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ABSTRACT
Finding subgraph isomorphisms is an important problem in
many applications which deal with data modeled as graphs.
While this problem is NP-hard, in recent years, many algo-
rithms have been proposed to solve it in a reasonable time for
real datasets using different join orders, pruning rules, and
auxiliary neighborhood information. However, since they
have not been empirically compared one another in most
research work, it is not clear whether the later work outper-
forms the earlier work. Another problem is that reported
comparisons were often done using the original authors’ bi-
naries which were written in different programming envi-
ronments. In this paper, we address these serious problems
by re-implementing five state-of-the-art subgraph isomor-
phism algorithms in a common code base and by comparing
them using many real-world datasets and their query loads.
Through our in-depth analysis of experimental results, we
report surprising empirical findings.

1. INTRODUCTION
Many complex objects, such as chemical compounds, so-

cial networks, and biological structures are modeled as graphs.
Many real applications in bioinformatics, chemistry, and
software engineering require efficient and effective manage-
ment of graph structured data.

One of most important graph queries in graph databases
is the subgraph isomorphism query. That is, given a query q
and a data graph g, find all embeddings of q in g. This prob-
lem belongs to NP-hard [10] and has many important ap-
plications, such as searching chemical compound databases,
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querying biological pathways, and finding protein complexes
in protein interaction networks.

Ullmann [14] proposes the first practical algorithm for
subgraph isomorphism search for graphs. It is a backtrack-
ing algorithm which finds solutions by incrementing partial
solutions or abandoning them when it determines they can-
not be completed. In recent years, many algorithms such
as VF2 [2], QuickSI [11], GraphQL [5], GADDI [17], and
SPath [18] have been proposed to enhance the Ullmann
algorithm. These algorithms exploit different join orders,
pruning rules, and auxiliary information to prune out false-
positive candidates as early as possible, thereby increasing
performance.

Figure 1 shows the reported comparisons of the state-of-
the-art subgraph isomorphism algorithms. Here, a directed
edge depicts reported superiority. For example, according
to [18], SPath is superior to GraphQL. Note that, in [17],
GADDI is compared with TALE [13] which finds only ap-
proximate embeddings.

GraphQL SPath

QuickSI GADDI

Ullmann VF2
[2]

[19]

[12]

Figure 1: Comparisons of state-of-the-art graph iso-
morphism algorithms.

We observe serious problems in the current practice of
experiments for these algorithms: 1) It is difficult to com-
pare each algorithm since they have not been described in a
common framework; 2) They have not been compared em-
pirically in most research work. Only four comparisons as
depicted in Figure 1 were reported. Thus, it is not clear
whether the later work outperforms the earlier work; 3)
The reported comparisons were done by comparing the bi-
nary executables provided by the original authors, ignoring
a number of factors that heavily influence the performance
(e.g., programming languages, implementer’s programming
skills, main memory vs. disk, and buffer size, etc.).

In order to address these problems, we re-implement all
representative subgraph isomorphism algorithms in a com-
mon framework using C++. For this purpose, we use best-
effort re-implementations based on the original papers and
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on email communications with the original authors, since
we were unable to acquire the source code of any technique
except VF2 from its authors. However, since GraphQL
is implemented in Java, we exploit a java bytecode ana-
lyzer to fully understand the original implementation. We
also perform extensive experiments using many real datasets
and their query workload and provide an in-depth analy-
sis. We note that a similar experience has been reported
in iGraph [3], which compares only graph indexing tech-
niques rather than the subgraph isomorphism algorithms
themselves.

Our contributions can be summarized as follows.

• We clearly explain the differences of existing algorithms
using a common framework in Section 3.

• We re-implement five state-of-the-art algorithms (VF2,
QuickSI, GraphQL, GADDI, and SPath) in the com-
mon code base.

• We fairly and empirically compare these algorithms
using many real and synthetic datasets in Section 4.

• We analyze experiments in depth in order to under-
stand why one algorithm outperforms another for spe-
cific query and data graphs in Section 4

• We report surprising findings through our analysis: 1)
QuickSI designed for handling small graphs often out-
performs the more recent algorithms GraphQL, GADDI,
and SPath which are designed for handling large graphs.
2) QuickSI, VF2, and GADDI fail to find embeddings
in trees in a reasonable time, showing exponential be-
havior. 3) GraphQL is the only method to process
all query sets tested but shows slower performance
than QuickSI in many query sets and datasets. 4)
It should be noted that in this paper, unlike in [18],
SPath is almost consistently slower than GraphQL.
This is mainly because a) they are implemented in
different programming languages, and b) the cost of
reading signatures from disk is not taken into account.
Note that SPath is implemented in C++, while GraphQL
is implemented in Java. This strongly indicates that,
unless both methods are implemented in a common
framework, empirical comparisons would be useless.
5) We find that all existing algorithms have problems
in their join order selections for some datasets, al-
though GraphQL processes all queries we test in rea-
sonable times. The blind computation of signatures
of GraphQL regardless of queries and data sets in-
curs significant performance overhead compared with
QuickSI. This calls for new subgraph algorithms com-
bining the strengths of both algorithms.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the background information as well as exist-
ing work on subgraph isomorphism. Section 3 presents the
details of our implementations. Section 4 presents the re-
sults of performance evaluation. Section 5 summarizes and
concludes our paper.

