as in the cogent arguments against the hand-waving approach in Eldredge and Cracraft, 1980.)

A more serious approach was foreshadowed by Eigen (Eigen et al., 1989; Eigen, 1983). In his work on viruses, he introduced the concept of a quasi-species: a group of similar sequences. Each sequence S_k is a string of symbols drawn from some alphabet, the natural one to consider for viruses being the RNA bases adenine, cytosine, guanine and uracil: $\{A, C, G, U\}$. Differences in members of the quasi-species correspond to point mutations—replacement of one symbol by another one.

This interpretation falls somewhat short of the grand ideas in the popular biology textbooks, but it does make a formal mathematical development of the concept of a fitness landscape much more feasible, and following pioneering work by Weinberger (1990) in particular, a fairly complete formal statement of landscape theory was proposed by Stadler (1995). Recent work has developed this idea further (Reidys and Stadler, 2002), but some quite extensive mathematical knowledge is needed in order to appreciate it fully. In the expectation that the mathematical background of the readers of this volume will be somewhat variable, this tutorial will try to survey some of the themes most relevant to combinatorial optimization, without using advanced mathematical ideas. Some basic ideas of set theory, matrix algebra and functional analysis will be required, but the more complex ideas found in Reidys and Stadler (2002) will not be covered. Illustrative numerical examples will also be used at key points in an attempt to aid understanding.

¹The *Oxford Dictionary of Biology*, for example, defines fitness as "The condition of an organism that is well adapted to its environment, as measured by its ability to reproduce itself."
19.2 COMBINATORIAL OPTIMIZATION

We can define combinatorial optimization problems as follows: we have a discrete search space \(\mathcal{X} \), and a function

\[
f : \mathcal{X} \mapsto \mathbb{R}
\]

The general problem is to find

\[
x^* = \arg \max_{x \in \mathcal{X}} f
\]

where \(x \) is a vector of decision variables and \(f \) is the objective function. (Of course, minimization can also be the aim, but the modifications are always obvious). In the field of evolutionary algorithms, the function \(f \) is often called the fitness; hence the associated landscape is a fitness landscape. The vector \(x^* \) is a global optimum: that vector which is the "fittest" of all. (In some problems, there may be several global optima—different vectors of equal fitness.)

With the idea of a fitness landscape comes the idea that there are also many local optima or false peaks, in which a search algorithm may become trapped without finding the global optimum. In continuous optimization, notions of continuity and concepts associated with the differential calculus enable us to characterize quite precisely what we mean by a landscape, and to define the idea of an optimum. It is also convenient that our own experiences of hill climbing in a three-dimensional world gives us analogies to ridges, valleys, basins, watersheds, etc, which help us to build an intuitive picture of what is needed for a successful search, even though the search spaces that are of interest often have dimensions many orders of magnitude higher than 3.

However, in the continuous case, the landscape is determined only by the fitness function, and the ingenuity needed to find a global optimum consists in trying to match a technique to this single landscape. There is a major difference when we come to discrete optimization. Indeed, we really should not even use the term "landscape" unless we can define the topological relationships of the points in the search space \(\mathcal{X} \). Unlike the continuous case, we have some freedom to specify these relationships, and in fact, that is precisely what we do when we decide to use a particular technique.

19.2.1 An Example

In practice, one of the most commonly used search methods for a combinatorial optimization problem is neighborhood search. This idea is at the root of modern "metaheuristics" such as simulated annealing (see Chapter 7) and tabu search (see Chapter 6)—as well as being much more involved in the methodology of genetic algorithms than is sometimes realized.

A neighborhood structure is generated by using an operator that transforms a given vector \(x \) into a new vector \(x' \). For example, if the solution is represented
by a binary vector (as is often the case for genetic algorithms (see Chapter 4), for instance), a simple neighborhood might consist of all vectors obtainable by "flipping" one of the bits. The "bit flip" neighbors of \((00000)\), for example, would be

\[\{(10000), (01000), (00100), (00010), (00001)\} \]

Consider the problem of maximizing a simple function

\[f(z) = z^3 - 60z^2 + 900z + 100 \]

where the solution \(z\) is required to be an integer in the range \([0, 31]\). Regarding \(z\) for a moment as a continuous variable, we have a smooth unimodal function with a single maximum at \(z = 10\)—as is easily found by calculus. Since this solution is already an integer, this is undoubtedly the most efficient way of solving the problem.

However, suppose we chose instead to represent \(z\) by a binary vector \(x\) of length 5. By decoding this binary vector as an integer it is possible to evaluate \(f\), and we could then use neighborhood search, for example, to search over the binary hypercube for the global optimum using some form of hill-climbing strategy.

This discrete optimization problem turns out to have four optima (three of them local) when the bit flip operator is used. If a "steepest ascent" strategy is used (i.e. the best neighbor of a given vector is identified before a move is made) the local optima are as shown in Table 19.1. Also shown are the "basins of attraction"—the set of initial points from which the search leads to a specified optimum. For example, if we start the search at any of the points in the first column, and follow a strict best improvement strategy, the search will finish up at the global optimum. However, if a "first improvement" strategy is used (where the first change that leads uphill is accepted without ascertaining if a still better one exists), the basins of attraction are rather different, as shown in Table 19.2.

