
12th IFIP/IEEE 1M 2011: Dissertation Digest

An Open Architecture for Distributed
IP Traffic Analysis (DITA)

Cristian Morariu, Burkhard Stiller

Communication Systems Group CSG, Department ofInformatics IF!, University of ZUrich
BinzmUhlestrasse 14, CH-8050 ZUrich, Switzerland

E-mail: [morariulstiller]@ifi.uzh.ch

Abstract - This thesis investigated how performance of
today's IP traffic metering and analysis applications can be
improved by moving from a centralized, high-performance
infrastructure, which executes these tasks, to distributed
mechanisms, which combine available resources of multi­
ple devices. The results achieved show that distributed IP
traffic metering and analysis leverages bottleneck prob­
lems. The distributed IP traffic approach DITA does not
solve all problems of handling such large amounts of data
in very short time by itself, but proposes an orthogonal
approach to existing solutions. DITA revelas that combin­
ing distributed IP traffic metering and analysis reaches
better and higher performance sampling and aggregation
mechanisms, which do provide a very flexible and the open
solution to analyzing IP traffic in future high-speed net­
works. This has been achieved by the facts that all mecha­
nisms designed for DITA - and their prototypical
implementations - are based on standard protocols and
open-source technologies. DITA determines the first
approach to distributed IP traffic metering and analysis
known today, which (a) addresses the different bottlenecks
of traffic analysis in a generic way, and (b) is self-organiz­
ing, offering a scalable solution to regular traffic increases.

1. INTRODUCTION

Since the first days of the Internet the IP (Internet P rotocol)
traffic carried by network operators increased year after year.
This was mainly caused by a continuous growth in the number
of users having Internet access, combined with an increase in
services that those users have access to using an IP infrastruc­
ture. Traditional telecommunication services that had their
dedicated infrastructures (such as telephony, television) are in a
process of gradually switching to IP. Two additional causes,
which have lead to the increase of network traffic are a con­
stant need of users to have access to higher quality services,
and, the pervasiveness of modern mobile devices, which allow
users to be connected to the Internet anytime and from almost
anywhere. Different studies of the evolution of Internet traffic
show that on average, during the last decade, Internet traffic in­
creased between 50% to 100% every year. By 2012 the total
Internet traffic carried by Internet providers is estimated to be
about 75 times higher than the total traffic carried in 2002 [1].

In order to properly address the challenges of high speed
traffic monitoring, key problems in IP Traffic Monitoring need
to be identified; centralized traffic monitoring and analysis ar-

chitectures experience bottlenecks at different stages in the
monitoring pipeline (e.g. during metering, exporting, or analy­
sis). The metering process quickly becomes overloaded if the
time required to process a single packet exceeds the interarrival
time between two consecutive packets. In case of counting the
amount of traffic (number of bytes and packets) observed on a
network interface, the processing of a single packet requires
updating several counters (such as a packet counter, a byte
counter, unicast/multicast counters, etc.) mapped to the inter­
face on which the packet was observed. Although each packet
might change tens of counters, such operations can be done at
line speed, even in case of high packet rates, as these counters
can be kept in fast memories, such as Static Random Access
Memory (SRAM), or even registers or line processor caches.
In case of flow accounting data about active IP flows is stored
in a flow cache. Each packet triggers a lookup into the flow
cache to retrieve the flow record which needs to be updated.
Even with efficient flow cache management algorithms (e.g.,

hash tables) such a process triggers multiple accesses to the
main memory, where the flow cache is stored. In case of high­
packet rates the time required to find a corresponding flow
record entry often exceeds the packet interarrival time. As a re­
sult, not all packets can be processed [6].

Another component that often experiences bottlenecks is
the data exporting process from the metering point [2]. If mil­
lions of different active flows exist in the network the flow
cache memory fills very quickly and flow records need to be
exported in order to create space for new ones. In case of at­
tacks, or a small flow cache memory, it is often the case that
most of the observed packets create new flow records. The rate
of creating new flow records can easily exceed the rate at
which the exporting process can export this data, which leads
to a bottleneck caused by the exporting process.