2. BACKGROUND
2.1 Problem Definition

All datasets and query sets used in [2, 5, 11, 17, 18] are
modeled as undirected labeled graphs. An undirected labeled
graph g is defined as a triple (V,E,L) where V is the set of
vertices, E (⊆ V ×V ) is the set of undirected edges, and L is
a labeling function which maps a vertex or an edge to a set

of labels or a label, respectively. Without loss of generality,
all subgraph isomorphism algorithms can be easily extended
to handle graphs whose edges have a set of labels. Unless
otherwise specified, we use symbols q, g, u, and v to denote
a query graph, a data graph, a query vertex, and a data
vertex, respectively.

Given a query graph q = (V,E,L), a data graph g =
(V ′, E′, L′), a subgraph isomorphism (or an embedding) is
an injective function M : V → V ′ such that (1) ∀u ∈ V ,
L(u) ⊆ L′(M(u)), and (2) ∀(ui, uj) ∈ E, (M(ui), M(uj)) ∈
E′, and L(ui, uj) = L′(M(ui), M(uj)).

Problem Definition 1. [5,14,18]Given a query graph q
and a data graph g, the subgraph isomorphism problem is to
find all distinct embeddings of q in g.

Figure 2 shows an example of query q and data graph
g. We have two embeddings M1 and M2 for this subgraph
isomorphism query.

A

B

C

A

a b

b

a

u1

u2

u3

u4

(a) query graph
q.

A B A

A B,D A

B,C B C

b a b a b

a

a

a

b

b

v1 v2 v3

v4 v5 v6

v7 v8 v9
(b) data graph g.

M1 = {(u1, v3), (u2, v5), (u3, v9), (u4, v6)}
M2 = {(u1, v6), (u2, v5), (u3, v9), (u4, v3)}
(c) resulting subgraph isomorphisms.

Figure 2: Example of query and data graphs.

In practice, we may stop the subgraph isomorphism search
after the first k embeddings are found. In [5,18], k is set to
1000.

2.2 Basic Concepts
We explain the concept of the induced subgraph, the par-

tial subgraph isomorphism, the adjacency set, and the k-
neighborhood.

A graph q′ is an induced subgraph of a graph q iff V(q′) ⊆
V(q), and E(q′) contains only the edges present in q, i.e.,
E(q′) = E(q) ∩ (V(q′) × V(q′)). Note that an induced sub-
graph q′ of q can be defined solely with its vertex set V(q′).
For example, the induced graph of the vertices v3, v5, v6, v9
is marked with bold lines in Figure 2.

Let g′ be an induced subgraph of g, and let M ′ be a
subgraph isomorphism from g′ to g. We call M ′ a partial
solution when searching all subgraph isomorphisms from g′

to g if V(g′) ⊂ V(g) (as opposed to a complete solution such
that V(g′) = V(g)).

The adjacency set of a vertex v of a graph g, denoted as
adj(v), is a set of vertices directly connected (adjacent) to
v. The k-neighborhood of a vertex v of a graph g, denoted
as Nk(v), is a set of vertices of g where for each vertex v′ in
Nk(v), the shortest distance between v′ and v is less than or
equal to k. That is, Nk(v) includes v itself.

Consider the vertex v4 in the data graph g from Fig-
ure 2(b). The adjacency set adj(v4) is {v1, v2, v5, v8}. The 1-
neighborhood N1(v4) is {v1, v2, v4, v5, v8}. The 2-neighborhood
N2(v4) contains all vertices in the data graph g.
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2.3 Related Work
We can classify existing algorithms into two categories

depending on whether or not they use exact search: (1) exact
subgraph matching and (2) approximate subgraph matching.
Each matching has its own important target applications.

Exact subgraph matching algorithms can also be classi-
fied into two subcategories depending on the usage of graph
indexing techniques. The first subcategory includes Graph-
Grep [12], gIndex [16], FG-Index [1], Tree+Δ [19], gCode
[20], SwiftIndex [11], and C-Tree [4]. These indexing al-
gorithms are based on a two-step filter-and-refine strategy
where the filtering step uses graph indexes to minimize the
number of candidate graphs, and the refinement step checks
if there exists one subgraph isomorphism for each candi-
date. The second subcategory includes Ullmann [14], VF2
[2], QuickSI [11], GraphQL [5], GADDI [17], and SPath
[18]. These algorithms find all embeddings for a given query
graph and a data graph. We will detail each algorithm in
the following section. We note that Ullmann, VF2, and
QuickSI have been originally designed for handling small
graphs while GraphQL, GADDI, and SPath have been orig-
inally designed for handling large graphs.

Approximate subgraph matching algorithms find approx-
imate embeddings with their own similarity measures. Rep-
resentative algorithms in this area include TALE [13], SIGMA
[9], and Ness [6].

3. IMPLEMENTATION
In this section, we describe how we implement the five

state-of-the-art algorithms in a common framework. For
this purpose, we introduce a generic subgraph isomorphism
algorithm so that each algorithm can be implemented by
extending this generic algorithm according to its specifics.

3.1 Generic Subgraph IsomorphismAlgorithm
The generic subgraph isomorphism algorithm is imple-

mented as a backtracking algorithm [7] which finds solutions
by incrementing partial solutions or abandoning them when
it determines they cannot be completed.

Algorithm 1 shows a generic subgraph isomorphism algo-
rithm, GenericQueryProc. Its inputs are a query graph
q and a data graph g, and its output is a set of subgraph
isomorphisms (or embeddings) of q in g. Here, to represent
an embedding, we use a list M of pairs of a query vertex
and a corresponding data vertex.