In fact, there are even more complications: in Table 19.2, the order of searching the components of the vector is "forward" (left to right). If the search is made in the reverse direction (right to left) the basins of attraction are different, as shown in Table 19.3.

Thus, by using flipping with this binary representation, we have created local optima that did not exist in the integer version of the problem. Further, although the optima are still the same, the chances of reaching a particular optimum can be seriously affected by a change in hill-climbing strategy.

However, the bit flip operator is not the only mechanism for generating neighbors. An alternative neighborhood could be defined as follows: for \(k = 1, \ldots, 5\), flip bits \(k, \ldots, 5\). Thus, the neighbors of \((00000)\), for example, would now be

\[\{(11111), (01111), (00111), (00011), (00001)\} \]
We shall call this the "CX operator", and it creates a very different landscape. In fact, there is now only a single global optimum (01010); every vector is in its basin of attraction. This illustrates the point that it is not merely the choice of a binary representation that generates the landscape—the search operator needs to be specified as well.

Incidentally, there are two interesting facts about the CX operator. Firstly, it is closely related to the one-point crossover operator frequently used in genetic algorithms. (For that reason, it has been termed the complementary crossover or CX operator). Secondly, if the 32 vectors in the search space are re-coded using a Gray code, it is easy to show that the bit-flip neighbors of a point in Gray-coded space are identical to those in the original binary-coded space under CX. This is an example of an isomorphism of landscapes. (An isomorphism in mathematics refers to mappings between mathematical objects that preserve structure. It comes from the Greek iso (equal) and morphe (shape). For example, two graphs are isomorphic if there is a one-to-one mapping σ.)

Table 19.1. Local optima and basins of attraction for steepest ascent with the bit flip operator in the case of a simple cubic function. The bracketed figures are the fitnesses of each local optimum.

<table>
<thead>
<tr>
<th>Local optimum</th>
<th>01010</th>
<th>01100</th>
<th>00111</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3988)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3803)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3236)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basin</th>
<th>00000</th>
<th>00100</th>
<th>00110</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00001</td>
<td>01100</td>
<td>00111</td>
<td>10001</td>
</tr>
<tr>
<td></td>
<td>00010</td>
<td>11100</td>
<td>10110</td>
<td>10010</td>
</tr>
<tr>
<td></td>
<td>00011</td>
<td></td>
<td>10111</td>
<td>10011</td>
</tr>
<tr>
<td></td>
<td>00101</td>
<td></td>
<td></td>
<td>10100</td>
</tr>
<tr>
<td></td>
<td>01000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11111</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 19.2. Local optima and basins of attraction for first improvement (forward search) using the bit flip operator.

<table>
<thead>
<tr>
<th>Local optimum</th>
<th>01010</th>
<th>01100</th>
<th>00111</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(4100)</td>
<td>(3988)</td>
<td>(3803)</td>
<td>(3236)</td>
</tr>
<tr>
<td>Basin</td>
<td>00101</td>
<td>00100</td>
<td>00111</td>
<td>00000</td>
</tr>
<tr>
<td></td>
<td>00110</td>
<td>01000</td>
<td>01111</td>
<td>00001</td>
</tr>
<tr>
<td></td>
<td>01001</td>
<td>01100</td>
<td>10111</td>
<td>00010</td>
</tr>
<tr>
<td></td>
<td>01010</td>
<td>10100</td>
<td>11111</td>
<td>00011</td>
</tr>
<tr>
<td></td>
<td>01011</td>
<td>11000</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01101</td>
<td>11100</td>
<td>10001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01110</td>
<td></td>
<td>10010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10101</td>
<td></td>
<td>10011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11110</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 19.3. Local optima and basins of attraction for first improvement (reverse search) using the bit flip operator.

<table>
<thead>
<tr>
<th>Local optimum</th>
<th>01010</th>
<th>01100</th>
<th>00111</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(4100)</td>
<td>(3988)</td>
<td>(3803)</td>
<td>(3236)</td>
</tr>
<tr>
<td>Basin</td>
<td>01000</td>
<td>01100</td>
<td>00000</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td>01010</td>
<td>01101</td>
<td>00001</td>
<td>10001</td>
</tr>
<tr>
<td></td>
<td>01010</td>
<td>01110</td>
<td>00010</td>
<td>10010</td>
</tr>
<tr>
<td></td>
<td>01011</td>
<td>01111</td>
<td>00011</td>
<td>10011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01000</td>
<td>10100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00101</td>
<td>10101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00110</td>
<td>10110</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00111</td>
<td>10111</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11010</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11101</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11110</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11111</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
between their respective sets of vertices such that for every edge \((x, y)\) of one graph, \((\sigma(x), \sigma(y))\) is an edge of the other.)