Besides metering and exporting process, problems also ap­
pear at a data collector or during analysis. Often a network op­
erator collects metering data from multiple observation points
in his network. If all data are collected by a centralized collec­
tor it may cause bottlenecks on the network link, which aggre­
gates all data exported. In addition, if the collected records
need to be stored in a persistent memory, the rate of incoming
data could exceed the rate of writing in the persistent memory.
An analysis application may experience a bottleneck similar to
the metering process, when the rate of incoming metering
records exceeds the rate at which these records are processed.

978-1-4244-9221-31111$26.00 ©2011 IEEE 952

As it was observed during the recent years solving the

problem of a bottleneck in the monitoring and analysis pipeline

of a large network only moves the problem to another compo­

nent [2]. This thesis adresses the bottleneck problem of traffic

monitoring and analysis in high-speed networks in a generic

way which includes mechanisms to alleviate all those bottle­

necks described earlier.

The main goal of DITA is to develop an open and generic ar­

chitecture which enables distributed traffic monitoring and anal­

ysis. Starting from the above observations those challenging

aspects of traffic metering, monitoring, and accounting in high

speed networks are investigated, and a new architectural design

to handle those problems in a distributed system is proposed.

Thus, the first problem which this thesis investigates is what is

the effect of distributed IP traffic analysis? A generic architec­

ture for IP traffic analysis, independent of the analysis applica­

tions runing ontop of it, is important, as it is the basis for future

scalable traffic analysis infrastructures. Such a system allows

network operators to scale up their traffic analysis infrastructure

by adding new machines, rather than upgrading or changing it

completely as it is typically the case nowadays. The second

problem that this thesis investigates is how can the petform­

ance of existing traffic monitoring applications which run on

off-the-shelve pes be improved? It was observed that at high

packet rates packet-capture libraries cause the operating system

to spend most of its resources on capturing packets, while leav­

ing less resources for the monitoring application, thus, causing

an overload of the system, which eventually leads to dropped

packets. Finally, the third problem investigated is how to in­

crease the granularity of IP metering data, so that an IP pack­

et can be mapped to an individual user or even a process and

application? The traditional way to address this problem is to

assume that an IP address is used by a single user at a time and

have a mapping between IP address-to-user mapping all times.

In case of applications, the straight-forward approach is to map

ports to applications. In case of users the problem arises when

the end systems are multi-user capable and several users run at

the same time network applications , while in case of applica­

tion accounting ports are not reliable anymore in concluding the

application for a given packet, as more and more applications

use the Hypertext Transfer Protocol (HTTP) [7] for exchanging

data (and often port 80).

II. DISTRIBUTION MODEL

In order to address those bottlenecks outlined above in an

integrated way, and to avoid the shortcomings of existing dis­

tributed approaches to IP traffic analysis, the generic model

DITA (Distributed IP Traffic Analysis), and its attached archi­

tecture were developed. This model defmes characteristics and

requirements of distributed traffic analysis and outlines its

main building blocks.

A. Centralized vs. Distributed Traffic Analysis

A typical deployment for a centralized traffic analysis appli-

cation is depicted in Figure 1. A centralized collector received

flow records from a set of exporters (e.g. routers) in the net­

work. Upon the receipt of these records additional analysis

applications use them for different purposes, such as account­

ing, charging, intrusion detection, network monitoring, etc.

The traffic increase experienced by the network operator also

translates into an increased amount of flow records that need to

be handled by the collector and analysis applications. This

leads to a situation in which an existing collector does not have

sufficient resources to handle the data at the desired rate, thus,

the central collector needs to be replaced with a new, more

powerful, but also more expensive machine. Eventually, this

new machine will have similar problems in future and will

have to be replaced again.

POPe

Figure I: Centralized Flow Collector Replacement

A directly distributed approach, such as just adding a new

collector and configuring some of the routers to forward their

flow records to this new collector, is not feasible, as often cor­

relations between flow records received from multiple sources

are required. Such correlations include detection of duplicated

flow records in order to delete redundant data, or calculation of

some network parameters based on traffic observed at multiple

points. In case of two independent collectors an external com­

ponent is required to perform such correlations, therefore, the

bottleneck is not eliminated, but pushed to another component.
(�Verlay)

�
.