For each vertex u in q, GenericQueryProc first invokes
FilterCandidates to find a set of candidate vertices C(u)
(⊆ V(g)) such that L(u) ⊆ L(v) (Line 3). Note that we
place logical expressions in double square brackets to show
the necessary post-conditions for each subroutine. If C(u)
is empty, we can safely exit, making early termination pos-
sible (Line 5). After that, GenericQueryProc invokes a
recursive subroutine, SubgraphSearch, to find mapping
pairs of a query vertex and matching data vertices at a time
(Line 8). Note that SubgraphSearch of SPath matches
one query path at a time for each recursive call.

SubgraphSearch Subroutine

SubgraphSearch takes as parameters a query graph q, a
data graph g, and a partial embedding M and reports all
embeddings of q in g.

The recursion stops when the algorithm finds the complete
solution (i.e., when |M | = |V (q)|) (Line 1). Otherwise, the

algorithm calls NextQueryVertex to select a query vertex
u ∈ V(q) which is not yet matched (Line 4). After that, it
calls RefineCandidates to obtain a refined candidate ver-
tex set CR from C(u) by using algorithm-specific pruning
rules (Line 5). Next, for each candidate data vertex v ∈ CR

such that v is not matched yet, the IsJoinable subroutine
checks whether the edges between u and already matched
query vertices of q have corresponding edges between v and
already matched data vertices of g (Line 7). If v is qualified,
it is matched to u, and SubgraphSearch updates status
information by calling UpdateState (Line 9), and the al-
gorithm proceeds to match the remaining query vertices of
q by recursively calling SubgraphSearch (Line 10). Next,
all changes done by UpdateState are restored by calling
RestoreState (Line 11). The algorithm terminates when
all possible embeddings are found.

Algorithm 1 GenericQueryProc

Input: query graph q
Input: data graph g
Output: all subgraph isomorphisms of q in g

1: M := ∅;
2: for each u ∈ V(q) do
3: C(u) := FilterCandidates (q, g, u, . . .);

[[ ∀v ∈ C(u)((v ∈ V(g)) ∧ (L(u) ⊆ L(v))) ]]
4: if C(u) = ∅ then
5: return;
6: end if
7: end for
8: SubgraphSearch (q, g,M, . . .);

Subroutine SubgraphSearch (q, g,M, . . .)

1: if |M | = |V (q)| then
2: report M ;
3: else
4: u := NextQueryVertex (. . .);

[[ u ∈ V(q) ∧ ∀(u′, v) ∈ M(u′ �= u) ]]
5: CR := RefineCandidates (M,u,C(u), . . .);

[[ CR ⊆ C(u) ]]
6: for each v ∈ CR such that v is not yet matched do
7: if IsJoinable (q, g,M, u, v, . . .) then
8: [[ ∀(u′, v′) ∈ M((u, u′) ∈ E(q) =⇒

(v, v′) ∈ E(g) ∧ L(u, u′) = L(v, v′)) ]]
9: UpdateState (M,u, v, . . .);

[[ (u, v) ∈ M ]]
10: SubgraphSearch (q, g,M, . . .);
11: RestoreState (M,u, v, . . .);

[[ (u, v) /∈ M ]]
12: end if
13: end for
14: end if

The SPath algorithm grows partial solutions with one
path at a time rather than a vertex at a time. Thus, al-
though our generic recursive algorithm accommodates the
characteristics of SPath, we will explain SPath separately in
Section 3.7 for ease of understanding.

Common Graph Storage
Depending on the size of a data graph, we store the graph
as a tuple in a heap file or a large object in a BLOB file as
in iGraph. We also use a B+-tree to efficiently find a data
graph using a graph ID.

For each subgraph isomorphism algorithm, we tune the
disk representation of a data graph in order to support fast
retrieval and construction of its main memory data struc-
tures. In subsequent subsections, we describe data struc-
tures for each method.
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3.2 Ullmann Algorithm
FilterCandidates: FilterCandidates returns a set of
data graph vertices with a matching label u.

NextQueryVertex: NextQueryVertex returns one ver-
tex at a time from the vertices in the order they appear in
the input. It is clear that the performance of the Ullmann
algorithm highly depends on the input order of the query
vertices. We will describe this issue in detail when we de-
scribe the NextQueryVertex function of VF2.

RefineCandidates: RefineCandidates prunes out all can-
didate vertices v ∈ C(u) that have a smaller degree than u.
IsJoinable: IsJoinable iterates through all adjacent query
vertices of u. If the adjacent query vertex u′ is already
matched, i.e., (u′, v′) ∈ M , then it checks whether there is
a corresponding edge (v, v′) in the data graph. Note that,
since IsJoinable is called in a most inner loop, we must
carefully design this function. If there is no edge between
u and already matched query vertices, we can optimize this
process by skipping this checking process. Such optimiza-
tion will be explained in IsJoinable of QuickSI.

UpdateState, RestoreState: UpdateState appends a
pair (u, v) to M while RestoreState restores M by remov-
ing the pair (u, v) from M .

In the following algorithms, we describe only the subrou-
tines which are different from those in Ullmann.