19.3 MATHEMATICAL CHARACTERIZATION

Now that some of the typical features of a landscape have been illustrated, we can provide a mathematical characterization. We define a landscape \(\mathcal{L}\) for the function \(f\) as a triple \(\mathcal{L} = (\mathcal{X}, f, d)\) where \(d\) denotes a distance measure \(d : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}^+ \cup \{\infty\}\) for which it is required that, \(\forall s, t, u \in \mathcal{X},\)

\[
d(s, t) \geq 0; \quad d(s, t) = 0 \Leftrightarrow s = t; \quad d(s, u) \leq d(s, t) + d(t, u)
\]

Note that we do not need to specify the representation explicitly, since this is assumed to be implied in the description of \(\mathcal{X}\). We have also decided, for the sake of simplicity, to ignore questions of search strategy and other matters in the definition of a landscape, unlike the more comprehensive definition of, for example, Jones (1995).

This definition says nothing about how the distance measure arises. In fact, for many cases a "canonical" distance measure can be defined. Often, this is symmetric, i.e. \(d(s, t) = d(t, s) \forall s, t \in \mathcal{X}\), so that \(d\) also defines a metric on \(\mathcal{X}\). This is clearly a nice property, although it is not essential.

19.3.1 Neighborhood Structure

The distance measure is typically related to the neighborhood structure. Every solution \(x \in \mathcal{X}\) has an associated set of neighbors, \(N_\omega(x) \subset \mathcal{X}\), called the neighborhood of \(x\). This neighborhood is generated by applying an operator \(\omega\) to a vector \(s\) in order to transform it into a vector \(t\). What we may call a canonical distance measure \(d_\omega\) is that induced by \(\omega\) whereby

\[
t \in N_\omega(s) \Leftrightarrow d_\omega(s, t) = 1
\]

The distance between non-neighbors is defined as the length of the shortest path between them (if one exists). The operator \(\omega\) generally takes a parameter, which means that it is technically a one-to-many function, able to generate many neighbors from one initial vector. The size of the neighborhood will be denoted by \(n\).

For example, if \(\mathcal{X}\) is the binary hypercube \(\{0, 1\}^\ell\), the bit flip operator can be defined as

\[
\phi(i) : \{0, 1\}^\ell \times \mathbb{Z} \rightarrow \{0, 1\}^\ell \quad \begin{cases}
z'_i = 1 - z_i \\
z'_k = z_k & \text{if } i \neq k
\end{cases}
\]

where \(z\) is a binary vector of length \(\ell\), and \(i\) is the parameter specifying the bit to be flipped. It is clear that the distance metric induced by \(\phi\) is the well-known
Hamming distance

\[d_H(x, y) = \sum_{i=1}^{\ell} [x_i \neq y_i] \]

where the square brackets \([expr]\) denote an indicator function, which takes the value 1 if the logical expression \(expr\) is true and 0 otherwise. Thus we could describe this landscape as a Hamming landscape (with reference to its distance measure), or as the bit-flip landscape (with reference to the operator). Similarly, we can define the CX operator as

\[y(i) : \{0, 1\}^\ell \times \mathbb{Z} \rightarrow \{0, 1\}^\ell \]

\[\begin{cases} z_k' = 1 - z_k & \text{for } k \geq i \\ z_k' = z_k & \text{otherwise} \end{cases} \]

The distance measure induced here is clearly more complicated than the Hamming landscape, and cannot be described by a simple function. In both of these cases the size of the neighborhood is \(n = \ell\).

As an example of an asymmetric distance measure, consider the case where \(X\) is \(\Pi_m\), the space of permutations of length \(m\), which is often relevant for scheduling problems. A familiar neighborhood is defined by the “forward shift” operator, taking two parameters in this case,

\[FS\mathcal{H}(i, j) : \Pi_m \times \mathbb{Z} \times \mathbb{Z} \rightarrow \Pi_m \]

\[\begin{cases} \pi'_{k-1} = \pi_k & \text{for } j < k \leq i \\ \pi_j' = \pi_j \\ \pi_k' = \pi_k & \text{otherwise} \end{cases} \]

The neighbors of (1234), for example, would be

\{ (2134), (2314), (2341), (1324), (1342), (1243) \}

(note that the size of this neighborhood is \(n = \binom{m}{2}\)). It is easily seen that (1234), however, is not a neighbor of (2314), (2341) or (1342), so \(FS\mathcal{H}\) is not symmetric. Other neighborhood operators (for example, “exchange”, where two items in the sequence are swapped) induce different distance measures, so there may be advantages in choosing operator-independent distance measures (Reeves, 1999) for practical comparisons.

Distance measures may become even more complicated: for instance, in the problem of biological sequence comparison (RNA, DNA and protein sequences: see Waterman, 1995), it is common to compare sequences in terms of the minimal number of genetic operations necessary to convert one string into another (the “string edit” distance). Thus, even finding the distance measure becomes an optimization problem.

19.3.2 Local Optima

We can now give a formal statement of a fundamental property of fitness landscapes: for a landscape \(\mathcal{L} = (X, f, d)\), a vector \(x^0 \in X\) is locally optimal
if
\[f(x^0) > f(t) \quad \forall \ t \in N(x^0) \]

We shall denote the set of such optima as \(X^0 \), and the set of \textit{global optima} (recall that we allow the possibility of more than one) as \(X^* \) where the vector \(x^* \in X^0 \) is a global optimum if
\[f(x^*) \geq f(x^0) \quad \forall \ x^0 \in X^0 \]

Landscapes that have only one local (and thus also global) optimum are commonly called \textit{unimodal}, while landscapes with more than one local optimum are said to be \textit{multimodal}.

