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Abstract - This thesis investigated how performance of 
today's IP traffic metering and analysis applications can be 
improved by moving from a centralized, high-performance 
infrastructure, which executes these tasks, to distributed 
mechanisms, which combine available resources of multi­
ple devices. The results achieved show that distributed IP 
traffic metering and analysis leverages bottleneck prob­
lems. The distributed IP traffic approach DITA does not 
solve all problems of handling such large amounts of data 
in very short time by itself, but proposes an orthogonal 
approach to existing solutions. DITA revelas that combin­
ing distributed IP traffic metering and analysis reaches 
better and higher performance sampling and aggregation 
mechanisms, which do provide a very flexible and the open 
solution to analyzing IP traffic in future high-speed net­
works. This has been achieved by the facts that all mecha­
nisms designed for DITA - and their prototypical 
implementations - are based on standard protocols and 
open-source technologies. DITA determines the first 
approach to distributed IP traffic metering and analysis 
known today, which (a) addresses the different bottlenecks 
of traffic analysis in a generic way, and (b) is self-organiz­
ing, offering a scalable solution to regular traffic increases. 

1. INTRODUCTION 

Since the first days of the Internet the IP (Internet P rotocol) 
traffic carried by network operators increased year after year. 
This was mainly caused by a continuous growth in the number 
of users having Internet access, combined with an increase in 
services that those users have access to using an IP infrastruc­
ture. Traditional telecommunication services that had their 
dedicated infrastructures (such as telephony, television) are in a 
process of gradually switching to IP. Two additional causes, 
which have lead to the increase of network traffic are a con­
stant need of users to have access to higher quality services, 
and, the pervasiveness of modern mobile devices, which allow 
users to be connected to the Internet anytime and from almost 
anywhere. Different studies of the evolution of Internet traffic 
show that on average, during the last decade, Internet traffic in­
creased between 50% to 100% every year. By 2012 the total 
Internet traffic carried by Internet providers is estimated to be 
about 75 times higher than the total traffic carried in 2002 [1]. 

In order to properly address the challenges of high speed 
traffic monitoring, key problems in IP Traffic Monitoring need 
to be identified; centralized traffic monitoring and analysis ar-

chitectures experience bottlenecks at different stages in the 
monitoring pipeline (e.g. during metering, exporting, or analy­
sis). The metering process quickly becomes overloaded if the 
time required to process a single packet exceeds the interarrival 
time between two consecutive packets. In case of counting the 
amount of traffic (number of bytes and packets) observed on a 
network interface, the processing of a single packet requires 
updating several counters (such as a packet counter, a byte 
counter, unicast/multicast counters, etc.) mapped to the inter­
face on which the packet was observed. Although each packet 
might change tens of counters, such operations can be done at 
line speed, even in case of high packet rates, as these counters 
can be kept in fast memories, such as Static Random Access 
Memory (SRAM), or even registers or line processor caches. 
In case of flow accounting data about active IP flows is stored 
in a flow cache. Each packet triggers a lookup into the flow 
cache to retrieve the flow record which needs to be updated. 
Even with efficient flow cache management algorithms (e.g., 

hash tables) such a process triggers multiple accesses to the 
main memory, where the flow cache is stored. In case of high­
packet rates the time required to find a corresponding flow 
record entry often exceeds the packet interarrival time. As a re­
sult, not all packets can be processed [6]. 

Another component that often experiences bottlenecks is 
the data exporting process from the metering point [2]. If mil­
lions of different active flows exist in the network the flow 
cache memory fills very quickly and flow records need to be 
exported in order to create space for new ones. In case of at­
tacks, or a small flow cache memory, it is often the case that 
most of the observed packets create new flow records. The rate 
of creating new flow records can easily exceed the rate at 
which the exporting process can export this data, which leads 
to a bottleneck caused by the exporting process. 

Besides metering and exporting process, problems also ap­
pear at a data collector or during analysis. Often a network op­
erator collects metering data from multiple observation points 
in his network. If all data are collected by a centralized collec­
tor it may cause bottlenecks on the network link, which aggre­
gates all data exported. In addition, if the collected records 
need to be stored in a persistent memory, the rate of incoming 
data could exceed the rate of writing in the persistent memory. 
An analysis application may experience a bottleneck similar to 
the metering process, when the rate of incoming metering 
records exceeds the rate at which these records are processed. 
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As it was observed during the recent years solving the 

problem of a bottleneck in the monitoring and analysis pipeline 

of a large network only moves the problem to another compo­

nent [2]. This thesis adresses the bottleneck problem of traffic 

monitoring and analysis in high-speed networks in a generic 

way which includes mechanisms to alleviate all those bottle­

necks described earlier. 

