
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JULY 2013 1

Efficient and Scalable Metadata Management in
EB-scale File Systems

Quanqing Xu, Member, IEEE, Rajesh Vellore Arumugam, Member, IEEE,
Khai Leong Yong, Member, IEEE, and Sridhar Mahadevan

Abstract—Efficient and scalable distributed metadata management is critically important to overall system performance in large-scale
distributed file systems, especially in the EB-scale era. Hash-based mapping and subtree partitioning are state-of-the-art distributed
metadata management schemes. Hash-based mapping evenly distributes workload among metadata servers, but it eliminates all
hierarchical locality of metadata. Subtree partitioning does not uniformly distribute workload among metadata servers, and metadata
needs to be migrated to keep the load balanced roughly. Distributed metadata management is relatively difficult since it has to guarantee
metadata consistency. Meanwhile, scaling metadata performance is more complicated than scaling raw I/O performance. The
complexity further rises with distributed metadata. It results in a primary goal that is to improve metadata management scalability while
paying attention to metadata consistency. In this paper, we present a ring-based metadata management mechanism named Dynamic
Ring Online Partitioning (DROP). It can preserve metadata locality using locality-preserving hashing, keep metadata consistency,
as well as dynamically distribute metadata among metadata server cluster to keep load balancing. By conducting performance
evaluation through extensive trace-driven simulations and a prototype implementation, experimental results demonstrate the efficiency
and scalability of DROP.

Index Terms—Metadata Management, Locality-preserving Hashing, Dynamic Load Balancing, EB-scale File Systems.

�

1 INTRODUCTION
Modern EB-scale (1018 or 260 bytes) file systems [1] separate

file data access and metadata transactions to achieve high

performance and scalability. Data is stored on a storage cluster

including many servers that are directly accessed by clients

via the network, while metadata is managed separately by

a metadata server (MDS) cluster consisting of a number

of dedicated MDSs. The dedicated metadata server cluster

manages the global namespace and the directory hierarchy

of file system, the mapping from files to objects, and the

permissions of files and directories. The MDS cluster just

allows for concurrent data transfers between large numbers of

clients and storage servers instead of being responsible for the

storage and retrieval of data. Meanwhile, it provides efficient

metadata service performance with specific workloads, such

as renaming a large directory near the root of the hierarchy

and thousands of clients updating to the same directory or

accessing the same file.

The main problem of designing a MDS cluster is how to

partition metadata efficiently among MDS cluster to provide

high-performance metadata services [2], [3]. MDS cluster is

involved in moving metadata to keep MDSs storage load

balancing [4]. In order to keep good namespace locality, some

MDSs are heavily overloaded in storage load, while other

MDSs are lightly overloaded. A well-designed MDS cluster

should be able to achieve satisfactory storage load balancing.

In addition, we have to efficiently organize and maintain very

large directories [5], each of which may contain billions of

• The author are with Data Storage Institute, A∗STAR, Singapore, 138632.
E-mail: {Xu Quanqing, Rajesh VA, YONG Khai Leong,
Sridhar M}@dsi.a-star.edu.sg

files. Internet applications such as Facebook [6] already have

to manage hundreds of billions of photos. As there are millions

of new files uploaded by users every day, the total number

of files increases very rapidly and will soon be more than

one trillion. Meanwhile, we have to provide high-performance

metadata services for a large-scale file system with hundreds

of billions or trillions of files. For example, Facebook serves

over one million images per second at peak, and one billion

new photos per week [6].

Compared to the overall data space, the size of metadata

is relatively small, and it is typically 0.1% to 1% of data

space [7], but it is still large in EB-scale file systems, e.g.,

1PB to 10PB for 1EB data. Besides, 50% to 80% of all file

system accesses are to metadata [8]. Therefore, in order to

achieve high performance and scalability, a careful metadata

server cluster architecture must be designed and implemented

to avoid potential bottlenecks caused by metadata requests. To

efficiently handle the workload generated by a large number

of clients, metadata should be properly partitioned so as

to evenly distribute metadata traffic by leveraging the MDS

cluster efficiently. At the same time, to deal with the changing

workload, a scalable metadata management mechanism is

necessary to provide highly efficient metadata performance for

mixed workloads generated by tens of thousands of concurrent

clients [9]. The concurrent accesses from a large number of

clients to large-scale distributed storage will cause request load

imbalance among metadata servers and inefficient use of meta-

data cache. Caching is a popular technique to handle request

load imbalance, and it is both orthogonal and complementary

to the load balancing technique proposed in this paper.

Meanwhile, managing multiple MDSs brings many difficul-

ties, in which maintaining consistency among multiple replicas

Digital Object Indentifier 10.1109/TPDS.2013.293 1045-9219/13/$31.00 © 2013 IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JULY 2013 2

of the same directory hierarchy is quite difficult. For example,

as shown in Figure 1, there are two clients that simultaneously

perform an operation on the same file in two MDSs: client C1

renames a file x1 to x2 and client C2 makes a hard link a for

it by accessing the MDS S1 followed by the MDS S2. Since

the requests come from different clients, there is no guarantee

on the execution order from the MDS point of view, so the

resulting states of the two MDSs are not consistent. Therefore,

distributed algorithms are required to maintain the consistency

among multiple MDSs. Maintaining consistency between two

replicas of the same directory hierarchy is not straightforward.

Each client operation must be atomic, and be executed in the

same order on all the MDSs.

(a) Clients (b) Metadata Servers

Fig. 1. Metadata inconsistency. It is successful on S2,
while there is an error on S1: “No such file or directory”.

In this paper, we propose a novel metadata server cluster ar-

chitecture named Dynamic Ring Online Partitioning (DROP).

It is a highly scalable and available key-value store, and

it provides a simple interface: lookup(key) under put and

get operations. In DROP, we use locality-preserving hashing

(LpH) to improve namespace locality, thus increasing put/get

success rate depending on fewer MDSs and upgrading put/get

performance involving fewer lookups. Maintaining metadata

hierarchical locality improves availability and performance of

metadata substantially, but it causes storage load imbalance

in the MDSs. We explore an efficient Histogram-based Dy-

namic Load Balancing (HDLB) mechanism in DROP, and

we also prove the convergence of the proposed mechanism.