The number of local optima in a landscape clearly has some bearing on the difficulty of finding the global optimum. In our previous example, it is clearly more difficult to find the global optimum using bit-flipping than if we used CX. However, it is not the only indicator: in our example the steepest ascent strategy increased the chance of finding the global optimum, since there were more initial solutions that led to the global optimum than under first-improvement.

19.3.3 Basins of Attraction

We can also now define more precisely the idea of a \textit{basin of attraction}. Neighborhood search can be interpreted as a function
\[\mu : X \mapsto X^0 \]

where if \(x \) is the initial point, \(\mu(x) \) is the optimum that it reaches. With this in mind, we can define the basin of attraction of \(x^0 \) as the set
\[B(x^0) = \{ x : \mu(x) = x^0 \} \]

The problem is that \(B(x^0) \) is not independent of the search strategy, as the example of Section 19.2.1 demonstrated. In fact, it is only well defined for the case of steepest ascent. For other search strategies, such as first improvement, the order of searching may be highly influential. Our example showed that the basin of attraction of the global optimum was much larger for steepest ascent than for the other strategies, but it is possible to find examples where the opposite is the case.

19.3.4 Graph Representation

Neighborhood structures are clearly just another way of defining a graph \(\Gamma \), which can be described by its \((n \times n)\) \textit{adjacency matrix} \(A \). The elements of \(A \) are given by \(a_{ij} = 1 \) if the indices \(i \) and \(j \) represent neighboring vectors, and
\(a_{ij} = 0 \) otherwise. For example, the graph induced by the bit flip \(\phi \) on binary vectors of length 3 has adjacency matrix

\[
A_{\phi} = \begin{bmatrix}
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0
\end{bmatrix}
\]

where the vectors are indexed from 0 to 7 in the usual binary-coded integer order (i.e. \((000)\), \((001)\), etc). By way of contrast, the adjacency matrix for the CX operator is

\[
A_{\gamma} = \begin{bmatrix}
0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 0
\end{bmatrix}
\]

It is simply demonstrated that permuting the rows and columns so that they are in the order \(0, 1, 3, 2, 7, 6, 4, 5\) reproduces the adjacency matrix \(A_{\phi}\)—another way of demonstrating the isomorphism mentioned earlier. In other words,

\[
P^{-1}A_{\phi}P = A_{\gamma}
\]

where \(P\) is the associated permutation matrix of the binary-to-Gray transformation. It is also clear that the eigenvalues and eigenvectors are the same (up to a permutation).

As a final example, we may consider the adjacency matrix for \(\mathcal{FSH}\) in the space \(\Pi_3\):

\[
A_{\mathcal{FSH}} = \begin{bmatrix}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{bmatrix}
\]

where the permutations are indexed in lexicographic order \((123), \ldots, (321)\). The lack of symmetry in the distance measure is of course reflected in an asymmetric matrix.
19.3.5 Laplacian Matrix

The graph Laplacian Δ is defined as

$$\Delta = A - D$$

where D is a diagonal matrix such that d_{ii} is the degree of vertex i. Usually, these matrices are vertex-regular and $d_{ii} = k \forall i$, so that

$$\Delta = A - kI$$

This notion recalls that of a Laplacian operator in the continuous domain; the effect of this matrix, applied as an operator at the point s to the fitness function f is

$$\Delta f(s) = \sum_{t \in N(s)} (f(t) - f(s))$$

so it functions as a kind of differencing operator. In particular, $\Delta f(s)/n$ is the average difference in fitness between the vector s and its neighbors. Grover has shown (Grover, 1992) that the landscapes of several combinatorial optimization problems satisfy an equation of the form

$$\Delta f + \frac{Cf}{n} = 0$$

where C is a problem-specific constant and n (in Grover's notation) is the size of the problem instance. From this it can be deduced that all local optima are better than the mean (\bar{f}) over all points on the landscape. Furthermore, it can also be shown that under mild conditions on the nature of the fitness function, the time taken by neighborhood search to find a local optimum in a maximization problem is $O(n \log_2 [f_{\text{max}}/\bar{f}])$ where f_{max} is the fitness of a global maximum. (A similar result can be obtained, mutatis mutandis, for minimization problems.)

19.3.6 Graph Eigensystem

In the usual way, we can define eigenvalues and eigenvectors of the matrices associated with the graph Γ. The set of eigenvalues is called the spectrum of the graph. For an $n \times n$ matrix A the spectrum is

$$\begin{pmatrix} \lambda_0 & \lambda_1 & \cdots & \lambda_{n-1} \end{pmatrix}$$

where λ_i is the ith eigenvalue, ranked in (weakly) descending order. Similarly, the spectrum of the Laplacian is

$$\begin{pmatrix} \mu_0 & \mu_1 & \cdots & \mu_{n-1} \end{pmatrix}$$
where, again, \(\mu_i \) is the \(i \)th eigenvalue, ranked this time in (weakly) ascending order. For a regular connected graph it can be shown that

\[
\mu_i = k - \lambda_i \quad \forall i
\]

Further, from the corresponding eigenvectors \(\{ \varphi_i \} \), \(f \) can be expanded as

\[
f(s) = \sum_i a_i \varphi_i(s)
\]

Stadler and Wagner (1998) call this a "Fourier expansion".