3.3 VF2 Algorithm
NextQueryVertex: Unlike Ullmann, VF2 starts with the
first vertex and selects a vertex connected from the already
matched query vertices. Note that the original VF2 algo-
rithm does not define any order in which query vertices are
selected.
RefineCandidates: VF2 uses the following three pruning
rules to prune out data vertex candidates: (1) Prune out
any vertex v in C(u) such that v is not connected from
already matched data vertices; (2) Let Mq and Mg be a set
of matched query vertices and a set of matched data vertices,
respectively. Let Cq and Cg be a set of adjacent and not-
yet-matched query vertices connected from Mq and a set of
adjacent and not-yet-matched data vertices connected from
Mg , respectively. Let adj(u) be a set of adjacent vertices to
a vertex u. Then, prune out any vertex v in C(u) such that
|Cq ∩ adj(u)| > |Cg ∩ adj(v)|; (3) prune out any vertex v in
C(u) such that |adj(u) \ Cq \Mq| > |adj(v) \ Cg \Mg|.

For example, consider again the query graph q and the
data graph g from Figure 2. Suppose that the current par-
tial solution M = {(u1, v4)} and that u2 is the next ver-
tex returned by NextQueryVertex with C(u2) = {v2, v5,
v7, v8}. Then, Mq = {u1}, Mg = {v4}, Cq = {u2, u4},
Cg = {v1, v2, v5, v8}. The RefineCandidates subroutine
prunes out v7 using the pruning rule (1), because v7 is
not connected to any vertex in Mg . The subroutine also
prunes out v8 from C(u2) using the pruning rule (2), since
adj(u2)∩Cq = {u4} and adj(v8)∩Cg = {}. The subroutine
prunes out v2 from C(u2) using the pruning rule (3) since
adj(u2) \ Cq \Mq = {u3} and adj(v2) \ Cg \Mg = {}.
Improvements
We note that the matching order driven byNextQueryVer-
tex significantly impacts the query performance by reducing
the size of the recursive call tree. For instance, consider the
query and data graphs from Figure 2. If we match query
vertices in order (u1, u2, u3, u4), SubgraphSearch of the

generic algorithm is called 14 times (Figure 3(b)). However,
if we match query vertices in order (u1, u4, u2, u3), Sub-
graphSearch is called 12 times (see Figure 3(a)). Note
that in both cases, at least eight recursive calls are neces-
sary to output two complete solutions.

u3:

u2:

u4:

u1:

X

v4

v1

O

v9

v5

v6

v3

X

v1

v4

O

v9

v5

v3

v6

(a) matching or-
der (u1, u4, u3,
u4).

u4:

u3:

u2:

u1:

X

v1

O

v6

v9

v5

v3

X

v2

X

v9

v5

X

v8

v4

O

v3

v9

v5

v6

(b) matching order (u1,
u2, u3, u4).

Figure 3: Recursion trees using the generic sub-
graph isomorphism algorithm for the query and data
graphs in Figure 2.

The original VF2 version used in iGraph uses a reorder-
ing technique which sorts query vertices by the frequency of
the query vertex label and then feeds these reordered query
vertices as input to VF2. This technique could be effective
when the reordered vertex sequence is similar to the one or-
dered by the frequency of the data vertex label. We also
optimize the original VF2 version in several ways: 1) On
comparing labels of two vertices, we directly compare the
label IDs (i.e., integer comparison) of those vertices instead
of calling expensive virtual function calls. 2) By exploiting
the inverse vertex label list, we accelerate the search per-
formance of finding vertices having a given vertex label. 3)
When returning from each recursive call, Cq and Cg must be
restored. By maintaining additional stacks, this process can
also be accelerated efficiently. By putting these optimiza-
tions including the reordering technique all together, our
VF2 version outperforms the original by up to 29.86 times.

Disk Representation
VF2 represents a graph using three structures: 1) vertex la-
bel list that allows access to the ordered vertex label list of
a vertex by a given ID (see Figure 4(a)); 2) inverse vertex
label list that allows access to the ordered vertex ID list by
a given vertex label (see Figure 4(b)); and 3) adjacency lists
(see Figure 4(c)) of each vertex which store adjacency infor-
mation, i.e., a list of pairs (vertex ID, edge label) ordered by
the vertex ID. Note that we materialize the inverse vertex
label list in the graph database for speedup, although it can
be constructed from the vertex label list.

3.4 QuickSI Algorithm
NextQueryVertex: QuickSI tries to access vertices hav-
ing infrequent vertex labels and infrequent, adjacent edge
labels as early as possible. Specifically, instead of using la-
bel frequency information from a query graph as in VF2,
QuickSI pre-processes data graphs to compute the frequen-
cies of vertex labels and the frequencies of a triple (source
vertex label, edge label, target vertex label). By using the
computed edge label frequencies, we assign a weight to each
query edge and obtain a minimum spanning tree using a
modified Prim algorithm. QuickSI creates a sequence by
using the order in which the vertices are inserted into the
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(d) NDS distances for pairs of vertices within the shortest
distance one.

9

|V(g)|
1
v1

4
v2

7
v3

12
v4

17
v5

20
v6

21
v7

24
v8

26
v9

offsets

A A B D A B D B D

v1 v2 v3 v9

(e) GraphQL neighborhood signatures.

9

|V(g)|
3
v1

9
v2

15
v3

21
v4

26
v5

32
v6

34
v7

40
v8

44
v9

offsets

(1,A,1)(2,B,3)(2,D,1)

v1

(f) SPath neighborhood signatures when k0=2.
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(g) SPath adjacency lists.

Figure 4: Disk representation of the data graph from
Figure 2.

minimum spanning tree. When the algorithm selects a start-
ing edge (u1, u2), the algorithm uses u1 as the first vertex
in the sequence if the vertex label frequency of u1 is lower
than that of u2. Otherwise, u2 is used as the first vertex.
For detailed explanation, we refer readers to [11].

