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Abstract—The storage of IP traffic traces increasingly grows

more complex, since data flows tend to increase largely over time.

Network operator's backbones generate each day hundreds of

Gigabyte of IP flow records that need to be stored and analyzed.

Handling such amount of data requires a high-performance

hardware and software. One way to leverage performance

requirements of a storing and analysis of traffic data is to design a

distributed platform to replace centralized solutions existing

today. This paper designs a scalable storage platform for IP flow

records. The evaluation of the implemented prototype shows that

such an approach can offer a good and practical solution for

storing and retrieving high amounts of IP flow records. 

Index Terms—IP Flow, Flow Data Storage, P2P

I. INTRODUCTION

During the last decade IP networking has constantly

grown in popularity. Traditional services that have been
deployed over dedicated network infrastructures for a long
time, such as telephony, radio, or television, have slowly
switched to IP (Internet Protocol). The “everything-over-IP”
approach has a direct impact on network operators, as with
each new service offered the amount of carried traffic
increases. Such traffic increases impact highly the ability of
network operators to perform traffic analysis, which is required
by operators to understand the type of traffic they carry in
order to provide better quality services, charge users based on
the traffic they generate, plan network upgrades, or detect
malicious traffic. 

The measurement of IP traffic generated by a device
connected to an IP network is the first step of several key
operations in network management: load balancing, intrusion
detection, performance monitoring, generation of traffic
statistics, or charging for connection time, bandwidth used or
volume transferred. Depending on the granularity of the data
collected as well as on the type of link on which traffic is

measured the information gathered may range from a few
kilobyte per hour up to gigabytes per second. One of the main
mechanisms to retrieve information about network traffic is
flow accounting. Flow accounting is concerned with measuring
the IP traffic on a per flow basis. A flow is typically identified
as a unidirectional sequence of packets from one source point
to one destination point having one or several common IP
header fields. The most commonly used fields to identify an IP
flow are: source IP address, destination IP address, IP protocol
number, source port number, and destination port number. The
IP header fields that define an IP flow are also called flow
keys. In IP flow accounting during the traffic measurement
process, at least the following information is collected for each
IP flow: number of packets in the flow, total bytes transferred,
start time of the flow, end time of the flow, TCP flags
observed, incoming and outgoing router interface.

Today, storage of IP flow records is mostly done by
centralized components. Since traffic volumes increase, such
centralized solutions can no longer cope completely with the
resulting data increase and use sampling as a mechanism to
reduce data volumes. Therefore, another strategy for
processing such high data volumes in the future is needed.
Using Peer-to-Peer (P2P) mechanisms for the development of
storage platforms has shown that reliability and robustness of
centralized platforms can be highly improved [14]. Storage of
IP flow records is very challenging, mainly because a retrieval
operation is typically preceded by a complex search operation,
thus, distributing the storage (and search operations as well)
should greatly improve the performance of a query operation. 

The IETF is currently standardizing the IPFIX [10] protocol
as well as requirements for IP flow storage. These
specifications define different templates to be used for flow
records. The work presented in this paper is not constrained by
a particular IP flow export protocol. The prototype
implemented, however, uses NetFlow version 5 [18] as the
export protocol for IP flow records. A change to the IPFIX
protocol is foreseen for the near future and will require
minimal change in the existing prototype.

The main goal of this work is to investigate, whether P2P
mechanisms that proved efficient in other application areas can
be used to improve storage scalability and query performance
of IP flow storage by distributing these tasks to multiple nodes.
Distribution in the context of this paper does not imply (but

does not exclude either) geographic distribution. Nodes may be
collocated or distributed within the network of an ISP.
DIPStorage provides the underlying mechanisms that allow
multiple nodes to share their resources for storing IP flow
records. In order to achieve this goal, a prototype was
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designed, implemented, and evaluated. The evaluation shows
that DIPStorage meets the desired goal. Due to the fact that the
distributed storage platform was based on P2P mechanisms,
traditional database (centralized or distributed) systems have
not been evaluated.

The remainder of this paper is organized as follows:
Section II gives an overview on other work in the field of IP
flow accounting and distributed traffic monitoring to
differentiate the new approach, as presented in Section III,
which provides an overview on the architecture of DIPStorage.
Section IV shows key implementation details of the prototype
developed. Finally, Section V presents evaluation results and
Section VI concludes the paper.