Unfortunately, the size of these graphs rapidly becomes very large. However, graphs can often be partitioned in a way that makes it possible to reduce the scale of the problem. This enables the formation of a collapsed matrix \(\tilde{A} \) whose eigenvalues are the distinct eigenvalues of \(A \), with multiplicities given by the cardinalities of the partitions. (Relevant mathematical details may be found in the books of Biggs, 1993, and Godsil, 1993.) If the diameter of such a graph is \(\delta \), the number of distinct eigenvalues is only \(\delta + 1 \), so a considerable reduction in size is possible—at least in principle.

Similarly, the Fourier expansion can be partitioned into a sum

\[
f(s) = \sum_p \beta_p \tilde{\varphi}_p(s)
\]

over the distinct eigenvalues of \(\Delta \). The corresponding values

\[
|\beta_p|^2 = \sum |a_k|^2
\]

(where the sum is over the coefficients that correspond to the \(p \)th distinct eigenvalue) form the amplitude spectrum, which expresses the relative importance of different components of the landscape.

Ideally, such mathematical characterizations could be used to aid our understanding of the important features of a landscape, and so help us to exploit them in designing search strategies. But beyond Grover's rather general results above, it is possible to carry out further analytical studies only for small graphs or graphs with a special structure, as illustrated for example, by Stadler (Stadler, 1995). In the important case of the Hamming landscape of a binary search space analytical results for the graph spectrum show that the eigenvectors are thinly disguised versions of the familiar Walsh functions.\(^\text{2}\) For the case of recombinative operators the problem is considerably more complicated, and

\(^\text{2}\)For readers who are unfamiliar with Walsh functions, they are digital analogs of trigonometrical functions, forming an orthonormal set of rectangular waveforms. An introduction to their uses in the analysis of optimization methods can be found in Reeves and Rowe (2002).
necessitates the use of "P-structures" (Stadler and Wagner, 1998). The latter are essentially generalizations of graphs in which the mapping is from pairs of "parents" \((x, y)\) to the set of possible strings that can be generated by their recombination. However, it can be shown that for some "recombination landscapes" (such as that arising from the use of uniform crossover) the eigenvectors are once more the Walsh functions. Whether this is also true in the case of one- or two-point crossover, for example, is not known, but Stadler and Wagner conjecture that it is. In view of the close relationship between the bit-flip and CX landscapes as demonstrated above, it would not be surprising if this is a general phenomenon. However, to obtain these results, some assumptions have to be made—such as a uniform distribution of parents—that are unlikely to be true in a specific finite realization of a genetic search.

In the case of the bit-flip landscape, the distinct eigenvalues correspond to sets of Walsh coefficients of different orders, and the amplitude spectrum is exactly the set of components of the "epistasis variance" associated with other attempts to measure problem difficulty (for a review, see Reeves and Rowe, 2002). For the cubic function of Section 19.2.1 above, the components of variance for the different orders of Walsh coefficients can be shown to be \((0.387, 0.512, 0.101, 0, 0)\) respectively; i.e. 61.3% of the variation in the landscape is due to interactions of order 2 and 3. This is consistent with the relatively poor performance of the bit flip hill-climber.

Of course, the eigenvalues and eigenvectors are exactly the same (up to a permutation) for the CX landscape of this function, and the set of values for the Walsh coefficients in the Fourier decomposition is also the same. However, the effect of the permutation inherent in the mapping from the bit flip landscape to the CX landscape is to re-label some of the vertices of the graph, and hence some of the Walsh coefficients. Thus some coefficients that previously referred to linear effects now refer to interactions, and vice versa. Taking the cubic function as an example again, the components of variance or amplitude spectrum becomes \((0.771, 0.174, 0.044, 0.011, 0.000)\). We see that the linear effects now predominate (77.1%), and this is consistent with the fact that the hill-climber in the CX landscape always finds the optimum.

19.3.7 Recombination Landscapes

If we look at the "recombination landscapes" derived from the P-structures of Stadler and Wagner (1998), we find that once again the Walsh coefficients are obtained, but labeled in yet another way. The coefficients in the bit flip and CX landscapes are grouped according to the number of 1s in their binary- and Gray-coded index representations respectively. However, in a recombination landscape—such as that generated by one-point crossover—it is the separation
between the outermost 1-bits that defines the groupings. Table 19.4 shows the groupings for a 4-bit problem.

Several things can be seen from this table: firstly, the linear Walsh coefficients (and hence the linear component of epistasis variance) are the same in both the bit flip and the recombination landscapes. Secondly (as already explained), the coefficients in the CX landscape are simply a re-labeling of those in the bit flip landscape. Thirdly, the coefficients in the recombination landscape do not form a natural grouping in terms of interactions, and consequently the different components of variance for the recombination landscape do not have a simple interpretation as due to interactions of a particular order.