.

· .

·
. .

·
.

.

...

FIowCollector "

, • I

'» ..t

Figure 2: SCRIPT Approach to increased TP metering data

The new DITA approach is summarized in Figure 2. Multi­

ple data collectors form a self-organizing overlay which

includes nodes that perform traffic analysis. Routers can

choose any of the existing collectors to export their data to,

while the overlay ensures that the exported data reaches the

intended analysis applications. Using such an approach allows

a network operator to address increases in traffic to be ana-

953

lyzed by adding new machines to the analysis overlay.

B. Scenarios/or Distributed Traffic Monitoring

To extract key requirements for a distributed IP traffic moni­

toring seven scenarios grouped in three areas (Flow record

analysis, high-speed metering, per-user IP accounting) have

been selected to outline the basis of the design (cf. Table 1).

TABLE 1 Scenarios for Distributed Traffic Monitoring

Flow Record High Speed Per-user Accounting

Analysis Metering

Data Retention Packet Capture Billing for IP Traffic

Delay Mea- and Analysis on User monitoring and

surements High-Speed abuse detection
Links

Real-time Service Load Monitoring

Asymmetric

Route Detec-

tion

1) Flow Record Storage and Analysis

The fIrst set of scenarios deal with flow record processing.

Three different scenarios are presented below: Data Retention,
Delay Measurement, and Real-Time Asymmetric Route Detec­
tion. The reason for choosing several scenarios was to cover

analysis applications that run off-line and require stored data,

as well as applications that are real-time sensitive. The Data

Retention scenario [11] is common to most network operators,

as it deals with storage and retrieval of IP metering data over a

longer time. Legislation was enforced in different countries

[3], [4] forcing network operators to keep traces of the traffic

created by their users. Monitoring the delay is a key element

for any network operator that wants to offer high quality ser­

vices which are defmed by a Service Level Agreement (SLA).

The third scenario - Asymmetric Route Detection (ASR)­

was chosen in order to present a real-time sensitive traffic

monitoring application which needs to process huge amount of

data in little time.

Shortcomings o/Centralized Solutions

The major disadvantages of centralized solutions which were

observed in the above investigated scenarios can be summa­

rized as different bottlenecks due to:

• Incoming IPFIX data arrives at a rate higher than the max­

imum write rate of the hard disk or storage device;

• The network link bandwidth of the centralized collector is

not sufficient for the aggregated IPFIX streams from all

exporters; and

• In case of real-time processing, required at collector's

side, processing time of an IPFIX record is higher than the

records' inter-arrival time.

2) Packet Capture and Analysis on High Speed Links

This scenario stems from real problems encountered in many

network monitoring research labs by researchers doing packet

inspection at high packet rates [10]. Performing software-based

packet inspection at high packet rates is very difficult, as the

processing time of a single observed packet easily exceeds the

packet inter-arrival time on that link. In such situations, sam­

pling is used in order to reduce the number of inspected pack­

ets. Even less complex measurements, such as IP Flow

accounting use sampling rates of 111000 on multi-gigabit links.

One of the main problems in capturing and analyzing pack­

ets on high-speed links is the very short time that can be spent

handling a single packet. As shown in [12] 44% of the IP traf­

fIc observed on an Internet Service Provider (lSP) in today's

Internet is made of packets with sizes between 40 and 100

byte. Assuming a 10 Gbps Ethernet link fully loaded with 64

byte packets - which are very common in voice over IP

(VoIP) applications - this would translate into approximately

20 million packets per second or approximately 50 ns for han­

dling a single packet by the packet inspection node. Capturing

packets requires high-performance memory typically exceed­

ing the speed of DRAM (Dynamic Random Access Memory)

memory existing in standard pes. Dedicated capturing cards,

such as Endace's DAG cards [5], make use of the faster and

more expensive SRAM (Static Random Access Memory)

memory and are able to capture at those high packet rates, but

they typically come at high prices.