II. RELATED WORK

With the constant increase of traffic observed on network
operators’ backbone links major research is focused on the
field of packet sampling and flow sampling in order to
significantly decrease the amount of traces that an operator
needs to process. The authors of [2], [3], [5], [24] present
packet and flow sampling algorithms that besides reducing the
amount of data also keep the error of the sampling estimations
within low limits. Those sampling proposals, although
alleviating the computational requirements of high-speed
packet processing, are not very accurate in some scenarios
where complete information is required (such as Intrusion
Detection Systems (IDS) or usage-based charging systems).
Investigations have been made into detecting how sampling
algorithms impact the performance of intrusion detection
systems. [1] and [15] show that the sampling rate directly
impacts the quality of intrusion detection. The work of [6]
outlines that sampling may also decrease the revenue of
network operators or it may artificially increase users’ bills
when sampled data is used for charging. 

Different distributed architectures for network monitoring
tasks are proposed in literature. In [4] the authors introduce the
idea of trajectory sampling in the context of IP flow
accounting. In their approach each packet is processed either
by a single router, either by all the routers on the packet’s path.
However, this solution does not guarantee that a packet always
reaches a router responsible with its capturing. In [13] a
distributed packet capturing architecture is proposed based on
a high-performance machine that splits the traffic across
multiple capture nodes. A similar approach is found in [9] with
the main advantage that different tasks of network monitoring
are distributed while storage uses several databases each
storing the data aggregated at different time scales (e.g. 5
minutes, 1 hour, 24 hours intervals).

In the area of IP flow records storage flow-tools [7] and
nfdump [19] are two widely used open-source tools. The main
disadvantage of these tools is that they are centralized, thus,
suffering of performance drops in case of large volume of IP
flow records stored.

Several P2P storage systems such as [14] and [22] are
proposed by the research community as well as the industry.
These solutions are targeted mainly towards persistent file
storage. In the context of IP flow records storage such a

solution would produce a large overhead due to the small size
of stored objects and a file system approach included.
Moreover, these solutions are not optimized to query and
aggregate a large number of objects.

III. DIPSTORAGE ARCHITECTURE

Existing centralized solutions to IP flow collection have
several major drawbacks: they lack storage scalability, suffer
from a single point of failure, and flow retrieving performance
degrades as the number of stored IP flow records increases.
P2P systems have proven to be an efficient solution to
scalability and reliability [14] problems of centralized storage
systems. Since all nodes are “equal”, the tasks of a node,
which leaves the network, may be taken over by any other
node. In order to benefit from advantages of P2P applications,
the architecture of DIPStorage is built on P2P concepts. In
general, DIPStorage does not require that nodes are
geographically distributed, but it provides a platform for
sharing resources for storing IP flow records. 

The main component of DIPStorage architecture is a
Distributed Hash Table (DHT). This DHT is the enabler of
DIPStorage. The way it is organized highly influences the way
flow records are distributed in the storage network. Each node
of the DHT is responsible for storing of a subset of flow
records. For each IP flow record received by the storage
platform a 64 bit flow ID is calculated by applying a hash
function on the IP flow keys. Each node is responsible for the
storage of a range of flow IDs. Based on its flow ID each IP
flow record is routed through the storage platform to the node
responsible for its storage.

Two strategies have been identified for routing an IP flow
record within the storage platform: random storage strategy
and structured storage strategy. In the random storage strategy
the flow ID for each IP flow is randomly generated. By the
random strategy approach flow IDs are uniformly distributed

in the[0-264-1] interval. If this interval is split in equal parts
and each of the storage nodes is responsible for one of those
intervals, the storage load is distributed evenly between storage
nodes. However, the main disadvantage of this approach is that
each query for IP flow records needs to be broadcasted to all
nodes and processed by all storage nodes. 

Therefore, the structured storage approach addresses this
drawback by grouping IP flow records with similar flow keys
close with respect to their flow ID. Fig. 1 shows the effect of

Fig. 1.  Flow Storage in Structured Storage Strategy
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how structured storage strategies store two IP flow records
with similar characteristics. The figure shows two flow records
representing two distinct secure shell (ssh) flows having a
common destination port number (22), but different source and
destination IP addresses. In the example above, two hash
functions (f1 and f2) are used for storing each flow record

twice. By using multiple hash functions for storing a single
flow record redundancy is introduced in order to achieve
higher fault tolerance. As f1 is a function of IP source address

and IP destination address, hash results of this function for the
two flow records in the above example are different. This is
shown in the figure by the storage of the two flow records on
different nodes (C and D). Since f2 generates a hash code
based only on the destination port number, which is the same
for the two IP flows in the example, the resulting hash codes
for the two flow records are the same so both flow records will
be stored on the same node. Therefore, DIPStorage is based on
the structured storage strategy. 