19.3.8 Summary

This section has set out some of the basic mathematics necessary for the analysis of landscapes. As has probably become obvious, the details can require an extensive mathematical knowledge. Furthermore, the full analysis of a particular landscape (i.e. its eigensystem) may need the gathering of a large amount of empirical information, perhaps equivalent to a complete knowledge of the fitness function at all points of the search space! Landscape analysis in such cases can be no more than an a posteriori justification (or lack of it!) for the choice of a particular neighborhood. Further discussion on some of these points may be found in Reeves and Rowe (2002).

While it is undeniably useful that we can construct mathematical techniques to help us neatly summarize certain facts about a landscape, we must also recognize that there are other features—possibly very important ones—that are not captured by these methods. In the simple example of the cubic function we have seen that the search strategy adopted can make a big difference to the likelihood of a hill-climber finding the global optimum.

Table 19.4. Illustration of the different groupings of the Walsh coefficients associated with the bit flip, CX and recombination landscapes.

<table>
<thead>
<tr>
<th>Index</th>
<th>Binary coding</th>
<th>Bit flip</th>
<th>CX</th>
<th>Recom</th>
<th>Index</th>
<th>Binary coding</th>
<th>Bit flip</th>
<th>CX</th>
<th>Recom</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>1000</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>1001</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>1010</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>11</td>
<td>1011</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>1100</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>13</td>
<td>1101</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>14</td>
<td>1110</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>15</td>
<td>1111</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
Mathematical analysis holds out some tantalizing prospects of future progress, but for the moment we turn to a consideration of the results of experimental work on landscapes.

19.4 STATISTICAL MEASURES

If mathematical analysis of a landscape is a difficult task, then it is natural to ask if there is something we can learn about the nature of a landscape, simply from the process of searching it. Several ideas have been suggested.

19.4.1 Autocorrelation

One of the earliest attempts to obtain some statistical measure of a landscape was by Weinberger, who showed that certain quantities obtained in the course of a random walk can be useful indicators (Weinberger, 1990). If the fitness of the point visited at time \(t \) is denoted by \(f_t \), we can estimate the autocorrelation function (usually abbreviated to acf) of the landscape during a random walk of length \(T \) as

\[
 r_j = \frac{\sum_{t=1}^{T-j} (f_t - \bar{f})(f_{t+j} - \bar{f})}{\sum_{t=1}^{T} (f_t - \bar{f})^2}
\]

Here \(\bar{f} \) is of course the mean fitness of the \(T \) points visited, and \(j \) is known as the lag. The concept of autocorrelation is of course an important one in time series analysis, but its interpretation in the context of landscapes is interesting.

For "smooth" landscapes, and at small lags (i.e. for points that are close together), the acf is likely to be close to 1 since neighbors are likely to have similar fitness values. However, as the lag increases the correlations will diminish. "Rugged" landscapes are informally those where close points can nevertheless have completely unrelated fitnesses, and so the acf will be close to zero at all lags. Landscapes for which the acf has significant negative values are conceptually possible, but they would have to be rather odd.

A related quantity is the correlation length of the landscape, usually denoted by \(\tau \). Classical time series analysis (Box and Jenkins, 1970) can be used to show that the standard error of the estimate \(r_j \) is approximately \(1/\sqrt{T} \), so that there is only approximately 5% probability that \(|r_j| \) could exceed \(2/\sqrt{T} \) by chance. Values of \(r_j \) less than this value can be assumed to be zero. The correlation length \(\tau \) is then the last \(j \) for which \(r_j \) is non-zero:

\[
 \tau = j : |r_{j+1}| < 2/\sqrt{T} \land \left\{ |r_k| > 2/\sqrt{T} \quad \forall k \leq j \right\}
\]
The acf and the correlation length are useful indicative measures of the ruggedness of a landscape, but they are rather crude statistics, and it is difficult to attach a great deal of meaning to their values for particular instances.

19.4.2 Number of Optima

Although it is not the full story, the number of local optima is widely acknowledged as a very important factor in how easy or difficult it is to find a global optimum of a landscape, and is clearly much more directly relevant for a particular instance than the correlation measures. Recently, some attempts have been made (Reeves, 2001; Eremeev and Reeves, 2002, 2003; Reeves and Eremeev, 2004) to obtain direct estimates of the number of optima using statistical principles.

It is assumed that a heuristic search method can be restarted many times using different initial solutions. Given the landscape framework we have discussed above, by randomly generating initial solutions, we will sample many basins of attraction. Of course, this will be evident by the number of different final solutions \(\{x^0\} \) that are found. Suppose this number is \(k \), and the number of restarts is \(r (\geq k) \). Various statistical models may be used in order to estimate the number of optima \(v \).

Waiting-Time Model We can ask for the distribution of the waiting-time to find all optima. If \(r \) exceeds \(k \) substantially, we can use this fact to estimate the probability that all optima have been found. This would also imply, a fortiori, that the global optimum had been found, and thus provides us with an objective confidence level concerning the quality of the best solution obtained.

Counting Model In the event—unfortunately, a common one—that \(k \) is not much smaller than \(r \), it is unlikely that we have seen many of the optima. However, a counting model can be used to estimate the value of \(v \), in a similar way to those used by ecologists to estimate the size of an unknown animal population. This can be quite illuminating in showing the differences between landscapes generated by different neighborhood operators.