RefineCandidates: For the first query vertex u, QuickSI
does not refine u. For the subsequent vertices u returned
by NextQueryVertex, let upar be the parent vertex of u
in the minimum spanning tree and v′ be the matching data
vertex of upar. Then, QuickSI prunes out v in C(u), if there
is no edge between v and v′.
IsJoinable: Unlike IsJoinable of Ullmann which blindly
iterates through all adjacent query vertices of u, IsJoinable
of QuickSI iterates through adjacent and already matched
query vertices of u.

Although this important property is not elaborated in
[11], our empirical analysis shows that this mechanism con-
tributes to speedups of QuickSI, making the invocation cost
of the SubgraphSearch of QuickSI the lowest among all
five algorithms.

Disk Representation
QuickSI stores a graph in the same format as the VF2 algo-
rithm. In addition, QuickSI uses two B+-trees, one B+-tree
for storing all distinct vertex labels along with their fre-
quencies and the other for storing all distinct triples (source
vertex label, edge label, target vertex label) along with their
frequencies.

3.5 GADDI Algorithm
Before explaining each subroutine specific to GADDI, we

first need to understand the concept of the neighboring dis-
criminating substructure (NDS) distance.

The NDS distance between v1 and v2 using a subgraph
P , denoted as ΔNDS(v1, v2, P ), is defined as the number of
embeddings of P in an induced subgraph of Nk(v1)∩Nk(v2).
Noth that k is a given parameter of GADDI.

Figure 5 displays the data graph g from Figure 2 with
the induced subgraph of N2(v1)∩N2(v4) drawn with thicker
lines. For the substructures P1, P2, and P3 shown in the
same figure, the NDS distances are calculated as follows:
ΔNDS(v1, v4, P1) = 3; ΔNDS(v1, v4, P2) = 8; and ΔNDS(v1, v4,
P3) = 24.

A B A

A B,D A

B,C B C

b a b a b

a

a

a

b

b

v1 v2 v3

v4 v5 v6

v7 v8 v9

P1

P2

P3

ΔNDS(v1, v4, P1) = 3, ΔNDS(v1, v4, P2) = 8,
ΔNDS(v1, v4, P3) = 24

Figure 5: The NDS distances between v1 and v4
when k = 2.

Now, we explain how GADDI selects substructures for
calculating NDS distances. For this purpose, GADDI sam-
ples 100 pairs of vertices from the data graph, and for each
pair (v1, v2), we construct an induced unlabeled graph1 of
Nk(v1)

⋂
Nk(v2). For those induced graphs, [17] suggests

selecting top ten frequent subgraphs using a frequent sub-
graph mining algorithm such as gSpan [15]. We construct a
matrix L where each row corresponds to an induced graph g,
and each column corresponds to a subgraph selected P , and
each entry in L corresponds to the number of embeddings of
P in g. We select the three columns (i.e., subgraphs) that
have the largest numbers of distinct values as substructures.
NextQueryVertex: GADDI first selects a query vertex
appearing first in the input and then performs a depth-first
search to find next query vertices.
RefineCandidates: RefineCandidates of the GADDI
algorithm prunes out v in C(u), if, for each query vertex
u′ ∈ Nk(u), there is no data vertex v′ ∈ Nk(v) satisfying
the following three conditions: 1) L(u′) ⊆ L(v′); 2) for
each Pi in a given set of substructures, ΔNDS(u

′, u, Pi) ≤
ΔNDS(v

′, v, Pi); and 3) the shortest distance between u′ and
u is greater than or equal to the shortest distance between
v′ and v.
UpdateState, RestoreState: GADDI uses an additional
pruning technique that reduces the candidate sets of all
query vertices. For each data vertex v′ in Nk(v), if there
does not exist a query vertex u′ in Nk(u) satisfying the
three conditions used in RefineCandidates, we can prune
v′ from all the current candidate sets except C(u). There-
fore, UpdateState identifies those prunable data vertices
and additionally removes them from all C(ui)s except C(u)
(1 ≤ i ≤ |V(q)|), and RestoreState additionally restores
the removed vertices.

1We have communicated with one of the original authors to
learn how to construct such induced graphs.
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Improvements
We use the reordering technique which is used in the im-
proved VF2 version to reduce the size of the recursive call
tree of SubgraphSearch.

According to [17], subgraphs selected for computing NDS
distances are connected, unlabeled graphs having three or
four edges. Thus, there are only eight different connected
graphs having three or four edges. By exploiting this impor-
tant fact, we can safely skip the expensive frequent subgraph
mining.

Disk Representation
GADDI stores a graph in the same representation as it does
for the VF2 algorithm. In addition, for each pair of data
vertices of a graph, we store the precomputed NDS and the
shortest distances along with the graph. Specifically, for
each pair (vi, vj) of vertices (i < j) within a given shortest
distance, we store an entry storing the shortest distance and
three NDS distances. These entries are ordered by the IDs of
the first and the second vertices, and we use binary search to
locate the distances between the given pair of vertices. Fig-
ure 4(d) shows a fragment of the disk representation of the
data graph g in Figure 2 storing the precomputed shortest
distance and three NDS distances for the pairs of vertices
within the distance of one. In this fragment, v1 has just one
vertex v4 within distance one from v1, and the corresponding
entry stores the NDS distances from Figure 5.