Meanwhile, it provides a linearizable consistency mechanism

using ZooKeeper [10] to keep excellent metadata consistency.

We make the following contributions on the problem of dis-

tributed metadata management. First, we propose an effective

locality-preserving hashing that keeps excellent namespace lo-

cality. Second, we present an efficient dynamic load balancing

algorithm named HDLB to balance storage load in MDSs.

Third, we give a linearizable consistency mechanism using

ZooKeeper that keeps excellent metadata consistency among

MDSs. Finally, we evaluate DROP and its competitors by sim-

ulations from multiple perspectives, and we demonstrate that

DROP converges to load balancing quickly with different MDS

cluster sizes. Our results based on trace-driven simulations and

a prototype implementation demonstrate that DROP is more

efficient than traditional state-of-the-art metadata management

approaches. Compared with the conference version in [11],

this paper presents an efficient linearizable consistency mech-

anism for the DROP MDS cluster, and it shows extensive

experimental results. In addition, a proof-of-concept prototype

of DROP has been implemented and empirically evaluated in

terms of multiple metrics.

The rest of the paper is organized as follows. Section 2

presents the system architecture design of DROP. Section 3

describes the proposed mechanism of preserving namespace

locality. The HDLB mechanism is presented in Section 4.

Section 5 introduces metadata consistency using ZooKeeper

in DROP. In Section 6 and Section 7 we present performance

evaluation results of DROP, and prototype implementation and

evaluation respectively. Section 8 describes related work. In

Section 9 we conclude this paper.

2 DROP DESIGN

Like hash-based mapping, DROP uses hashing to distribute the

metadata across the MDS cluster. However, it still maintains

hierarchical directories to support common directory hierarchy.

2.1 Goals
DROP is a distributed key-value store system, in which a

key-value pair is shown in Figure 2. It is designed to meet

the following four general goals: 1) high scalability of MDS

cluster, 2) excellent namespace locality, 3) dynamic load

balancing, and 4) metadata consistency. DROP is designed

to scale to a large-scale distributed metadata server cluster for

EB-scale file systems within a single global namespace. DROP

uses pathname-based locality-preserving hashing explained in

Section 3 for metadata distribution and location, avoiding the

overhead of hierarchical directory traversal, and maintains

hierarchical directories to provide directory operations such

as renaming a directory. To access data, a client hashes the

pathname of the file with the same locality-preserving hash

function to locate which metadata server contains the metadata

of the file, and then contacts the appropriate metadata server.

The process is extremely efficient metadata access, typically

involving a single message to a single MDS. Due to using

locality-preserving hashing, the key distribution is no longer

uniform in DROP, causing load balancing is a great challenge.

We propose a simple but efficient dynamic load balancing

algorithm to guarantee load balancing with losing negligible

locality in metadata placement, as explained in Section 4. We

discuss metadata consistency in DROP in Section 5.

Fig. 2. Key-value data structure. Key is pathname, while
value is its inode information.

2.2 System Architecture
The system architecture is shown in Figure 3, where a typical

standard hash table evenly partitions the space of possible hash

values. Current hash-based mapping does not evenly partition

the address space into which keys get mapped, causing some

metadata servers get a larger portion of it. To cope with this

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JULY 2013 3

problem, virtual nodes are used as a means of improving load

balancing [12], each participating independently in the DROP

network, thus its load is determined by summing over several

virtual nodes’. Virtual nodes make not only re-distribution

become easier, but also scaling out as data grows. When

scaling out, more physical MDSs may be added and virtual

nodes can be moved onto them seamlessly.
A physical MDS has to allocate storage space for each

virtual node to store necessary data structures. It means that

more virtual nodes need more space, leading to better load

balancing. DROP can achieve better namespace locality and

load balancing by allocating more virtual nodes per metada-

ta server since metadata IDs are not uniformly distributed.

The data structures are typically not so expensive from the

perspective of space, thus it is not a serious problem. We

have to consider a much more significant problem arising from

network bandwidth. In general, to maintain connectivity of the

network, every node frequently pings its neighbors to make

sure them still alive, and replaces them with new neighbors if

they are not alive any more. To maintain the DROP network,

there is a multiplicative increase in network traffic because of

running multiple virtual nodes in each MDS, but it is located

in a data center with enough bandwidth.

Fig. 3. System Architecture. Physical metadata servers
compose a MDS cluster, while their virtual nodes form a
DROP overlay network.

2.3 DROP-based DFS Architecture
Figure 4 is a distributed file system architecture based on

DROP we design. There are two kinds of protocols: one is

storage protocol between clients and storage nodes, and the

other is management protocol between MDSs and storage

nodes. DFS server is a distributed file system server daemon,

such as pnfsd in pNFS. The component DFS-DROP provides

interfaces between DFS server and DROP. Many Back-end
nodes from MDSs as virtual nodes are organized into a DROP

overlay network. Files and directories metadata items are

published into the DROP network to be available to clients,

like publish/subscribe in DHT networks [13], and they are

maintained by the Back-end nodes.

3 PRESERVING NAMESPACE LOCALITY
In large-scale file systems, we can achieve near-optimal

namespace locality by assigning keys that are consistent with

the order of full pathnames.

Fig. 4. DROP-based DFS Architecture

3.1 Traces Analyzed
There are three real traces we analyze as shown in Table 1.

Microsoft means Microsoft Windows build server production

traces [14] from BuildServer00 to BuildServer07 within 24

hours, and its data size is 223.7GB (including access pattern

information). Harvard is a research and email NFS trace

used by a large Harvard research group [15], and its data

size is 158.6GB (including access pattern information). We

implemented a metadata crawler that performs a recursive

walk of the file system using stat() to extract file/directory

metadata. By using the metadata crawler, the Linux trace is

fetched from 22 Linux servers in our data center, and it is

different from and much bigger than the Linux trace in [11]. Its

file system metadata size is 4.53GB, and data size is 3.05TB.