Non-parametric Estimates Fairly restrictive assumptions are needed in order to obtain tractable statistical models of landscapes. Where these estimates can be checked against actuality (by enumerating all points on a landscape), it appears that the effect of these assumptions is to produce negatively biased estimates—i.e. the estimate of \(v \) is consistently smaller than the true value. Removing the assumptions by creating more powerful models would probably be impossible, so some non-parametric approaches have been explored, and found to provide useful estimates of \(v \), although the problem of negative bias remains. All these models are summarized in Reeves and Eremeev (2004).
19.5 EMPIRICAL STUDIES

Besides explicit statistical models of landscape features, several empirical
studies have been aimed at providing some idea of the "big picture". Although
multi-dimensional fitness landscapes have few similarities with "real" 3D land-
sapes, certain empirical findings can be interpreted sensibly in terms of char-
acteristics of real landscapes, which provides us with some insights into ways
we can approach hard optimization problems.

One of the most interesting observed properties of fitness landscapes has
been seen in many different studies: it is a feature of Kauffman's well-known
"\(N K\)-landscapes" (Kauffman, 1993),\(^3\) and it also appears in many examples of
combinatorial optimization problems, such as the traveling salesman problem
(Lin, 1965; Boese et al., 1994), graph partitioning (Merz and Freisleben, 1998),
and flowshop scheduling (Reeves, 1999).

In the first place, such studies have repeatedly found that, on average, local
optima are very much closer to the global optimum than are randomly chosen
points, and closer to each other than random points would be. That is, the
distribution of local optima is not "isotropic"; rather, they tend to be clustered
in a "central massif" (or—if we are minimizing—a "big valley"). This can be
demonstrated graphically by plotting a scatter graph of fitness against distance
to the global optimum. Secondly, if the basins of attraction of each local op-
timum are explored, size is quite highly correlated with quality: the better the
local optimum, the larger is its basin of attraction. (If true, this also impinges
on the estimation problem we discussed in the previous section: although there
is a negative bias in the estimate of \(v\), the "big valley" phenomenon implies that
it is only the small basins and low-quality optima that we are missing.)

Of course, there is no guarantee that this property holds in any particular
case, but it provides an explanation for the success of "perturbation" methods
(Johnson, 1990; Martin et al., 1992; Zweig, 1995) which currently appear to be
the best available for the traveling salesman problem. It is also tacitly assumed
by such methods as simulated annealing and tabu search, which would lose a
great deal of their potency if local optima were isotropically distributed.

19.5.1 Practical Applications

These studies also suggest a starting point for the development of new
heuristic search algorithms, such as the "adaptive multi-start" algorithm of
Boese et al. (1994). As a more recent example, we shall consider the "path

\(^3\)In Kauffman's notation, \(N\) is the length of a binary string, and \(K\) is the maximum number of genes that
are allowed to interact with any other; e.g., if \(K = 1\), each gene can interact with just one other. There are
several different ways in which the sets of interacting genes can be chosen, but essentially they turn out to
make little difference.
"path-tracing" algorithms introduced in Reeves and Yamada (1998) and Yamada and Reeves (1998), which can be motivated either as a use of the idea of a landscape, or in terms of extending the boundaries of evolutionary algorithms.

If we consider the case of crossover of vectors in \(\{0, 1\}^e\), it is easily seen that any "child" produced from two "parents" will lie on a path that leads from one parent to another. Figure 19.1 demonstrates this fact.

In an earlier paper (Reeves, 1994), such points were described as "intermediate vectors". In other search spaces, the distance measure may be more complicated, but the principle is still relevant. Crossover is re-interpreted as finding a point lying "between" two parents in some landscape in which we hope the big valley conjecture is true. This "path-tracing crossover" was implemented for both the makespan and the flowsum versions of the flowshop sequencing problem; Figure 19.2 shows in a two-dimensional diagram the idea behind it, while full details can be found in Reeves and Yamada (1998, 1999).

In this way, the concept of recombination can be fully integrated with traditional neighborhood search methods, and the results obtained for flowshop instances (see Reeves and Yamada (1998) and Yamada and Reeves (1998) for details) were gratifyingly good. For the makespan problem, embedded path tracing helped the GA to achieve results of outstandingly high quality: several new best solutions were discovered for well-known benchmarks. For the flowsum version, optimal solutions are not known, but the path-tracing GA consistently produced better solutions than other proposed techniques.

This idea has also recently been applied to multi-constrained knapsack problems (Levenhagen et al., 2001), where the need was confirmed for a "big valley" structure in order to benefit from this approach.
Figure 19.2. Path tracing crossover combined with local search: a path is traced from one parent in the direction of the other. In the “middle” of the path, solutions may be found that are not in the basins of attractions of the parents. A local search can then exploit this new starting point by climbing to the top of a hill (or the bottom of a valley, if it is a minimization problem)—a new local optimum. The acronym PTX signifies “path-tracing crossover”.