3.6 GraphQL Algorithm
FilterCandidates: The GraphQL algorithm uses two ad-
ditional pruning rules to reduce the size of the candidate
sets: 1) neighborhood signature based pruning and 2) the
pseudo subgraph isomorphism test based pruning.

We first explain the concept of the GraphQL neighborhood
signature of a vertex v, denoted as sigGraphQL(v). sigGraphQL(v)
is a multiset of labels of adj(v). For example, sigGraphQL(u2)
in Figure 2 is {A,A,C}, and sigGraphQL(v2) is {A,B,D}.

The neighborhood signature based pruning prunes out a
candidate vertex v if sigGraphQL(u) � sigGraphQL(v). For
example, assume that u is u2 (Line 3 of Algorithm 1). Then,
v2 is pruned since sigGraphQL(u2) � sigGraphQL(v2).

Now, we explain the concept of the pseudo isomorphism
test, which is an iterative algorithm using the depth d as a
parameter. At first iteration, we obtain two breadth first
search trees Tu and Tv for u and v respectively, where their
depth is 1(i.e., d = 1). Then, we can prune out v if Tu is not
contained in Tv. We can iterate this process by increasing
d by one until d = r, where r is called the refinement level.
For detailed explanation, we refer readers to [5].
NextQueryVertex: The GraphQL algorithm finds next
query vertices by using a greedy strategy similar to the
heuristic-based join order optimization based on the cardi-
nality of intermediate joined results. NextQueryVertex
of GraphQL first selects a query vertex u which has the
smallest candidate set size |C(u)|. In the subsequent calls,
NextQueryVertex returns a query vertex u that is con-
nected already matched query vertices and that makes the
smallest size of intermediate results.

Improvements
For graphs having labeled edges, we extend GraphQL neigh-
borhood signature of v with labels of the adjacent edges to
v to improve pruning power. For instance, sigGraphQL(v2)
from Figure 2 becomes {(a,A), (b,B), (b,D)}.

Disk Representation
GraphQL stores a graph using an inverse vertex label list
(see Figure 4(b)), an adjacency list(Figure 4(c)), and a GraphQL
neighborhood signature (Figure 4(e)). GraphQL does not
use the vertex label list, since it can construct candidate
vertex lists during the neighborhood signature based prun-
ing. Note that GraphQL materializes GraphQL neighbor-
hood signatures of all vertices for a data graph, which is
more efficient than constructing such signatures on the fly
during query processing. Figure 4(e) illustrates the disk rep-
resentation of GraphQL signatures of the data graph from
Figure 2.

3.7 SPath Algorithm
The SPath algorithm also uses the GenericQueryProc,

though it invokes a different SubgraphSearch in order to
match a query path rather than a query vertex per recursive
call. Thus, it may minimize the depth of the recursion tree
by matching a path per call [18]. However, as we will see
in our experiments, the selection order of paths significantly
impacts the query performance, and the selection order of
SPath is far from optimal for most data sets.
FilterCandidates: Similar to the GraphQL algorithm,
SPath uses neighborhood signatures to minimize candidate
sets. However, it attempts to exploit more neighborhood
information. The SPath neighborhood signature of a given
vertex u, denoted as sigSPath(u), is a set of triples where each
triple (d, l, c) is constructed from the vertices in Nk0(u). The
triple (d, l, c) represents the fact that there are c vertices in
Nk0(u) containing the label l such that the shortest distance
from u is d. Here, k0 is called the neighborhood scope. For
instance, if k0 = 1, the signature of vertex v7 in Figure 2
is sigSPath(v7) = {(1, B, 1)}. If k0 = 2, the signature of the
same vertex v7 is sigSPath(v7) = {(1, B, 1), (2, A, 1)}.

Now, we explain how to use the SPath neighborhood sig-
nature. We first define a function Sl

d(v) to represent the
containment relationship between two SPath neighborhood
signatures. If there exists a triple (d, l, c) in sigSPath(v),
Sl
d(v) = c. Otherwise, Sl

d(v) = 0. Next, we define a rule for
pruning data vertices using the SPath neighborhood signa-
ture. For the given signatures sigSPath(u) and sigSPath(v) of
query vertex u and data vertex v, we can prune out the data
vertex v in C(u), if it does not satisfy the following condi-
tion: for all k ≤ k0 and all possible labels l in sigSPath(u),∑k

i=1 S
l
i(u) ≤ ∑k

i=1 S
l
i(v). For example, assume that u is

u3 (Line 3 of Algorithm 1) and that k0 = 2. Here, the sig-
nature of u3 is ((1, B, 1), (2, A, 2)). We can prune v7, since∑2

i=1 S
A
i (u3)(= 2) >

∑2
i=1 S

A
i (v7)(= 1).

Unlike [18] suggesting a large neighborhood scope (k0 =
4), we observe that, if we increase the neighborhood scope
of SPath, the performance can decrease. This phenomenon
is explained as follows. A larger neighborhood scope in-
creases filtering power, but also increases the size of SPath
neighborhood signature and the filtering time. The optimal
neighborhood scope, which is difficult to choose, lies in a
balance between filtering power and filtering time.

The following subroutine shows SubgraphSearch of SPath.
Note that the neighborhood scope k0 is used as an additional
parameter in order to limit the radius of the SPath neigh-
borhood signature of a vertex.