Shortcomings o/Centralized Solutions

Due to the short interarrival time between consecutive pack­

ets flowing through a high speed link software-based packet

processing applications cannot process every single packet and

often process only a sample of the packets observed on the

link. In case of network intrusions the packets responsible for

such attacks may be among the unsampled packets. A distrib­

uted system can address this problem by enabling distributed

processing of packet data.

3) Per-user IP Traffic Accounting in a Large Enterprise

Network

Internet Service Providers often perform traffic accounting

in order to charge their clients according to the data volume

they transferred over a period of time. Such a charge does not

necessarily consist of monetary units, but could be a penalty or

incentive in order to reduce or increase a user's traffic (for

example, some operators offer flat-rates subscriptions which

include a drastic bandwidth limitation if a certain download

limit in a month is exceeded). Such type of accounting process

is easily doable if it is assumed that a user can be uniquely

identifIed with an IP address at a given point in time. All that a

network operator needs to do is to correlate its IP metering data

with the information about which user is assigned each of those

addresses. However, there are network scenarios such as multi­

user operating systems in which such an assumption does not

hold. On such systems multiple users might have their applica­

tions running at the same time, each generating network traffIc.

Using a traditional IP accounting mechanism, all that a net­

work administrator could see is how much traffic such a sys-

954

tem generated, but not from which applications that traffic

originated and which user started each of those applications.

Such a scenario is easily encountered in grid environments,

where multiple users share grid resources in parallel, or in

enterprise networks, where all the users of a company (or uni­

versity) have access on any system in that network using a per­

sonal username and a password. The following three scenarios

motivate the need for a distributed user-based IP accounting.

Shortcomings o/Centralized Solutions

As traditional IP traffic accounting systems rely on measure­

ment points located in network routers or switches which meter

the IP traffic in the network based on the IP addresses in the IP

header, they cannot map network traffic to a particular user or

application. The only place where this information is accessi­

ble is in the end-node itself, which keeps a mapping between

network sockets and the applications that created those sockets.

C. Requirements

Based on the discussion in the above scenarios, a set of

requirements for distributed traffic monitoring and accounting

are derived and summarized below:

Rj: Scalable Traffic Analysis without Sampling

R2: Flexibility

R3: Incremental Scalability

R4: High Availability

R5: Based on Commoditty Components

R6: Ability to detect originating end-user or processes
in case of network abuse

R 7: Based on Open Standards

III. MODEL AND SOLUTION FOR THE DISTRIBUTED

TRAFFIC METERING AND ANALYSIS

To develop an integrated solution to the management prob­

lems discussed, a respective model for distributed traffic

metering and analysis is designed. Figure 3 shows the distrib­

uted IP traffic monitoring and analysis model proposed by this

thesis. It shows a layered architecture including a metering

layer, a monitoring and analysis layer, and a presentation layer.

The distributed metering layer includes one or more metering

systems which are responsible with extracting the relevant data

from the observed traffic. In order to cover also the user-based

IP accounting problem this layer includes a model for general

packet capture and processing, and another model for user­

based IP traffic accounting.

The second layer shown in Figure 3 represents a distributed

analysis system which enables traffic analysis applications to

be deployed in a distributed environment. IP metering data is

received from the metering system embedded in IPFIX records

and uses internal mechanisms to forward this data to applica­

tion instances that use it.

Finally, the third layer is a presentation system which allows

Distributed Metering

Packet capture
and processing

User-based
IP accounting

Figure 3: Distributed IP Traffic Monitoring and Analysis Model

a human administrator, or other external applications to visual­

ize the results of the analysis process. A presentation system is

dependant on the analysis application and usually has a differ­

ent functionality and behavior in different analysis applica­

tions, thus, it is out of the scope of this thesis.

Figure 4 shows the building blocks of a distributed traffic

analysis system and their interrelations. In a network there are

multiple network components (such as routers, switches, links,

services, etc) that need to be monitored. The operation of these

components is observed and measured by a Meter. One meter

can measure more than a single component, for example it

could measure traffic aggregated from several routers. At the

same time a network component can be metered by multiple

meters, for example one meter doing packet measurements,

and a second doing flow measurements.