The main goal of DITA is to develop an open and generic ar­

chitecture which enables distributed traffic monitoring and anal­

ysis. Starting from the above observations those challenging 

aspects of traffic metering, monitoring, and accounting in high 

speed networks are investigated, and a new architectural design 

to handle those problems in a distributed system is proposed. 

Thus, the first problem which this thesis investigates is what is 

the effect of distributed IP traffic analysis? A generic architec­

ture for IP traffic analysis, independent of the analysis applica­

tions runing ontop of it, is important, as it is the basis for future 

scalable traffic analysis infrastructures. Such a system allows 

network operators to scale up their traffic analysis infrastructure 

by adding new machines, rather than upgrading or changing it 

completely as it is typically the case nowadays. The second 

problem that this thesis investigates is how can the petform­

ance of existing traffic monitoring applications which run on 

off-the-shelve pes be improved? It was observed that at high 

packet rates packet-capture libraries cause the operating system 

to spend most of its resources on capturing packets, while leav­

ing less resources for the monitoring application, thus, causing 

an overload of the system, which eventually leads to dropped 

packets. Finally, the third problem investigated is how to in­

crease the granularity of IP metering data, so that an IP pack­

et can be mapped to an individual user or even a process and 

application? The traditional way to address this problem is to 

assume that an IP address is used by a single user at a time and 

have a mapping between IP address-to-user mapping all times. 

In case of applications, the straight-forward approach is to map 

ports to applications. In case of users the problem arises when 

the end systems are multi-user capable and several users run at 

the same time network applications , while in case of applica­

tion accounting ports are not reliable anymore in concluding the 

application for a given packet, as more and more applications 

use the Hypertext Transfer Protocol (HTTP) [7] for exchanging 

data (and often port 80). 

II. DISTRIBUTION MODEL 

In order to address those bottlenecks outlined above in an 

integrated way, and to avoid the shortcomings of existing dis­

tributed approaches to IP traffic analysis, the generic model 

DITA (Distributed IP Traffic Analysis), and its attached archi­

tecture were developed. This model defmes characteristics and 

requirements of distributed traffic analysis and outlines its 

main building blocks. 

A. Centralized vs. Distributed Traffic Analysis 

A typical deployment for a centralized traffic analysis appli-

cation is depicted in Figure 1. A centralized collector received 

flow records from a set of exporters (e.g. routers) in the net­

work. Upon the receipt of these records additional analysis 

applications use them for different purposes, such as account­

ing, charging, intrusion detection, network monitoring, etc. 

The traffic increase experienced by the network operator also 

translates into an increased amount of flow records that need to 

be handled by the collector and analysis applications. This 

leads to a situation in which an existing collector does not have 

sufficient resources to handle the data at the desired rate, thus, 

the central collector needs to be replaced with a new, more 

powerful, but also more expensive machine. Eventually, this 

new machine will have similar problems in future and will 

have to be replaced again. 

POPe 

Figure I: Centralized Flow Collector Replacement 

A directly distributed approach, such as just adding a new 

collector and configuring some of the routers to forward their 

flow records to this new collector, is not feasible, as often cor­

relations between flow records received from multiple sources 

are required. Such correlations include detection of duplicated 

flow records in order to delete redundant data, or calculation of 

some network parameters based on traffic observed at multiple 

points. In case of two independent collectors an external com­

ponent is required to perform such correlations, therefore, the 

bottleneck is not eliminated, but pushed to another component. 
(�Verlay ) 
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Figure 2: SCRIPT Approach to increased TP metering data 

The new DITA approach is summarized in Figure 2. Multi­

ple data collectors form a self-organizing overlay which 

includes nodes that perform traffic analysis. Routers can 

choose any of the existing collectors to export their data to, 

while the overlay ensures that the exported data reaches the 

intended analysis applications. Using such an approach allows 

a network operator to address increases in traffic to be ana-
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lyzed by adding new machines to the analysis overlay. 