The subroutine stops this recursion when the algorithm
finds the complete solution (i.e., when |M | = |V (q)|) (Line
1). Otherwise, the subroutine calls NextQueryPath to se-
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lect a next query path pq whose length is shorter than or
equal to k0, and whose vertices except the first vertex are
not yet matched. (Line 4). After that, it calls GetCan-
didatePaths to obtain all data paths matching the query
path pq in the data graph g (Line 5). Next, for each candi-
date data path pg ∈ P , the IsJoinable subroutine checks
whether the edges between the vertices in the pq and al-
ready matched query vertices of q have corresponding edges
between the vertices in the pg and already matched data
vertices of g (Line 7). Note that the first vertex of pq is
already matched, so all the resulting candidate data paths
should start from the matched data vertex. If pg is quali-
fied, it is matched to pq, and SubgraphSearch updates the
partial solution M by calling UpdateState (Line 8), and
the algorithm proceeds to match the remaining query paths
of q by recursively calling SubgraphSearch (Line 9).

Subroutine SubgraphSearch (q, g,M, k0)

1: if |M | = |V (q)| then
2: report M ;
3: else
4: pq := NextQueryPath (q, g, k0);
5: P := GetCandidatePaths (pq,M, C);
6: for each pg ∈ P do
7: if IsJoinable (pq, pg,M) then
8: UpdateState (pq, pg,M);
9: SubgraphSearch (q, g,M, k0);
10: RestoreState (pq, pg,M);
11: end if
12: end for
13: end if

Now, we explain the subroutine NextQueryPath fur-
ther, which is most important in query performance of SPath.
NextQueryPath: The SPath algorithm first selects a query
vertex u which has the smallest candidate set size |C(u)|. In
the subsequent call, SPath returns the most selective path
which starts from an already matched query vertex. Here,
the selectivity function sel(p) for a given path p is calculated

as 2|V(p)|
∏

u∈V(p) |C(u)| , where V(p) denotes all vertices in a path

p. Note that the denominator represents the join cardinality
of the candidate sets for all query vertices in p. However,
this overestimate leads to significant errors in estimating the
join cardinality. Thus, in many query and datasets, SPath
is bound to choose a suboptimal join order.
Disk Representation
Like the GraphQL algorithm, SPath stores only the inverse
vertex label list for accessing vertices by label and does not
store the vertex label list, which is constructed in memory
from the inverse vertex label listduring the SPath neighbor-
hood signature based pruning. Each SPath neighborhood
signature for the data vertex vi is stored as a list of triples
(d, l, c) ordered by d and l (Fig. 4(f)). As a distinction from
all other methods, SPath adjacency lists are grouped by la-
bels of target vertices. For example, in Fig. 4(g), the ad-
jacency list of the vertex v4 is split into three sublists: 1)
the adjacent vertices with label A ((v1, b)), 2) the adjacent
vertices with label B ((v2, a), (v5, a), (v8, a)), and 3) the ad-
jacent vertices with label D ((v5, a)).

4. EXPERIMENTS
In this section, we evaluate the performance of the five

representative subgraph isomorphism algorithms VF2 [2],
QuickSI [11] (in short, QSI), GraphQL [5] (in short, GQL),
GADDI [17] (in short, GAD), and SPath [18] (in short,

SPA). We use best-effort reimplementations based on the
original papers and on email communications with the orig-
inal authors. As for GraphQL, we re-implement and opti-
mize it in C++ by analyzing the original implementation
using a java bytecode analyzer.
Datasets: We use four real datasets referred to here as
AIDS, NASA, Yeast, and Human. The AIDS dataset was
used in [11]. The Yeast dataset was used in [5, 18]. The
NASA dataset was produced from a popular XML dataset
[8] used in the XML research field. Since the Human dataset
used in [17] could not be obtained from the original authors,
we re-created it using the same process described in [17],
which is straightforward. We also experimented with the
synthetic datasets used in [5, 17]. However, there were no
significant differences in overall performance trends of the
algorithms, and thus, we omit them to save space.

Note that these datasets have different characteristics.
The AIDS dataset contains a set of sparse graphs where the
average graph size is small (= 27.4 in terms of the number of
edges), and the number of unique labels is small (=51). The
NASA dataset contains a set of trees where the average tree
size is 32.2, and the number of unique labels is much larger
(=117,302) than AIDS. The Yeast dataset contains only one
large graph having 3112 vertices and 12519 edges. A ver-
tex corresponds to a protein, and an edge corresponds to an
interaction between two proteins. Since one protein can ap-
pear in several cellular components and biological processes,
a vertex can have multiple labels. This graph is denser than
graphs in AIDS and NASA. The Human dataset contains a
large graph modeling a protein interaction network of 4675
proteins and 86282 interactions, which is larger and denser
than Yeast. This graph has a fewer number of labels and a
larger average degree than Yeast. Table 1 summarizes the
properties of the four datasets.

Table 1: Summary of the real-world datasets.

Dataset AIDS NASA Yeast Human

# of graphs 10000 36790 1 1
# of vertices 2∼214 2∼889 3112 4675
# of edges 1∼217 1∼888 12519 86282
Avg. degree 1.95 1 8.05 36.82
Max. degree 11 245 168 771
# of distinct v. labels 51 117302 184 90
# of distinct e. labels 4 0 0 0
Avg. # of labels per
vertex

1 1 7.55 4.63

Query sets: For AIDS, we use the existing query sets which
are currently downloadable together with the iGraph frame-
work2. There are six query sets. Each query set contains
1000 query graphs of the same size in terms of the number
of edges. The query sizes are 4, 8, 12, 16, 20, and 24 edges.
To generate queries of size 24, we randomly select connected
subgraphs of size 24 from data graphs. We then generate the
other query sets so that the following containment relation-
ship is satisfied. That is, a small size query graph q of size
s is constructed from a large size query graph q′ of size s +
4 by removing edges until q′ is still connected and contains
s edges. For the other datasets, we generate query sets by
using this query generation process. In addition, we use two
types of query sets for Yeast and Human which were used
in [5]. These query sets were generated with a tool provided

2http://www.igraph.or.kr/
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by the GraphQL authors and do not satisfy the containment
relationship.