Based on the Linux trace, we perform two estimations: 1)

storing 1 trillion files, the metadata size is 441TB and the

data size is 290PB by computation, and 2) storing 1EB data,

the metadata size is 1.56PB and the number of files is 3.53

trillion files by computation.

TABLE 1
Traces

Trace # of files Path metadata Max. length

Microsoft 7,725,928 416M 34
Harvard 7,936,109 176M 18

Linux 10,271,066 786M 21

3.2 Locality-preserving Hashing
In order to achieve near-optimal locality, the entire directory

tree nested under a point has to reside on the same MDS if

there is not an explicit subtree assignment, e.g., /sys/fs may

be assigned to one MDS, while /sys/fs/fuse may be assigned

to another one. Pathnames are directly used with fixed-size

keys, where every lookup message should contain a key as

large as the longest path. To limit message overhead without

modifying routing mechanisms, we employ a more compact

key encoding in DROP as shown in Figure 5.

Fig. 5. Locality-preserving Hashing
The file path is encoded with the first 40 bytes, and each

directory is encoded with 2 bytes. For longer paths, the next

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JULY 2013 4

4 bytes are reserved for the rest of path since 40 bytes are

only sufficient for 20 path levels in terms of space. Although

locality for files in longer paths will not be preserved, they

make up 0.001%, 0.018% and 0.0% of the files in the Linux,

Microsoft [14] and Harvard [15] traces, and there are an even

smaller percentage of the requests based on the analysis of the

last two traces. We plot the cumulative distribution function

(CDF) of path length in the three analyzed traces in Figure 6,

and we can see that the longer the path length is, the smaller

the proportion is. The last 4 bytes are allocated for a file

name, and they can represent 232 files per directory in theory.

Eventually, the 48-byte key enables up to many trillions files

in count and many exabytes in size.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

C
D

F

Path length

Linux
Microsoft
Harvard

Fig. 6. CDF of path length in the three traces

The key encoding mechanism provides a good trade-off

between key size and file count, and it enables naming of

new files and directories. In addition, a file may be moved to

a different directory, and its key can be quickly changed to

reflect the new path using the encoding mechanism. Further-

more, related metadata items are organized into a group using

it to preserve in-order traversal of file system, e.g., files in the

same directory are related.

4 DYNAMIC LOAD BALANCING

Since the key distribution is no longer uniform in DROP, load

balancing is a great challenge that we have to face and address.

We propose a simple but efficient dynamic load balancing

algorithm to guarantee load balancing with losing negligible

locality in metadata placement. The load balancing algorithm

is simple, fully distributed, and converge quickly, which is

similar to other dynamic load balancing methods [16], [17].

4.1 Metadata Histogram Maintenance

In order to achieve load balancing, a simple yet efficient

metadata histogram maintenance mechanism is first proposed,

and it is used by MDSs for maintaining histograms of metadata

storage load. Its basic idea is to measure the range-density

histogram locally, exchange these histograms throughout the

system in a heartbeat protocol and determine if a MDS is

overloaded or not. Let N denote the neighbor metadata server

set of a MDS. Each MDS periodically samples MDSs in N

and produces a local estimate of metadata items. Each of these

MDSs reports back its local range-density. As time progresses,

a metadata server builds a list of tuples of this form as shown

in Definition 1.

Definition 1 (Range density). Range density is a five-tuple

as follows: {virtual node, [min,max], load, timestamp},

where the timestamp is used to age out old records.

If the DROP system needs to get an average histogram of

node range-density, the collected range-densities can be used

exactly as they are collected. When a MDS joins the cluster,

it is required to have a duty for some ranges of locality-

preserving hash values via its virtual nodes. However, files

and directories in a particular range of values may exhibit a

much greater popularity than other ranges, which would cause

the MDS in charge of the popular range to become overloaded.

We leverage our metadata histogram maintenance mecha-

nism to help implement load balancing in DROP. Firstly, each

metadata server can get the average load L using histograms,

thus determining if it is relatively heavily or lightly loaded

in the system. Secondly, the histograms contain information

about which parts of the DROP overlay are lightly loaded.

Using this information, heavily loaded MDSs can send probes

to lightly loaded ones. Once a probe encounters a lightly

loaded MDS, it requests this lightly loaded MDS to gracefully

take some virtual nodes from the heavily loaded MDSs in

DROP, which effectively decreases the load of the heavily

loaded MDSs. Note that this process is in parallel.

4.2 Histogram-based Dynamic Load Balancing

We present a simple but effective Histogram-based Dynamic

Load Balancing (HDLB) approach. Each metadata server

periodically contacts its neighbors in the system. The DROP

system is said to be load-balanced when all the MDSs satisfy

Definition 2, i.e., if the largest load is greater than t2 times the

smallest load, dynamic load balancing will be performed by

reassigning virtual nodes from heavily loaded MDSs to lightly

loaded MDSs.

Definition 2 (MDSi is load balancing). MDSi is load bal-

ancing if its load satisfies 1/t ≤ Li/L ≤ t (t ≤ 2).

Given a set of m metadata servers S = {si, i = 1, . . . ,m}
and a set of n virtual nodes V = {vj , j = 1, . . . , n}, each

virtual node vj has a weight wj that means how many files

in a range are maintained by vj , and each metadata server

si has a remaining capacity (weight) Wi that means the

difference between the average storage load (capacity) W and

the existing weight in the metadata server si. The problem

can be formulated as a 0-1 Multiple Knapsack Problem [18]

(MKP) that is a NP-hard problem, i.e., it is to determine how

to reassign n virtual nodes to m metadata servers in a way

that minimizes the wasted space in the MDSs as follows:

maximize z = 1/
m∑
i=1

si (1a)

s.t.

m∑
i=1

xij = 1, j ∈ N = {1, . . . , n} (1b)

n∑
j=1

wjxij + si = Wiyi, i ∈ M = {1, . . . ,m} (1c)

xij ∈ {0, 1}, yi ∈ {0, 1}, i ∈ M, j ∈ N (1d)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JULY 2013 5

where

xij =

{
1 if virtual node j is reassigned to MDS i

0 otherwise

yi =

{
1 if MDS i is used

0 otherwise

si = space left in MDS i

Constraint (1b) makes sure that each virtual node is only

assigned to a physical metadata server. Constraint (1c) ensures

that the total number of files assigned to each metadata server

is less than the capacity of metadata server. Constraint (1d)

states it is a 0-1 knapsack problem.