19.6 SOME PROMISING AREAS FOR FUTURE APPLICATION

Finally, we should remark that several interesting future research questions are suggested. On the theoretical side, a deeper knowledge of the connections between algebra and graph theory may provide further useful analytical results. For example, it would be useful to have analytical results for all the common operators in permutation spaces analogous to those derived for the simpler case of binary strings. Real fitness landscapes for a number of combinatorial optimization problems also have to cope with extensive areas where there is no change in the fitness for many steps. Measuring the extent and effects of such “plateaux” formations also needs further study, as does the characterization of basins if attraction. (Some promising ideas based on the notion of a “barrier tree” have already been put forward by Stadler and colleagues in Flamm et al., 2002.)

Building on such notions, it would be helpful if we could provide a formal definition of what it means for a “big valley” structure to exist, and how it could be related to mathematical constructs associated with neighborhood structures. Does the big valley exist almost everywhere? If not, can we define classes of problems and neighborhood structures for which it does not occur? Further empirical analysis, such as that described by Levenhagen et al. (2001) and Watson et al. (2002), should be of considerable assistance in suggesting fruitful avenues to explore.

More generally, it is clear that crude correlation measures can only be a general guide to the nature of a landscape instance, and we need to find better ways of characterizing landscapes from empirical measurements. Some suggestions have been made in Reeves (2004) for further work in this direction.
In the area of implementation, it is important to see if we can further refine the path tracing methodology and its integration into heuristic search methods such as evolutionary algorithms. Also, the methodological developments pioneered in Reeves (2001), Eremeev and Reeves (2002, 2003) and Reeves and Eremeev (2004) for deducing properties of an instance of a landscape from the results of heuristic search offer the possibility of making principled probability statements about the quality of solutions obtained.

19.7 TRICKS OF THE TRADE

Mathematical analysis of landscapes is generally possible only for small problems, and then can only really be useful as an a posteriori validation (or questioning) of the decisions already made. However, empirical analysis is relatively easy and may provide some useful insights.

Correlation analysis can be a helpful indicator of the type of landscape with which we are dealing. Typically this proceeds by making a random walk on the landscape for several thousand steps and collecting data on fitness. The resultant "time series" can be analyzed with standard statistical tools. The drawback of this approach is that even when it is complete, knowing how smooth or rugged the landscape is from the perspective of a random walk does not help very much in deciding which heuristic search method to adopt. Further, much computation has been carried out yet the search for an optimum has not even started!

For those wishing to make use of empirical landscape analysis as part of a general research program, it should be realized that much of the necessary information is inherently generated in the course of applying a heuristic search method to a combinatorial optimization problem. Of course, if a single run is all that is used, nothing much can be gleaned, but if independent restarts or a Metropolis-type search are used, it becomes possible to collect statistics and make use of them.

The existence of a "big valley" is usually an encouraging feature, and requires little checking. Assuming the global optimum is unknown it will not be possible to do a complete analysis, but useful information can be gained by computing the distance of each local optimum from the best local optimum, and plotting this against their corresponding differences in fitness. A strong correlation is indicative of a "big valley", and motivates the application of metaheuristics that perform intensive searches in the region of "good" local optima.

If every local optimum ever found is distinct, not much more can be done, but if it is noticed that specific local optima are being detected multiple times, it becomes possible to provide indications of solution quality, using statistical estimation tools based on the waiting-time or counting models mentioned.
above. For low values of the ratio k/r (see above), it may even be possible to provide a (probabilistic) guarantee that the global optimum has indeed been found.

19.8 CONCLUSIONS

This chapter has reviewed and discussed in some detail the basic mathematical theory and methods associated with the concept of a fitness landscape. While these methods can be very useful in enhancing our understanding of evolutionary algorithms, it has been emphasized that they cannot provide a complete explanation for the performance of a specific algorithm on their own—even in the case of very simple functions. Secondly, and more briefly, some empirically determined properties of many search landscapes have been described, and one approach whereby such properties can be exploited has been outlined.

As our understanding of the nature of fitness landscapes and how to exploit them develops, this promises to become an important area of research into the theory and application of heuristic search.

SOURCES OF ADDITIONAL INFORMATION

- For technical and theoretical analysis, there are many papers associated with Peter Stadler and his co-workers. The paper of Reidys and Stadler (2002) is perhaps the most readily accessible and recent treatment of theoretical properties of landscapes, although the seminal work is still Stadler (1995). Many of these papers can be found on the University of Vienna website: http://www.tbi.univie.ac.at/~studla/publications.html and also at the Santa Fe Institute: http://www.santafe.edu/sfi/publications/working-papers.html.

- Several papers give a general low-tech introduction to landscapes, (for example, Reeves, 1999, 2000), as does the chapter in the book by Reeves and Rowe (2002).

- For correlation analysis, Weinberger (1990) is still a major source of information, supplemented by more recent work in papers by Stadler and co-workers (see the Vienna website); another useful reference is Hordijk (1996).

- For work relating to the “big valley” and its exploitation, there are several important papers: Boese et al. (1994), Reeves and Yamada (1998), Merz and Freisleben (1998), and Reeves (1999); a chapter by Reeves and Yamada in Corne et al. (1999) is also an accessible introduction.
- The statistical approach to estimation of landscape properties is described in a series of papers (Eremeev and Reeves, 2002, 2003; Reeves and Eremeev, 2003). Its extension to the use of the Metropolis algorithm is considered in Reeves and Aupetit-Bélaïdouni (2004).

References