Another example of multiple meters serving a single net­

work component is a distributed meter, having several meters,

each monitoring the same network link. The metered data,

once it is produced, needs to be sent to be exported to one or

more Data Collectors. These data collectors perform limited

pre-processing tasks, such as aggregation, anonymization, fil­

tering, or encapsulation, which prepare the data to be used by

traffic analysis applications, before feeding the received data to

a Traffic Processing Platform.

I Meter
1.'- 1.'-

Data collector I I User/Administrator I
1.'- 1..'

1.'-

1

I
Traffic Processing 1 1

1.'-
Network Components 1.'-

Presentation I Platform 1
I Devices I 1

I Links I
1.'- 1 I Applications I 1 .. -1 I I Processing unit

1 . .' Traffic analysis

I application

Figure 4: Distributed Traffic Analysis Components

The encapsulation process is of particular importance as its
task is to switch the format of the received metered data (e.g.

SNMP, NetFlow v5, Diameter, IPDR, proprietary protocols) to

IPFIX which is used by the traffic processing platform. The traf­

fic processing platform consists of one or more Processing Units.

Each processing unit runs one or more Traffic Analysis Applica­

tions. It is the task of the traffic processing platform to feed each
piece of metering data to the right analysis application instance.

955

The results of the traffic analysis applications are fed to a
Presentation component which presents them to a User or
Administrator. The presentation component also maintains a
relation with the underlying traffic processing platform which
allows it to access different traffic application instances.

IV. EVALUATION

The evaluation of two of the main mechanisms developed in
this thesis named SCRIPT [8] and DiCAP [9] are briefly sum­
marized here. The main purpose of SCRIPT is to distribute
IPFIX records to several machines according to rules required
by an analysis application. This is achieved by organizing par­
ticipating nodes in a P2P overlay and by using the P2P overlay
information for distributing the IPFIX records. Using the API
provided, applications can define routing functions according
to their dedicated requirements.

Flow Storage Performance

600000

500000

"tJ 400000 1-
C
0
u

1-.. 300000

j - -
0
'" 200000 - 1-

100000 I--- 1-

0
Centralized collector SCRIPT with 4 nodes SCRIPT with 8 nodes

Figure 5: Fl ow Storage performance

Thus, the performance of the SCRIPT prototype is com�lex
to be assessed, especially in comparison with other tools, smce
no such generic frameworks for distributed traffic data analysis
exist. Therefore, the performance evaluation includes an evalu­
ation of IPFIX records storage in a traditional, centralized col­
lector, compared to the performance of a distributed collector
built on top of SCRIPT. The tests were made using similar PCs
with 3. 6 GHz Intel processors, each having 4 GB memory. All
tests have been performed in a switched Local Area Network,
each PC having a IGbps network card. On the centralized col­
lector the maximum rate of flow records that could be saved
was 250,000 flows per second. Using SCRIPT running on 8
similar PCs in parallel a rate of 600,000 flows per second was
achieved. In this evaluation, one stream of 150,000 flows per
second was sent to 4 of the 8 nodes. Using only 4 nodes with
SCRIPT the maximum flow rate that could be achieved in this
prototype was 269,000 flows per second. These results are
summarized in Figure 5.

DiCAP evaluation results are summarized in Figure 6. The
figure shows that with traditional libpcap the maximum num­
ber of packets captured is around 50% for packet sizes of 512
Byte. Lower loss rates were expected at larger packet sizes

.
as

the packet rate for these is lower. It can be observed that wIth
two capture nodes running libpcap in parallel using DiCAP the
capture rate was doubled for small packets and was increased
more than 5 times for packet sizes of 256 Byte. With just two
capture nodes it was possible to capture all packets of 512
Byte. With four capture nodes running in parallel Jibpcap the

capture rate for very small packets (40 Byte) increased tenfold
while for 256 Byte packets the capture rate was 100%. Another
test not shown in the figure shows that with five parallel cap­
ture nodes a capture rate of 100% can be achieved even for the
40 Byte packet sizes.