We use t = 2 so that MDS loads differ by at most a factor of

4 in steady state. Each MDS stores both primary and secondary

replicas, but only the primary replica count is exploited as the

load value for the purpose of this approach. When primary

load on all the MDSs is balanced, then total load, including

both primary and secondary replicas, will be balanced as well.

For example, there is a metadata server A, which has three

neighbors B, C and D. They include virtual nodes as shown

in Table 2, where the number means the load of a virtual node.

There are a set of virtual nodes V = {3, 2, 7, 6, 2} that will

be reassigned to light MDSs S = {C,D}, which have the

remaining capacities 11 and 12 respectively. After solving the

0-1 MKP, we can see that there is a rough load balancing from

Table 2.

TABLE 2
Example load

MDS items removed items results

A {3, 2, 7, 12} {3, 2, 7} {12}
B {15, 6, 2} {6, 2} {15}
C {1} ∅ {1, 2, 7, 2}
D ∅ ∅ {3, 6}

4.3 Traffic Control
During load balancing, a metadata item may be moved multi-

ple times. It often occurs when some files in a large directory

are renamed since the directory initially is assigned to a single

MDS with a high probability. DROP uses metadata pointers

to minimize metadata migration overhead. For a metadata

pointer, a MDS retrieves the metadata when it has held the

pointer for longer than the stabilization time of the pointer.

Using metadata pointers only temporarily hurts data locality

when balancing the load. Besides reducing load balancing

overhead, pointers also enable writes to succeed even when

the target MDS is at capacity, pointers can be used to divert

metadata items from heavily loaded MDSs to lightly loaded

MDSs. However, the MDS at capacity will eventually shed

some load when balancing the load, just causing temporary

additional indirection. Suppose that a MDS X is heavily

loaded, and a MDS Y takes some virtual nodes of X to take

some of X’s load. Now X must transfer some of its metadata

items to Y. Instead of having X immediately transfer some of

its metadata items to Y when Y gets some virtual nodes from

X, Y will initially maintain metadata pointers to X and transfer

the pointers to Z. Finally, Z will retrieve the actual metadata

from X and delete the pointers.

5 METADATA CONSISTENCY

In file systems, metadata consistency means that it must have

pre-defined metadata integrity constraints, e.g., inode numbers

are unique and no directory entry (dentry) points to a non-

existent inode. File systems can maintain a consistent on-disk

state by wrapping related operations in transactions.

5.1 MDS Interaction with ZooKeeper
DROP as a distributed key-value store holding file/directory

metadata comes across a set of metadata servers. It al-

lows for all standard filesystem metadata operations, such as

file/directory creation, renaming and deletion. We proceed to

analyze the usage of ZooKeeper in DROP. ZooKeeper is vitally

important to maintain virtual node distribution information

by interacting with MDSs in DROP. When a MDS joins the

DROP network, it connects to the ZooKeeper cluster for status

synchronization with its local memory. The ZooKeeper service

starts as an initial procedure instead of a normal start-up

one if it is not initialized. After comfirming the existence

of ZooKeeper, the MDS starts its metadata service, which

tries to register itself to the ZooKeeper cluster by creating

a ephemeral znode under the MDS znode. Also, it starts

a number of threads for its virtual nodes and store them

locally. If the mapping information between a MDS and its

virtual nodes in ZooKeeper changes, the local metadata service

needs to contact ZooKeeper to change the value of a znode.

When a MDS fails, there is no heartbeat signal between the

MDS and the ZooKeeper cluster, which makes the ZooKeeper

service aware of the MDS’s failure. DROP does not need to

do anything, and recovery task is automatically started when

reading or writing data in the MDS.

5.2 Metadata Synchronization
ZooKeeper provides node existence information for all virtual

nodes, therefore its performance determines the performance

of metadata management in DROP. ZooKeeper is much more

suitable for reads than writes [10], so the MDSs in DROP

mostly read the information from ZooKeeper instead of writ-

ing. There are two common situations that data in ZooKeeper

is required to be modified. The first one is that the DROP

cluster needs to create znodes in ZooKeeper where each znode

represents a virtual node when it boots at the first time. Many

creation operations take a long time when there are a large

number of virtual nodes, but it only occurs once when the

DROP cluster first starts up.

The second one is that DROP updates the information into

ZooKeeper by setting znode’s value whenever a MDS joins

or leaves. Writes in ZooKeeper are much faster than the

arrivals of new nodes, so it does not affect the performance of

DROP. The read performance of ZooKeeper might be another

potential bottleneck of DROP. To avoid this bottleneck, we

use local cache in MDSs and ZooKeeper’s watch mechanism.

When cached data is invalid, i.e., “reject” or “timeout” is

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JULY 2013 6

returned, A MDS reads from ZooKeeper and updates its local

cache. ZooKeeper uses a watch mechanism to enable MDSs

to cache data without managing the local cache directly. With

this mechanism, the MDS can watch for an update to a given

metadata item, and receive a notification upon the update.

5.3 Linearizable Consistency

In DROP, we have to solve the consistency and availability

problems, where requirements are from these conditions for

metadata operations that modify either the set of virtual nodes

or the key ranges among virtual nodes. Strict consistency

relies on absolute global time, so it is impossible to be

implemented in a distributed system. Linearizable consistency

is weaker than strict consistency, but stronger than sequential

consistency [19]. Operations in linearizable consistency are

assumed to receive a timestamp with a global available clock

that is loosely synchronized. Figure 7 illustrates the compar-

ison of linearizable consistency and sequential consistency in

distributed metadata management.

(a) Sequential Consistency (b) Linearizable Consistency

Fig. 7. Sequential Consistency vs. Linearizable Consis-
tency. There is an error message in sequential consisten-
cy: “No such file or directory” for the links a and b.