B. Scenarios/or Distributed Traffic Monitoring 

To extract key requirements for a distributed IP traffic moni­

toring seven scenarios grouped in three areas (Flow record 

analysis, high-speed metering, per-user IP accounting) have 

been selected to outline the basis of the design (cf. Table 1). 

TABLE 1 Scenarios for Distributed Traffic Monitoring 

Flow Record High Speed Per-user Accounting 

Analysis Metering 

Data Retention Packet Capture Billing for IP Traffic 

Delay Mea- and Analysis on User monitoring and 

surements High-Speed abuse detection 
Links 

Real-time Service Load Monitoring 

Asymmetric 

Route Detec-

tion 

1) Flow Record Storage and Analysis 

The fIrst set of scenarios deal with flow record processing. 

Three different scenarios are presented below: Data Retention, 
Delay Measurement, and Real-Time Asymmetric Route Detec­
tion. The reason for choosing several scenarios was to cover 

analysis applications that run off-line and require stored data, 

as well as applications that are real-time sensitive. The Data 

Retention scenario [11] is common to most network operators, 

as it deals with storage and retrieval of IP metering data over a 

longer time. Legislation was enforced in different countries 

[3], [4] forcing network operators to keep traces of the traffic 

created by their users. Monitoring the delay is a key element 

for any network operator that wants to offer high quality ser­

vices which are defmed by a Service Level Agreement (SLA). 

The third scenario - Asymmetric Route Detection (ASR)­

was chosen in order to present a real-time sensitive traffic 

monitoring application which needs to process huge amount of 

data in little time. 

Shortcomings o/Centralized Solutions 

The major disadvantages of centralized solutions which were 

observed in the above investigated scenarios can be summa­

rized as different bottlenecks due to: 

• Incoming IPFIX data arrives at a rate higher than the max­

imum write rate of the hard disk or storage device; 

• The network link bandwidth of the centralized collector is 

not sufficient for the aggregated IPFIX streams from all 

exporters; and 

• In case of real-time processing, required at collector's 

side, processing time of an IPFIX record is higher than the 

records' inter-arrival time. 

2) Packet Capture and Analysis on High Speed Links 

This scenario stems from real problems encountered in many 

network monitoring research labs by researchers doing packet 

inspection at high packet rates [10]. Performing software-based 

packet inspection at high packet rates is very difficult, as the 

processing time of a single observed packet easily exceeds the 

packet inter-arrival time on that link. In such situations, sam­

pling is used in order to reduce the number of inspected pack­

ets. Even less complex measurements, such as IP Flow 

accounting use sampling rates of 111000 on multi-gigabit links. 

One of the main problems in capturing and analyzing pack­

ets on high-speed links is the very short time that can be spent 

handling a single packet. As shown in [12] 44% of the IP traf­

fIc observed on an Internet Service Provider (lSP) in today's 

Internet is made of packets with sizes between 40 and 100 

byte. Assuming a 10 Gbps Ethernet link fully loaded with 64 

byte packets - which are very common in voice over IP 

(VoIP) applications - this would translate into approximately 

20 million packets per second or approximately 50 ns for han­

dling a single packet by the packet inspection node. Capturing 

packets requires high-performance memory typically exceed­

ing the speed of DRAM (Dynamic Random Access Memory) 

memory existing in standard pes. Dedicated capturing cards, 

such as Endace's DAG cards [5], make use of the faster and 

more expensive SRAM (Static Random Access Memory) 

memory and are able to capture at those high packet rates, but 

they typically come at high prices. 

Shortcomings o/Centralized Solutions 

Due to the short interarrival time between consecutive pack­

ets flowing through a high speed link software-based packet 

processing applications cannot process every single packet and 

often process only a sample of the packets observed on the 

link. In case of network intrusions the packets responsible for 

such attacks may be among the unsampled packets. A distrib­

uted system can address this problem by enabling distributed 

processing of packet data. 