V. SUMMARY AND CONCLUSIONS

As outcome of the these investigations, this thesis proposes a
generic model for distributed traffic metering and analysis
named DITA. In order to evaluate the model several different
mechanisms have been developed and presented here, which
show that traffic metering and analysis can scale with the
increase of traffic carried by backbone network links. The need
for such a solution is obvious, as most network operators
already use sampling and aggregation techniques in order to
reduce the amount of data they meter, in order to meet the
capabilities of their existing metering and analysis infrastruc­
ture. The mechanisms developed during this thesis could bring
benefits to network providers, service providers, as well as end
users. By using SCRIPT and DiCAP, network providers can
build a scalable infrastructure to meter and analyze their IP
metering data, thus they have a more accurate view on the traf­
fic they carry. As a result, service providers can be provid.ed
with better quality services, which fmally increase the quaLIty
of service experience (QoE) for the end-users. By using Linu­
bia, network administrators can have a more granular control
and overview on the type and amount of traffic created or
received by the users of their network.

100,00%

90,00%

80,00%

70,00%

� 60,00%

e 50,00%
:::0

Q. 40,00%
'"
(J 30,00%

20,00%

10,00%

0,00%

olibpcap

40 byte
(625 Kpps)

256 byte
(480 Kpps)

packet size

• libpcap on 2 nodes

512 byte
(245 Kpps)

o libpcap on 4 nodes

Figure 6: Performance improvement oflibpcap

The investigations of this thesis show that by distributing the
IP traffic metering data to multiple devices, a scalable infra­
structure for IP traffic analysis may be built. Increase in IP traf­
fic can be addressed by adding new devices to the analysis
infrastructure. The SCRIPT framework was developed in this
thesis to evaluate the new designed mechanisms. SCRIPT dis­
tributes flow records to multiple nodes and enables traffic anal­
ysis workload to be shared by multiple devices. Tra�c
analysis applications, like delay measurement or asymmetrIc
route detection, access the SCRIPT functionality over a well­
defined API. The SCRIPT framework uses a flexible routing
function that can be specified according to the demands of each
analysis application separately. It builds on standard protocols
and supports IPFIX and NetFlow-based data transfer.

956

The SCRIPT framework has been implemented as a proto­
type and evaluated both on standard PC hardware as well as on
Cisco AXP cards. The performance evaluations show that
SCRIPT increases the total number of flow records processed
compared to a centralized solution and it scales with the total
number of flow records exported in a network. As its evalua­
tion reveals, the framework distributes flow records nearly
equally among all nodes in the SCRIPT overlay, resulting in a
fair balance of workload among all nodes.

In case of software-based IP traffic monitoring, at high
packet rates the performance bottleneck is the operating system
reading the packets from the network interface card. The
approach investigated in this thesis is based on (a) cooperation
between mUltiple PCs which receive each a copy of the traffic
to be analyzed, and (b) a reduction of the number of packets
the operating system needs to copy from the network interface
card on every Pc. Based on a cooperation protocol each PC
can extract from the traffic a subset of packets which it ana­
lyzes, such that no packet will be investigated twice. A design
and prototypical implementation for such a distributed packet
capture mechanism named DiCAP was proposed. DiCAP does
not require any dedicated hardware, which makes it a cost­
effective solution for capturing IP packet headers at high
packet rates using off-the-shelve PCs.

As the link between an end-user (or a process) and an IP
packet is lost once a packet leaves a network, the approach
taken to account IP traffic on a per-user basis should make use
of mechanisms embedded in end-devices, which can intercept
network calls of processes an thus map each packet the the pro­
cess which created (or received) the packet, or the user who
owns that process. Linubia, the third mechanism developed in
this thesis, shows by its design and prototypical implementa­
tion that such a user-based IP accounting approach is techni­
cally possible on modern Linux (running kernel version 2.6.x)
operating systems. The design is IP protocol independent and
can be used for IPv4 as well as for IPv6 traffic in parallel.
Linubia's metering module can be easily integrated into an
AAA infrastructure. The design presented shows a clear proof
of concept which compared to traditional device-based
accounting mechanisms allows the mapping of network traffic
not only to a device, but more specific, to the user which gener­
ated the respective traffic. Performing traffic metering at the
linkage point between the networking subsystem and the
socket interface allows accessing the process management
structures of the operating system. Thus, new interesting mech­
anisms could be implemented, such as schedulability of pro­
cesses based on network usage (besides the traditional CPU
usage scheme). Linubia could also be used to create new net­
work filters or firewalls that allow for or deny network access
to specific applications or users running on a host, instead of
only allowing or denying specific services. Additionally, new
firewall and traffic scheduling policies could be designed so
that a user might be blocked, or his traffic limited, once he
exceeds some predefmed traffic threshold.