In DROP, we structure virtual node updates as distributed

transactions across nodes, which can provide a powerful

framework for implementing the challenging multi-node op-

erations such as renaming a large directory near the root.

DROP implements distributed transactions across nodes using

the ZooKeeper distributed consensus service. At a high level,

nodes execute a two-phase commit (2PC) protocol before a

node executes a step in the 2PC protocol and it uses ZooKeeper

to replicate the decision for executing the step. Therefore,

distributed replication plays a key role in the 2PC protocol

for write-ahead logging to stable storage. The virtual node

initiating a transaction is viewed as the coordinator and others

are involved as the participants. We introduce a key concept:

Directory Metadata Group as shown in Definition 3. There is

an example in Figure 8 that shows the Zookeeper cluster is

used to guarantee the structural integrity and consistency of

metadata.

Definition 3 (Directory Metadata Group). Directory metadata

group consists of one or more nodes for a given directory.

The overall structure of consensus is described as shown

in Algorithm 1. The coordinator as the leader of a group

initiates every action (line 1), and the number of messages is

apparently reduced because broadcast and message batching

are employed (lines 2,8). Concurrency is encouraged (lines

3-5, 6-7, 9-10), and the group continues to provide lookup

Fig. 8. Example of a DROP Cluster with ZooKeeper. For
/home, its directory metadata group includes A and B,
its linearizable consistency comes across multiple node
groups ({A, B}, {B, C}, {C, D}).

request services during transactions that change the the key-

space partitioning. ZooKeeper is utilized to replicate the

intermediate state needed for multi-node operations (lines

1,5,7). In order to improve throughput, the storage state of

each group is partitioned among its group members. Each

operation is forwarded to the node of the group assigned to the

primary key. The group leader replicates information about the

assignment of keys to primaries using ZooKeeper, as it handles

the state for multi-node operations. Each primary node uses

ZooKeeper to replicate operations on its key-range to all the

other group members, which provides linearizable consistency.

With ZooKeeper, a single message round is usually enough for

replication, and it is unnecessary to synchronize operations on

different primaries and keys.

Algorithm 1: Linearizable Consistency

Input: Coordinator Nc, Participants P

1 Nc replicates the decision to initiate transaction T ;

2 Nc broadcasts a prepare message mp to P;

3 for p ∈ P do
4 if p receives mp then
5 p replicates its vote;

6 if Nc receives the votes of P then
7 Nc replicates its decision C;

8 Nc broadcasts the outcome of T to P;

9 if C then
10 The steps of the transaction T is excuted;

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of DROP us-

ing detailed trace-driven simulations. We have developed a

detailed event-driven simulator to validate and evaluate our

design decisions and choices. We first empirically evaluate

the namespace locality effectiveness, and second measure

the scalability of DROP. We evaluate DROP and compare

its performance with other distributed metadata management

schemes: 1) Subtree that is to manually partition directories

and assign each subtree to a metadata server; 2) FileHash that

is to randomly distribute files according to their pathnames,

each of which is assigned to a metadata server; 3) DirHash that

is to randomly distribute directories like FileHash. A virtual

node’s identifier is a 384-bit key obtained from the SHA-384

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JULY 2013 7

(a) Linux trace (b) Microsoft Windows trace (c) Harvard trace

Fig. 9. Locality Comparisons of Three Level Paths over Different Traces in the Cluster of Ten Metadata Servers

0.0*100

5.0*105

1.0*106

1.5*106

2.0*106

2.5*106

3.0*106

 0 5 10 15 20 25 30 35 40 45

of

 m
et

ad
at

a
ite

m
s

of MDSs

DROP median
DROP max. min.
DirHash median

DirHash max. min.
FileHash median

FileHash max. min.

(a) Linux trace

0.0*100
2.0*105
4.0*105
6.0*105
8.0*105
1.0*106
1.2*106
1.4*106
1.6*106
1.8*106
2.0*106

 0 5 10 15 20 25 30 35 40 45

of

 m
et

ad
at

a
ite

m
s

of MDSs

DROP median
DROP max. min.
DirHash median

DirHash max. min.
FileHash median

FileHash max. min.

(b) Microsoft Windows trace

0.0*100

5.0*105

1.0*106

1.5*106

2.0*106

2.5*106

3.0*106

 0 5 10 15 20 25 30 35 40 45

of

 m
et

ad
at

a
ite

m
s

of MDSs

DROP median
DROP max. min.
DirHash median

DirHash max. min.
FileHash median

FileHash max. min.

(c) Harvard trace

Fig. 10. Load Distribution with Varying the Number of Metadata Servers

 0

 1

 2

 3

 4

 5

5 10 15 20 25 30 35 40

of

 ro
un

ds

of MDSs

Harvard
Microsoft
Linux

(a) Convergence Rate

0.0

1.0

2.0

3.0

4.0

5.0

5 10 15 20 25 30 35 40

Lo
ad

 F
ac

to
r

of MDSs

Harvard
Microsoft
Linux

(b) Load Balancing

 0

 100

 200

 300

 400

 500

 5 10 15 20 25 30 35 40
Ti

m
e

C
os

t (
se

co
nd

s)
of MDSs

Harvard
Microsoft

Linux

(c) Time Cost

Fig. 11. Performance with Varying the Number of Metadata Servers

hash function. We demonstrate the effectiveness, performance

and scalability over different MDS cluster sizes.

6.1 Namespace Locality

Locality-preserving hashing in DROP is clearly a suboptimal

strategy to keep excellent namespace locality. Namespace

locality is very important to large-scale distributed metadata

management, and it is utilized to improve the performance

of MDS cluster by reducing I/O requests. It can be measured:

locality =
∑m

j=1 pij , where pij (0 or 1) represents if a subtree

path pi (∈ P) is located in MDS j. The metric represents how

many metadata servers the path P is split across. Figure 9

presents namespace locality comparisons of three level paths

on the three traces using three different distributed metadata

management mechanisms. Note that we do not plot the results

of static subtree partitioning since each path is maintained by

only one metadata server according to its definition, but its

load imbalance is severe.