3) Per-user IP Traffic Accounting in a Large Enterprise 

Network 

Internet Service Providers often perform traffic accounting 

in order to charge their clients according to the data volume 

they transferred over a period of time. Such a charge does not 

necessarily consist of monetary units, but could be a penalty or 

incentive in order to reduce or increase a user's traffic (for 

example, some operators offer flat-rates subscriptions which 

include a drastic bandwidth limitation if a certain download 

limit in a month is exceeded). Such type of accounting process 

is easily doable if it is assumed that a user can be uniquely 

identifIed with an IP address at a given point in time. All that a 

network operator needs to do is to correlate its IP metering data 

with the information about which user is assigned each of those 

addresses. However, there are network scenarios such as multi­

user operating systems in which such an assumption does not 

hold. On such systems multiple users might have their applica­

tions running at the same time, each generating network traffIc. 

Using a traditional IP accounting mechanism, all that a net­

work administrator could see is how much traffic such a sys-
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tem generated, but not from which applications that traffic 

originated and which user started each of those applications. 

Such a scenario is easily encountered in grid environments, 

where multiple users share grid resources in parallel, or in 

enterprise networks, where all the users of a company (or uni­

versity) have access on any system in that network using a per­

sonal username and a password. The following three scenarios 

motivate the need for a distributed user-based IP accounting. 

Shortcomings o/Centralized Solutions 

As traditional IP traffic accounting systems rely on measure­

ment points located in network routers or switches which meter 

the IP traffic in the network based on the IP addresses in the IP 

header, they cannot map network traffic to a particular user or 

application. The only place where this information is accessi­

ble is in the end-node itself, which keeps a mapping between 

network sockets and the applications that created those sockets. 

C. Requirements 

Based on the discussion in the above scenarios, a set of 

requirements for distributed traffic monitoring and accounting 

are derived and summarized below: 

Rj: Scalable Traffic Analysis without Sampling 

R2: Flexibility 

R3: Incremental Scalability 

R4: High Availability 

R5: Based on Commoditty Components 

R6: Ability to detect originating end-user or processes 
in case of network abuse 

R 7: Based on Open Standards 

III. MODEL AND SOLUTION FOR THE DISTRIBUTED 

TRAFFIC METERING AND ANALYSIS 

To develop an integrated solution to the management prob­

lems discussed, a respective model for distributed traffic 

metering and analysis is designed. Figure 3 shows the distrib­

uted IP traffic monitoring and analysis model proposed by this 

thesis. It shows a layered architecture including a metering 

layer, a monitoring and analysis layer, and a presentation layer. 

The distributed metering layer includes one or more metering 

systems which are responsible with extracting the relevant data 

from the observed traffic. In order to cover also the user-based 

IP accounting problem this layer includes a model for general 

packet capture and processing, and another model for user­

based IP traffic accounting. 

The second layer shown in Figure 3 represents a distributed 

analysis system which enables traffic analysis applications to 

be deployed in a distributed environment. IP metering data is 

received from the metering system embedded in IPFIX records 

and uses internal mechanisms to forward this data to applica­

tion instances that use it. 

Finally, the third layer is a presentation system which allows 

Distributed Metering 

Packet capture 
and processing 

User-based 
IP accounting 

Figure 3: Distributed IP Traffic Monitoring and Analysis Model 

a human administrator, or other external applications to visual­

ize the results of the analysis process. A presentation system is 

dependant on the analysis application and usually has a differ­

ent functionality and behavior in different analysis applica­

tions, thus, it is out of the scope of this thesis. 

Figure 4 shows the building blocks of a distributed traffic 

analysis system and their interrelations. In a network there are 

multiple network components (such as routers, switches, links, 

services, etc) that need to be monitored. The operation of these 

components is observed and measured by a Meter. One meter 

can measure more than a single component, for example it 

could measure traffic aggregated from several routers. At the 

same time a network component can be metered by multiple 

meters, for example one meter doing packet measurements, 

and a second doing flow measurements. 

Another example of multiple meters serving a single net­

work component is a distributed meter, having several meters, 

each monitoring the same network link. The metered data, 

once it is produced, needs to be sent to be exported to one or 

more Data Collectors. These data collectors perform limited 

pre-processing tasks, such as aggregation, anonymization, fil­

tering, or encapsulation, which prepare the data to be used by 

traffic analysis applications, before feeding the received data to 

a Traffic Processing Platform. 

I Meter 
1.'- 1.'-

Data collector I I User/Administrator I 
1.'- 1..' 