A. Tank-based View

For storing data DIPStorage uses attributes from IP flow
records, which include IP addresses and ports from both source
and destination. As observed in the example shown in Fig. 1,
the chosen hash function and the flow keys to which it is
applied highly influence the way the IP flow records with
similar flow keys are distributed in the storage network.

DIPStorage establishes the idea of a tank-based view. A
Tank is a subset of peers which form a group that stores IP
flow records under a specific set of rules. These rules include a
hash function and the corresponding flow keys to which it is
applied.

Drawing from the ideas of JXTA (Juxtapose) [12], a single
tank forms a group of interest that actually stores incoming
data based on a specific attribute. A single tank is able to
completely handle incoming data and queries on it’s own
without requiring other tanks to be working. A single tank is
being constructed using a tank indexer (TI) to manage the
nodes in the respective tank. Although all nodes are equal
within a tank group, they assume data storage responsibilities
in a treelike fashion. Depending on available nodes the tank
may have multiple levels, where each level refines the
granularity of the data stored in the subtree. The more nodes or
respectively peers are available, the more fine-grained the data
routing can be. In case the storage tank uses the source IP

address of the IP flow record as its storage attribute, routing is
done by splitting the IP range by the number of nodes available
on each level. In the IP case, the first level splits the first part of
the IP address, the second the second part and so on. Whenever
a node receives a flow record it calculates its flow ID and
decides, whether it is responsible for that flow record. If not,
then it calculates — based on the flow ID and the known
children — the next hop where to send the flow record to.
Since different tanks in DIPStorage have different storage
rules, search queries can be efficiently routed through the
storage network to find data according to an attribute (for
example the IP source address). More specifically, nodes
within a storage tank can be queried directly, because their
parent tank indexer knows exactly where data may be stored
and therefore redirects the query to a specific subtree. In case
of multiple levels involved, every parent of a subtree sends the

query down to its matching children. It waits for all answers,
aggregates them, and sends them to its own parent. In order to
avoid deadlocks, a time-out prevents a node to wait
indefinitely long for an answer from one of its children. If the
time-out is reached, the parent node can initiate any
administrative tasks needed to rejoin the missing node or to
recover the data lost. By introducing levels of responsibilities,
the system is able to handle failovers efficiently. If a parent
node fails, the second level of responsibility is delegated
toward child nodes, which shall elect a replacement for the
missing node. All child nodes during the election process need
to answer incoming queries all together.

B. Multi-Tank Organization

Since a single data tank stores IP flow records based on a
particular IP flow attribute each query that does not contain
that attribute cannot be optimized. This happens because the
query needs to be forwarded to all nodes in all sub-trees as the
information required to route the query is missing. In order to
address this issue, DIPStorage uses several data tanks for
storing the IP flow records under different rules. Fig. 3 shows
how four data tanks are used by DIPStorage to store the IP
flow records based on: source IP address, destination IP
address, source port number, destination port number. Based
on the query received, the query analyzer decides which data
tank is best optimized for answering the query, and then
forwards the query to that tank. 

A traffic management application deals with the generation

Fig. 2.  Tank-based View
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of flow records and their delivery to DIPStorage as well as
with creation of queries of IP flow records. For example, a
router with NetFlow export capabilities could be used to
generate IP flow records. The flow replicator is responsible for
distributing incoming data evenly across the tanks. Every tank
stores each IP flow record according to its internal distribution
rules. Subsequent queries for data can be handled by the
appropriate data tank. In case one of the tanks fails to provide
the requested data, other tanks can still potentially answer the
query, although in that case the overall query time may be
higher. The query analyzer has the task to decide which data
tank a query is routed to such that the query is answered
efficiently. Multiple tank strategies also provide redundancy.
In case any node or a whole tank fails, other tanks have the
ability to get the lost data and send it for duplication in the
affected tank.

C. Load Balancing

One of the reasons for distributing IP flow records to
different nodes is to decrease the query time in case of large IP
flow records databases. Preferably the data should be equally
distributed among participating nodes, so that response times
for any two queries are similar. As the flow storage
responsibility is based on a hash value of the IP flow record,
the load of a node can be increased or decreased by changing
the range of hash values for which that node is responsible. A
load balancing process is started whenever a node is detected
to store considerably more flow records then an overall
average. As nodes may be added or removed arbitrarily from
DIPStorage, a load balance mechanism also allows for
redistribution of work in these situations.