Figure 9(a), Figure 9(b) and Figure 9(c) illustrate that

DROP has much better namespace locality than DirHash and

FileHash for the three traces. The percentage above a box is

calculated as follows: N−S
S × 100%, where S is the number

of MDSs using Subtree (S=1), N is the number of MDSs

using one of other three approaches. DROP performs only

negligibly worse than static subtree partitioning except the

first level paths in both the Linux trace and the Microsoft
Windows trace. The reason for this is that DROP can achieve

suboptimal namespace locality using locality-preserving hash-

ing, i.e., assigning keys that are consistent with the order of

pathnames. For DirHash and FileHash, the order of pathnames

is not considered so that namespace locality is lost thoroughly.

6.2 Scalability

We first plot scalable load distribution with different sizes

of MDS cluster as shown in Figure 10. We exploit three

metrics: median load, maximum load and minimum load. Note

that we use median load instead of average load, and we do

not give the results of static subtree partitioning because its

scalability is very bad in load distribution. From Figure 10(a),

Figure 10(b) and Figure 10(c), we can see that DROP has

somewhat worse load distribution than DirHash and FileHash

when the MDS cluster size is small, while it has similar

load distribution as DirHash and FileHash when the MDS

cluster size is big enough. Therefore, DROP has as excellent

scalability as DirHash and FileHash in load distribution.

The primary overhead of DROP’s performance gains comes

from active load balancing. We second evaluate the relative

performance and scalability of DROP by scaling the number

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JULY 2013 8

(a) Linux trace (b) Microsoft Windows trace (c) Harvard trace

Fig. 12. Namespace Locality with Varying the Number of Metadata Servers

(a) Linux trace (b) Microsoft Windows trace (c) Harvard trace

Fig. 13. Metadata Request Communication Overhead with Varying the Number of Metadata Servers

of MDSs. Figure 11 presents the relative performance with

varying the number of MDSs. Figure 11(a) demonstrates that

histogram-based dynamic load balancing (HDLB) has excel-

lent convergence rate. For the given three traces, it reaches a

satisfactory load balancing state within four rounds even as

the number of MDSs is 40. Therefore, HDLB can quickly

converge to load balancing in fully distributed systems.

Figure 11(b) shows that HDLB has excellent load balancing

performance with different MDS cluster sizes. Figure 11(c)

illustrates that HDLB has excellent efficiency with different

numbers of metadata servers. The histogram-based dynamic

load balancing mechanism can efficiently assign and migrate

loads among metadata servers. A large faction of loads are

reassigned and migrated first within the same group and lastly

within the entire network via hub MDSs, thus enabling fast

and efficient load balancing.

7 PROTOTYPE IMPLEMENTATION AND EVALU-
ATION

In order not to reinvent the wheel, we have reused and ex-

tended FAWN [20] as the MDS cluster by introducing DROP

on top of it. We first evaluate scalable namespace locality,

and second present metadata request overhead comparison

when renaming directories. We evaluate DROP and compare

its performance with FileHash and DirHash. Each MDS with

twenty virtual nodes is deployed in an m1.large instance with

4 cores and 7.5GB memory in Amazon Singapore.

7.1 Scalable Namespace Locality
Figure 12 presents scalability comparisons of namespace lo-

cality on three level paths in the three traces. Figure 12(a),

Figure 12(b) and Figure 12(c) illustrate that DROP has much

better scalability of namespace locality than DirHash and

FileHash for the given three traces. The percentage above a

box is calculated as follows: N−D
D × 100%, where D and N

are the number of MDSs using DROP and FileHash/DirHash

respectively. DROP performs increasingly better than the other

two distributed metadata management schemes when the num-

ber of metadata servers rises. The reason for this is that DROP

can achieve suboptimal namespace locality using locality-

preserving hashing, i.e., assigning keys that are consistent

with the order of pathnames, which is not taken into account

in both DirHash and FileHash so that namespace locality is

eliminated thoroughly. Note that DROP has somewhat better

locality on the first-level paths in Microsoft than Linux and

Harvard, while it has much worse locality on the non-first-

level paths in Microsoft than Linux because of their different

path naming mechanisms, so DROP has better scalability of

namespace in Linux than Microsoft, as shown in Figure 12(a)

and Figure 12(b).

7.2 Scalable Metadata Request

We measure metadata request overhead when renaming direc-

tories, which may come across multiple metadata servers using

get and put operations. Packaging get or put operations into

one message is a normal choice when renaming some file of

a directory, which are maintained by one MDS. We randomly

select sample directories from the three traces, and rename

them. Figure 13 illustrates the metadata request overhead

with excellent scalability when guaranteeing strong metadata

consistency. Figure 13(a) and Figure 13(c) show that they

have similar metadata request overhead because the Linux
and Harvard traces are based on Linux namespace scheme,

while Figure 13(b) illustrates that DROP has much better

performance than DirHash and FileHash because there are

fewer first-level paths in Microsoft than the other two traces.

8 RELATED WORK

Distributed metadata management is the foundation of EB-

scale file systems, which excellently support cloud-scale stor-

age and backup, and even cloud-scale data management [21].

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JULY 2013 9

8.1 Metadata Server Cluster Scale

Single Metadata Server. The architecture of a single MDS

vastly simplifies the design and enables the MDS to make data

placement and replication decisions relatively easy, but there

is a bottleneck in the single MDS, causing the single-point

failure. Distributed file systems, e.g., Coda [22], partition their

namespace statically among multiple storage servers, so most

of the metadata operations are centralized. Other distributed

file systems, e.g., GFS [23], have a single MDS, with a fail-

over MDS that becomes operational if the primary server

becomes unavailable. For example, file system metadata and

application data are stored separately in GFS. File system

metadata is stored on a dedicated server called master, while

application data is stored on data servers called chunkservers.

Only one MDS is operational at a given point in time, which

is obviously a potential bottleneck as the number of clients

and/or files increases.