Future work should focus on integrating the current work on
IPFIX mediation performed by the IETF in the results of this
thesis. The result coulf be the starting point of a standardized
distributed IPFIX mediation framework. In the context of the
SCRIPT prototype, future work should focus on making
SCRIPT more flexible by designing a mechanism that allows

SCRIPT applications to be deployed ontop of a running
SCRIPT network, without restarting the participant nodes. The
current solution requires a recompile and redeployment of the
system each time a change is made in an application, or a new
application is deployed. A mechanism that allows applications
to be added as plug ins in a running SCRIPT network would
significantly reduce both, the time required to deploy a
SCRIPT application, and the unavailability of the other
SCRIPT application due to service downtime.

ACKNOWLEDGEMENTS

This work was supported in part by the Cisco University
Research Program Fund, Grant-No. 2008-02735, the 1ST Net­
work of Excellence EMANICS funded by the European Union
under contract number FP6-2004-IST-026854-NoW, and the
DaSAHIT project funded by the Swiss National Science Foun­
dations (No. 200021-118128). The authors would like to thank
Ralf Wolter, Benoit Claise, David Hausheer, and Aiko Pras for
their discussions and feedback on this work.

REFERENCES

[1] Cisco Systems: Hyperconnectivity and the Approaching
Zettabyte Era, White Paper, June 2009.

[2] B. Claise: NetFlow/IPFIX Usage in Network Manage­
ment, EMANICS/IRTF-NMRG Workshop, Munchen,
Germany, October 2008.

[3] Data Retention Law in Germany: Gesetz zur Neuregelung
der Telekommunikationsiiberwachung und anderer ver­
deckter Ermittlungsmaj3nahmen sowie zur Umsetzung
der Richtlinie 2006/24/EG.

[4] Data Retention Law in Italy: Decreto-Legge n.144, '05.
[5] Endace: http://www.endace.com/. March 2008.
[6] C. Estan, G. Varghese: New Directions in Traffic Mea­

surement and Accounting, ACM SIGCOMM Internet
Measurement Workshop, San Francisco, California,
U.S.A., November 2001, pp. 75-80.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, T. Berners-Lee: Hypertext Transfer Protocol -­
HTTP/i.i, IETF RFC 2616, June 1999.

[8] C. Morariu, P. Racz, B. Stiller: SCRIPT: A Framework
for Scalable Real-time IP Flow Record Analysis. 12th
IEEE/IFIP Network Operations and Management Sym­
posium (NOMS 2010), IEEE, Osaka, Japan, April 2010.

[9] c. Morariu, B. Stiller: DiCAP: Distributed Packet Cap­
turing Architecture for High-Speed Network Links. 33rd
Annual IEEE Conference on Local Computer Networks
(LCN), Montreal, Canada, October 2008.

[10] F. Schneider, J. Wallerich: Performance Evaluation of
Packet Cacpturing Systems for High-Speed Networks,
2005 ACM conference on Emerging network experiment
and technology, Toulouse, France, October 2005.

[11] G. Stampfel, W. Gansterer, M. Ilger: Data Retention -
The EU Directive 2006/24/EC from a Technological Per­
spective, Medien und Recht Publishing, 2008.

[12] Wolfgang J., S. Tafvelin: Analysis of Internet Backbone
Traffic and Header Anomalies Observed, 7th ACM SIG­
COMM Conference on Internet Measurement, San Di­
ego, California, U.S.A., October 24-26,2007.

957