1.'-

1 

I 
Traffic Processing 1 1 

1.'-
Network Components 1.'-

Presentation I Platform 1 
I Devices I 1 

I Links I 
1.'- 1 I Applications I 1 .. -1 I I Processing unit 

1 . .' Traffic analysis 

I application 

Figure 4: Distributed Traffic Analysis Components 

The encapsulation process is of particular importance as its 
task is to switch the format of the received metered data (e.g. 

SNMP, NetFlow v5, Diameter, IPDR, proprietary protocols) to 

IPFIX which is used by the traffic processing platform. The traf­

fic processing platform consists of one or more Processing Units. 

Each processing unit runs one or more Traffic Analysis Applica­

tions. It is the task of the traffic processing platform to feed each 
piece of metering data to the right analysis application instance. 
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The results of the traffic analysis applications are fed to a 
Presentation component which presents them to a User or 
Administrator. The presentation component also maintains a 
relation with the underlying traffic processing platform which 
allows it to access different traffic application instances. 

IV. EVALUATION 

The evaluation of two of the main mechanisms developed in 
this thesis named SCRIPT [8] and DiCAP [9] are briefly sum­
marized here. The main purpose of SCRIPT is to distribute 
IPFIX records to several machines according to rules required 
by an analysis application. This is achieved by organizing par­
ticipating nodes in a P2P overlay and by using the P2P overlay 
information for distributing the IPFIX records. Using the API 
provided, applications can define routing functions according 
to their dedicated requirements. 
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Figure 5: Fl ow Storage performance 

Thus, the performance of the SCRIPT prototype is com�lex 
to be assessed, especially in comparison with other tools, smce 
no such generic frameworks for distributed traffic data analysis 
exist. Therefore, the performance evaluation includes an evalu­
ation of IPFIX records storage in a traditional, centralized col­
lector, compared to the performance of a distributed collector 
built on top of SCRIPT. The tests were made using similar PCs 
with 3. 6 GHz Intel processors, each having 4 GB memory. All 
tests have been performed in a switched Local Area Network, 
each PC having a IGbps network card. On the centralized col­
lector the maximum rate of flow records that could be saved 
was 250,000 flows per second. Using SCRIPT running on 8 
similar PCs in parallel a rate of 600,000 flows per second was 
achieved. In this evaluation, one stream of 150,000 flows per 
second was sent to 4 of the 8 nodes. Using only 4 nodes with 
SCRIPT the maximum flow rate that could be achieved in this 
prototype was 269,000 flows per second. These results are 
summarized in Figure 5. 

DiCAP evaluation results are summarized in Figure 6. The 
figure shows that with traditional libpcap the maximum num­
ber of packets captured is around 50% for packet sizes of 512 
Byte. Lower loss rates were expected at larger packet sizes 

.
as 

the packet rate for these is lower. It can be observed that wIth 
two capture nodes running libpcap in parallel using DiCAP the 
capture rate was doubled for small packets and was increased 
more than 5 times for packet sizes of 256 Byte. With just two 
capture nodes it was possible to capture all packets of 512 
Byte. With four capture nodes running in parallel Jibpcap the 

capture rate for very small packets (40 Byte) increased tenfold 
while for 256 Byte packets the capture rate was 100%. Another 
test not shown in the figure shows that with five parallel cap­
ture nodes a capture rate of 100% can be achieved even for the 
40 Byte packet sizes. 

V. SUMMARY AND CONCLUSIONS 

As outcome of the these investigations, this thesis proposes a 
generic model for distributed traffic metering and analysis 
named DITA. In order to evaluate the model several different 
mechanisms have been developed and presented here, which 
show that traffic metering and analysis can scale with the 
increase of traffic carried by backbone network links. The need 
for such a solution is obvious, as most network operators 
already use sampling and aggregation techniques in order to 
reduce the amount of data they meter, in order to meet the 
capabilities of their existing metering and analysis infrastruc­
ture. The mechanisms developed during this thesis could bring 
benefits to network providers, service providers, as well as end 
users. By using SCRIPT and DiCAP, network providers can 
build a scalable infrastructure to meter and analyze their IP 
metering data, thus they have a more accurate view on the traf­
fic they carry. As a result, service providers can be provid.ed 
with better quality services, which fmally increase the quaLIty 
of service experience (QoE) for the end-users. By using Linu­
bia, network administrators can have a more granular control 
and overview on the type and amount of traffic created or 
received by the users of their network. 
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Figure 6: Performance improvement oflibpcap 