Multiple Metadata Servers. Metadata server cluster can

expand or contract, and it can rebalance the file system

dynamically to distribute data evenly among MDSs. This

ensures high performance and prevents heavy loads on specific

MDSs within the cluster. Several distributed file systems have

or are exploring truly distributed implementations of the single

global namespace. Ceph [24] has a cluster of metadata servers

and uses a dynamic subtree partitioning algorithm [3] to map

the namespace tree to MDSs evenly. GFS [23] is also evolving

into a distributed namespace implementation [25]. The new

GFS will have hundreds of metadata servers with 100 million

files per master. Lustre [26] has an implementation of clustered

namespace on its roadmap for Lustre 2.2 release. The purpose

is to stripe a directory over multiple metadata servers, each of

which contains a disjoint portion of the namespace.

8.2 Metadata Organization

Subtree partitioning and hash-based mapping are two common

techniques used for MDS cluster in EB-scale file systems,

while Bloom-filter-based approaches [27], [28] provide prob-

abilistic metadata lookups instead of metadata updates.

Hash-based mapping. Hash-based mapping [29], [30] ap-

plies hash function to a pathname or filename of a file to

locate the file’s metadata. It helps clients to locate and contact

directly to the right metadata server. Client requests can be

distributed evenly among a metadata server cluster, eliminating

hot-spots consisting of popular directories. Vesta [29] and

zFS [30] leverage pathname hashing to locate metadata. Hash-

ing provides a better load balancing across metadata servers

and gets rid of hot-spots e.g., popular directories. However,

hashing is a random distribution, in which metadata updates

may incur huge network overhead, e.g., the metadata of many

files has to be migrated among MDS cluster after renaming a

directory. In order to verify user access permissions, it results

in high overhead from prefix directories cache or path traversal

as the accessed files and their prefix directories are located

on different MDSs. Furthermore, it eliminates the hierarchical

locality and many benefits brought by the hierarchical locality.

Lazy Hybrid [2] based on hashing exploits lazy update policies

to defer and distribute update cost to address the update issue

of metadata.

Subtree partitioning. Static subtree partitioning [31] pro-

vides a simple approach of distributing metadata operations

among MDS cluster, which statically partitions the directory

hierarchy and assigns each subtree to a particular MDS. It

provides better locality of reference and greater MDS indepen-

dence than hash-based mapping. Its major drawback is that the

workload may not be evenly partitioned among MDS cluster,

suffering from a system performance bottleneck. In order to

adjust load imbalance, migrating subtrees is necessary in some

cases (e.g., PanFS [31]). Static partitions fail to adapt to the

growth or contraction of individual subtrees over time, often

requiring intervention of system administrators to repartition

or manually rebalance metadata storage load across MDSs.

Dynamic subtree partitioning [3] uses dynamic load balancing

mechanism to redistribute metadata dynamically among MDS

cluster to handle the changing workload.

8.3 Dynamic Load Balancing

Many leave-join based load balancing mechanisms have been

proposed concurrently in [16], [17], [32] and [33]. Mer-

cury [16] works even when there are skewed node ranges since

it utilizes an effective random sampling approach. The load

balancing mechanisms in [17] do not cope with skewed node

range distributions, and they dynamically balance load among

servers without using multiple virtual nodes by reassigning

lightly loaded servers to be neighbors of heavily loaded

servers. However, it is not clear whether their approaches

would be efficient in practice although they prove bounds on

maximum node utilization and load movement. One-to-Many

and Many-to-Many are extended to dynamic structured P2P

systems [34], where One-to-Many is used for emergency load

balancing of one particularly overloaded node, while Many-to-

Many is used for periodic load balancing of all the nodes [33].

9 CONCLUSIONS

In this paper, we present DROP, an efficient and scalable

distributed metadata management architecture to serve EB-

scale file systems. In order to keep excellent namespace

locality, DROP exploits locality-preserving hashing to dis-

tribute metadata among MDSs. When storage load changes

dynamically, it introduces the HDLB strategy to quickly adjust

the metadata distribution. After the adjustment, DROP ensures

that the namespace locality maintained by MDSs is still good.

Besides, DROP can balance the metadata storage load as good

as static hash-based mapping. When the size of the MDS

cluster changes, DROP uses the HDLB strategy to move the

minimal metadata to maintain the storage load balancing. It

keeps excellent consistency of metadata replicas as well. Com-

pared to other distributed metadata management techniques,

DROP brings multiple advantages, such as balancing metadata

storage load efficiently, high scalability and no bottlenecks

with negligible additional overhead.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JULY 2013 10

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for

their valuable comments that help improve this paper. This

work is supported by A∗STAR Thematic Strategic Research

Programme (TSRP) Grant No. 1121720013.

REFERENCES

[1] I. Raicu, I. T. Foster, and P. Beckman, “Making a case for distributed
file systems at exascale,” in LSAP, 2011, pp. 11–18.

[2] S. A. Brandt, E. L. Miller, D. D. E. Long, and L. Xue, “Efficient
metadata management in large distributed storage systems,” in IEEE
Symposium on Mass Storage Systems, 2003, pp. 290–298.

[3] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller, “Dynamic
metadata management for petabyte-scale file systems,” in SC, 2004, p. 4.

[4] J. Xiong, Y. Hu, G. Li, R. Tang, and Z. Fan, “Metadata distribution and
consistency techniques for large-scale cluster file systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 22, no. 5, pp. 803–816, 2011.

[5] S. Patil and G. A. Gibson, “Scale and concurrency of giga+: File system
directories with millions of files,” in FAST, 2011, pp. 177–190.

[6] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel, “Finding a needle
in haystack: Facebook’s photo storage,” in OSDI, 2010, pp. 47–60.

[7] E. L. Miller, K. Greenan, A. Leung, D. Long, and A. Wildani. (2008)
Reliable and efficient metadata storage and indexing using nvram.
[Online]. Available: dcslab.hanyang.ac.kr/nvramos08/EthanMiller.pdf

[8] J. K. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze, M. D. Kupfer,
and J. G. Thompson, “A trace-driven analysis of the unix 4.2 bsd file
system,” in SOSP, 1985, pp. 15–24.

[9] B. Welch, M. Unangst, Z. Abbasi, G. A. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou, “Scalable performance of the panasas parallel
file system,” in FAST, 2008, pp. 17–33.