D. Redundancy

One key concept of DIPStorage is the storage of each IP
flow record in several data tanks. Such an approach has a
twofold advantage: on one hand it achieves a better fault
tolerance by redundant storage of each IP flow record, while
on the other hand it improves the query efficiency by
optimizing each data tank for a particular type of queries. 

Since each flow record is stored more than once, if a storage
node disappears from the storage network, its data is not lost
from the system, but only from its data tank. Once a node is
detected as “down“, its data tank requests one of the other data
tanks the missing data. For doing that, the data tank that detects
a missing node first calculates the range of IP flow records for
which the missing node was responsible. Afterwards the data
tank performs a rebalancing of the load, so that the missing
range is reassigned to other nodes in the data tank. Once the
load balancing is done, the data tank asks one of the other tanks
for all flow records within the missing range. Using this
technique, an IP flow record is lost only if the respective
responsible nodes in every tank are lost in a short time interval.

The second advantage of having redundant data, which is
organized under different rules, is to optimize different types
of queries. For example, a query such as “get all IP flow

records which have the source IP address 10.100.100.1“ can
be answered very fast by the data tank 1 (cf. Fig. 3), because
the query can be routed directly to the node that stores flow

records with that source IP addresses. However, a query such
as ”get all flow records with the destination port 22“ asked to
data tank 1 would have the effect of being broadcast to all
nodes in the data tank. This second query can be answered
more efficiently by data tank 4, since it stores IP flow records
based on destination port numbers. Such a behavior would be
implemented in a traditional databases approach by using index

files. In the presented scenario, however, such index files
would be too expensive to keep due to the time required for the
update operation.

IV. IMPLEMENTATION

The implementation of DIPStorage follows a layered
approach as shown in Fig. 4. The P2P layer of DIPStorage
provides the ability to handle a P2P network on top of Pastry
technology, and further more, establishes a second overlay for
building a hybrid super peer network. The P2P layer is
implemented on top of Freepastry [8], which is a JAVA-based
framework, for building Pastry networks. On top of Pastry
DIPStorage uses an add-on called Scribe [20], which is also a
part of the Freepastry framework. 

The P2P layer also contains all messages that need to be sent
from one node to another using either Pastry directly or the
multicast mechanisms of Scribe. Therefore, a message either
implements the Message Class from Pastry, or the
ScribeContent Class from Scribe. If a message travels through
Scribe and Pastry, it primarily implements ScribeContent and
is then packed into a Pastry Message when sent directly
through Pastry. Most messages either form a request for an
arbitrary task or a response to it. The routing layer handles two
tasks. It routes incoming data to the appropriate storage client
and queries the system efficiently. The routing of IP flow
records is based on IP flow attributes. Each node knows where
to route an IP flow record or query based on flow keys.

The storage layer includes the main storage component of
DIPStorage. The main intention was to use an existing system
that is optimized for storage and query efficiency. One of the
bigger open-source database systems available, MySQL [17],
introduces drawbacks. First, it requires a node to have a
running MySQL installation. Second, it does not enable easily
replication. Furthermore, the scheme of the database has to be
designed in advance and embedding it requires the usage of
SQL language (neglecting the existence of persistence
frameworks). This is why DIPStorage uses a JAVA-based
XML Database called TreeTank [21], which enables
DIPStorage to provide easy replication and standardized
querying through XPath [23] queries. The XML nature of that

Fig. 4.  DIPStorage Layers
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database enables DIPStorage to either store the data in a
treelike structure on physical nodes, when enough nodes are
available, or to build a XML based tree structure on one node.
Additionally, traditional NetFlow collector engines, such as
nfDump or flow-tools, may be used as storage components. In
such a case DIPStorage would serve as an enabler for a
distributed operation of those tools. 

Basic tasks of the maintenance layer are the self
organization of the underlying P2P network. The first node to
join DIPStorage starts acting as a Bootstrap Server. Nodes
within DIPStorage do not need necessarily to know the IP
address of a Bootstrap Server, but can get relevant service
information through the MulticastDNS [16], which is
implemented in DIPStorage using JmDNS [11]. Starting with
the second node, each participant generates an identifier and
connects to a Bootstrap Server. There may be multiple nodes

acting as a Bootstrap Server in order to load-balance the
workload or for resilience against failovers. One of the duties
of a Bootstrap Server is the assignment of tasks to new nodes.
As soon as a sufficient number of nodes are ready to form one
main tank, the Tank Coordinator will enable DIPStorage to
receive and query data by adding middleware nodes.