The investigations of this thesis show that by distributing the 
IP traffic metering data to multiple devices, a scalable infra­
structure for IP traffic analysis may be built. Increase in IP traf­
fic can be addressed by adding new devices to the analysis 
infrastructure. The SCRIPT framework was developed in this 
thesis to evaluate the new designed mechanisms. SCRIPT dis­
tributes flow records to multiple nodes and enables traffic anal­
ysis workload to be shared by multiple devices. Tra�c 
analysis applications, like delay measurement or asymmetrIc 
route detection, access the SCRIPT functionality over a well­
defined API. The SCRIPT framework uses a flexible routing 
function that can be specified according to the demands of each 
analysis application separately. It builds on standard protocols 
and supports IPFIX and NetFlow-based data transfer. 
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The SCRIPT framework has been implemented as a proto­
type and evaluated both on standard PC hardware as well as on 
Cisco AXP cards. The performance evaluations show that 
SCRIPT increases the total number of flow records processed 
compared to a centralized solution and it scales with the total 
number of flow records exported in a network. As its evalua­
tion reveals, the framework distributes flow records nearly 
equally among all nodes in the SCRIPT overlay, resulting in a 
fair balance of workload among all nodes. 

In case of software-based IP traffic monitoring, at high 
packet rates the performance bottleneck is the operating system 
reading the packets from the network interface card. The 
approach investigated in this thesis is based on (a) cooperation 
between mUltiple PCs which receive each a copy of the traffic 
to be analyzed, and (b) a reduction of the number of packets 
the operating system needs to copy from the network interface 
card on every Pc. Based on a cooperation protocol each PC 
can extract from the traffic a subset of packets which it ana­
lyzes, such that no packet will be investigated twice. A design 
and prototypical implementation for such a distributed packet 
capture mechanism named DiCAP was proposed. DiCAP does 
not require any dedicated hardware, which makes it a cost­
effective solution for capturing IP packet headers at high 
packet rates using off-the-shelve PCs. 

As the link between an end-user (or a process) and an IP 
packet is lost once a packet leaves a network, the approach 
taken to account IP traffic on a per-user basis should make use 
of mechanisms embedded in end-devices, which can intercept 
network calls of processes an thus map each packet the the pro­
cess which created (or received) the packet, or the user who 
owns that process. Linubia, the third mechanism developed in 
this thesis, shows by its design and prototypical implementa­
tion that such a user-based IP accounting approach is techni­
cally possible on modern Linux (running kernel version 2.6.x) 
operating systems. The design is IP protocol independent and 
can be used for IPv4 as well as for IPv6 traffic in parallel. 
Linubia's metering module can be easily integrated into an 
AAA infrastructure. The design presented shows a clear proof 
of concept which compared to traditional device-based 
accounting mechanisms allows the mapping of network traffic 
not only to a device, but more specific, to the user which gener­
ated the respective traffic. Performing traffic metering at the 
linkage point between the networking subsystem and the 
socket interface allows accessing the process management 
structures of the operating system. Thus, new interesting mech­
anisms could be implemented, such as schedulability of pro­
cesses based on network usage (besides the traditional CPU 
usage scheme). Linubia could also be used to create new net­
work filters or firewalls that allow for or deny network access 
to specific applications or users running on a host, instead of 
only allowing or denying specific services. Additionally, new 
firewall and traffic scheduling policies could be designed so 
that a user might be blocked, or his traffic limited, once he 
exceeds some predefmed traffic threshold. 

Future work should focus on integrating the current work on 
IPFIX mediation performed by the IETF in the results of this 
thesis. The result coulf be the starting point of a standardized 
distributed IPFIX mediation framework. In the context of the 
SCRIPT prototype, future work should focus on making 
SCRIPT more flexible by designing a mechanism that allows 

SCRIPT applications to be deployed ontop of a running 
SCRIPT network, without restarting the participant nodes. The 
current solution requires a recompile and redeployment of the 
system each time a change is made in an application, or a new 
application is deployed. A mechanism that allows applications 
to be added as plug ins in a running SCRIPT network would 
significantly reduce both, the time required to deploy a 
SCRIPT application, and the unavailability of the other 
SCRIPT application due to service downtime. 
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