[10] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems,” in USENIX Annual Technical
Conference, 2010.

[11] Q. Xu, R. V. Arumugam, K. L. Yang, and S. Mahadevan, “Drop: Facil-
itating distributed metadata management in eb-scale storage systems,”
in MSST, 2013, pp. 1–10.

[12] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in SIGCOMM, 2001, pp. 149–160.

[13] Q. Xu, X. Hou, B. Cui, H. T. Shen, and Y. Dai, “Facilitating effective
resource publishing and searching in dht networks,” HKIE Transactions,
vol. 16, no. 3, pp. 32–41, 2009.

[14] S. Kavalanekar, B. L. Worthington, Q. Zhang, and V. Sharda, “Charac-
terization of storage workload traces from production windows servers,”
in IISWC, 2008, pp. 119–128.

[15] D. Ellard, J. Ledlie, P. Malkani, and M. I. Seltzer, “Passive nfs tracing
of email and research workloads,” in FAST, 2003.

[16] A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: supporting
scalable multi-attribute range queries,” in SIGCOMM, 2004, pp. 353–
366.

[17] D. R. Karger and M. Ruhl, “Simple efficient load balancing algorithms
for peer-to-peer systems,” in SPAA, 2004, pp. 36–43.

[18] C. Chekuri and S. Khanna, “A polynomial time approximation scheme
for the multiple knapsack problem,” SIAM J. Comput., vol. 35, no. 3,
pp. 713–728, 2005.

[19] M. Herlihy and J. M. Wing, “Linearizability: A correctness condition for
concurrent objects,” ACM Trans. Program. Lang. Syst., vol. 12, no. 3,
pp. 463–492, 1990.

[20] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan, “Fawn: a fast array of wimpy nodes,” in SOSP, 2009, pp.
1–14.

[21] Y. Cao, C. Chen, F. Guo, D. Jiang, Y. Lin, B. C. Ooi, H. T. Vo, S. Wu,

and Q. Xu, “Es2: A cloud data storage system for supporting both oltp
and olap,” in ICDE, 2011, pp. 291–302.

[22] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel,
and D. C. Steere, “Coda: A highly available file system for a distributed
workstation environment,” IEEE Trans. Computers, vol. 39, no. 4, pp.
447–459, 1990.

[23] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in SOSP, 2003, pp. 29–43.

[24] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in OSDI,
2006, pp. 307–320.

[25] M. K. McKusick and S. Quinlan, “Gfs: Evolution on fast-forward,” ACM
Queue, vol. 7, no. 7, p. 10, 2009.

[26] Lustre file system. [Online]. Available: http://www.lustre.org
[27] Y. Zhu, H. Jiang, J. Wang, and F. Xian, “Hba: Distributed metadata

management for large cluster-based storage systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 19, no. 6, pp. 750–763, 2008.

[28] Y. Hua, Y. Zhu, H. Jiang, D. Feng, and L. Tian, “Supporting scalable and
adaptive metadata management in ultralarge-scale file systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 22, no. 4, pp. 580–593, 2011.

[29] P. F. Corbett and D. G. Feitelson, “The vesta parallel file system,” ACM
Trans. Comput. Syst., vol. 14, no. 3, pp. 225–264, 1996.

[30] O. Rodeh and A. Teperman, “zfs - a scalable distributed file system using
object disks,” in IEEE Symposium on Mass Storage Systems, 2003, pp.
207–218.

[31] D. Nagle, D. Serenyi, and A. Matthews, “The panasas activescale storage
cluster - delivering scalable high bandwidth storage,” in SC, 2004, p. 53.

[32] J. Pang, P. B. Gibbons, M. Kaminsky, S. Seshan, and H. Yu, “Defrag-
menting dht-based distributed file systems,” in ICDCS, 2007, p. 14.

[33] A. Rao, K. Lakshminarayanan, S. Surana, R. M. Karp, and I. Stoica,
“Load balancing in structured p2p systems,” in IPTPS, 2003, pp. 68–79.

[34] B. Godfrey, K. Lakshminarayanan, S. Surana, R. M. Karp, and I. Stoica,
“Load balancing in dynamic structured p2p systems,” in INFOCOM,
2004.

Quanqing Xu received the PhD degree in computer science from
Peking University, Beijing, China. He obtained the award of Excel-
lent PhD Graduate because of his excellent performance at Peking
University. He is a Research Scientist of the Data Storage Institute
(DSI), a research institute under the Agency for Science, Technology
and Research (A*STAR), Singapore. He is leading research and
development in the area of distributed metadata management of next
generation large scale storage systems. His research interests mainly
include distributed systems, P2P computing and cloud storage. He is
a member of the IEEE and ACM.

Rajesh Arumugam is a Senior Researcher at the Data Storage
Institute (DSI), a research institute under the Agency of Science,
technology and research (A*STAR), Singapore. He is currently the
Program Leader for the large scale hybrid storage system research
program. He is leading a team of researchers/systems engineers in re-
search, design and development of next generation Petabyte/Exabyte
scale storage systems for next generation data centers. Rajesh holds a
Master’s degree in Electronics and Communication Engineering from
Anna University, India. Currently, he is also a part-time PhD student
in the School of Computer Engineering at Nanyang Technological
University, Singapore.

Yong Khai Leong is a Division Manager of the Data Storage

Institute (DSI), a research institute under the Agency for Science,

Technology and Research (A*STAR), Singapore. In his role with

DSI, Khai Leong leads a team of research scientists and engineers

in developing data and storage technologies for next generation data

centers. Khai Leong obtained his Electrical & Electronics Engineer-

ing degree from the National University of Singapore and hold a

postgraduate degree in Communication Software and Networks.

Sridhar Mahadevan received his masters degree from Na-

tional University of Singapore. He is a research engineer at the

Data Storage Institute, a research institute under the Agency

for Science Technology and Research (A*STAR) Singapore.

He is part of the research and development in the area of

distributed metadata management of next generation large

scale storage systems. His research interests are in distributed

file system.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