V. EVALUATION

In order to evaluate DIPStorage, a functional evaluation as
well as a performance evaluation was performed. For doing the
tests, a set of 6 to 15 nodes have been used in different
DIPStorage configurations. During all the tests nodes were
connected via a single Local Area Network. The functional
evaluation shall show that the prototype can build a storage
network, can perform P2P node management within the
storage network, and can route IP flow records and queries
within the data tanks. Therefore, the main goal of DIPStorage
mentioned in the introduction of the paper has been achieved.
Using P2P mechanisms the DIPStorage prototype may be used
to build a scalable storage platform for IP flow records. The
current version of the prototype, however, does not replicate IP
flow records, and only uses a single data tank for storage. The
addition of this functionality is foreseen for a next version of
the prototype.

The second part of the evaluation investigated how much

query performance improvement DIPStorage achieves in
comparison to a centralized solution. During the performance
evaluation two different distributed storage strategies (random
approach and structured approach) have been evaluated in
order to see which one performs better under load. For these
tests the storage network was not idle, but was receiving flow
records at a constant rate. 

The test consisted out of a set of queries running in parallel.
The results presented in Fig. 5 show that the structured storage
strategy outperforms the random storage. The main reason is
that in the structured approach the query is routed directly to
the responsible storage node, which makes a lookup in its local
database, while in the random storage the query is received by
all nodes and all of them have to perform a local lookup. In
case of multiple different queries running in parallel, each
query is processed by a different node when using the

structured approach. When random strategy is used, all nodes
need to process all queries. 

The second performance test compares the performance of
the structured distributed storage with the performance of a
centralized storage system. The centralized storage system
consists out of a single storage component that stores all flow
records received locally. The storage component for the
centralized storage system was identical to the one used by the
nodes in the distributed approach. This comparison measured
the performance increase of work distribution. Results are
shown in Fig. 6. For 357 million records, the increasing ratio
between query time in the centralized approach and the
distributed approach shown in the second test demonstrates
that with more flow records added to the storage network the
single node performance will deteriorate faster compared to the
distributed structured approach. This is because a single node
needs to query all the IP flow records, while in the distributed
approach each node needs to query a smaller number of flow
records. The ratio between the single node and the distributed
structured version increases as more nodes are added to the
storage network as in the latter case each node has to store less
data. 

It is interesting to see, how the DIPStorage approach handles
load. A centralized component may handle loads not very well,
because storage and query tasks, as well as administrative tasks

Fig. 5.  Distributed Storage Strategies Comparison 
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need to be handled by one single component. In the distributed
approach, these tasks are split onto multiple peers. The
evaluation of DIPStorage includes a differentiation on the
performance between a storage network under load and an idle
storage network with respect to query performance. As Fig. 7
shows, the difference in performance between these two cases
considered is minimal. This means that the distributed
approach used in DIPStorage can handle a high load in a fairly
efficient way, which gives confidence in the system to grow
with future needs.

VI. CONCLUDING REMARKS

With the continuing increase of available data rates on
backbone network links, the amount of IP flow records
network providers have to handle increases as well.
Centralized IP flow records storage systems, although easy to
maintain, since all the data is stored in a single place, do not
scale easily with respect to the storage size they can achieve, as
well as with respect to the query performance they need. Often
providers need to sample traffic in order to reduce the amount
of data they have to handle. A distributed storage platform for
IP flow records — as the one presented here — allows for a
provider to increase the amount of storage space by adding
new storage nodes. Moreover, the performance of IP flow
record processing can be improved also by using more
computational resources during the retrieval of IP flow records
from the storage space.

Therefore, the evaluation of the prototype implemented
shows that a P2P-based distributed storage system for IP flow
records is feasible. This prototypical implementation proves
that storage distribution highly reduces the query time for IP
flow records and can be applied in real systems. 

Since most of the functionality on DIPStorage is in place,
future work will be concentrated on improving the
performance of the storage and query system as well as on the
extension to support more complex applications, such as
detection of route asymmetries based on IP flow records.

Finally, the conclusion is drawn that DIPStorage can help
network operators to build a scalable storage and analysis
platform for IP flow records with low costs. Moreover, being
able to store more IP flow records and achieving better
performance querying them, new application scenarios using
IP flow records can be implemented on top of DIPStorage. 
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Fig. 7.  Load Resilience in Distributed Approach
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