Suppose that a large query graph q is a supergraph of
a small graph q′. Then, the number of embeddings for q is
typically smaller than or equal to the number of embeddings
for q′. Thus, the performance of a good subgraph isomor-
phism algorithm would decrease as we increase the query
size. In contrast, the search space for a graph q exponen-
tially increases as we increase the query size. If a query q has
n vertices, u1, u2, · · · , un, then the size of its search space
becomes |C(u1)|×|C(u2)|×· · · ×|C(un)|. Thus, the perfor-
mance of a good subgraph isomorphism algorithm is likely
to decrease as we increase the query size by exploiting pow-
erful pruning rules and optimal join orders.
Setup: For all experiments, we use a PC with Intel Xeon
Quad Core 2.27GHz , 8 GB of main memory, and 1 TB
7200 RPM hard disk, running Windows Vista. We imple-
ment all algorithms in the iGraph framework using C++ and
compile them using Microsoft Visual-C++ compiler. We
run all algorithms with best possible parameter values for
each dataset. We stop subgraph isomorphism search after
the first 1000 subgraph isomorphisms are found, as it was
done in [5,18]. The size of the database buffer is set to 500
MB, which allows the once read data from the database to
be kept in main memory.

We use the number of I/Os and the elapsed time as the
performance metrics for database construction. We use the
average elapsed time and the average number of Subgraph-
Search calls (# of recursive calls) as the performance met-
rics for query execution. Specifically, if there is more than
one data graph in a database, the elapsed time for a query
means the accumulated elapsed time for processing all data
graphs for that query. Thus, we average the total elapsed
times for all queries to calculate the average elapsed time.
Note that each algorithm has the significantly different cost
of a SubgraphSearch call.

We divide our experimental section into four parts for
each dataset and give more details on each dataset in the
corresponding subsections.

4.1 AIDS Dataset
4.1.1 Database Construction
Table 2 shows the database sizes and database building

times for all five algorithms using the AIDS dataset. Note
that the number of read I/Os for all algorithms is 588. SPath
was run with the best neighborhood scope k0 = 2. The
GADDI algorithm was run with the shortest distance d = 1
and the neighborhood scope k0 = 2. Setting d = 1 and
k0 = 2 produced the best performance results as in [17].

The VF2 database has the smallest disk space, and its
building time is the fastest, since the VF2 algorithm does not
use any auxiliary information. QuickSI has the same disk
representation as VF2 along with two additional B+-trees
to store the frequencies of 51 unique vertex labels and 240
unique edge features. However, the space of the frequency
information of QuickSI for the AIDS dataset is negligible.
Thus, the database sizes of both algorithms are almost the
same. However, in QuickSI, for each data graph, we first
count unique vertex labels and unique edge features and
update the frequencies in the corresponding B+-trees, re-
sulting in 33582 + 60214 updates to both B+-trees. Thus,
the building time for QuickSI is 1.61 times slower than VF2.
GraphQL and SPath use additional neighborhood signatures

which are pre-computed and stored together with graphs, al-
though they do not use the vertex label list as explained in
Section 3.6. Since the AIDS dataset has a small average de-
gree, the database of GraphQL is only 1.36 times larger than
that of VF2. However, the database of SPath is 2.31 times
larger than that of VF2 due to a larger signature size than
GraphQL. GADDI stores pre-computed NDS and shortest
distances between data vertices. The size of these distances
is comparable to that of SPath signature.

Table 2: Database size and construction time for
AIDS dataset.

Alg. Size(MB) # of total I/Os Time(msec.)

VF2 9.25 1774 418
QuickSI 9.28 1780 671
GraphQL 12.59 2202 684
SPath(k0 = 2) 21.40 3330 1420
GADDI 21.47 3339 9064

4.1.2 Query Processing
Figure 6 shows the subgraph isomorphism search perfor-

mance using the AIDS dataset. SPath was run with the best
signature neighborhood scope k0 = 2, which is contradic-
tory to [18] suggesting a large neighborhood scope (k0 = 4).
However, in this experiment, GraphQL was run with the
best refinement level r = 1. The GADDI was run with the
shortest distance d = 1 and the neighborhood scope k0 = 2.
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Figure 6: AIDS dataset.

The average number of recursive calls for every algorithm
decreases as we increase the query size. Thus, all algorithms
behave well despite their inherent exponential time complex-
ity by choosing good join orders and by exploiting effective
pruning rules. In terms of the average number of recursive
calls, the ranking order is GraphQL, SPath, GADDI, VF2,
and QuickSI. GraphQL and SPath exploit signature-based
pruning before calling SubgraphSearch, and thus, the size
of the candidates (i.e., the search space) is the smallest. Note
that the number of recursive calls for GraphQL is 6.7 and
6.4 smaller than those for QuickSI and VF2, respectively.

However, in terms of the average elapsed time, the rank-
ing order is completely different. QuickSI is the fastest algo-
rithm. VF2, GraphQL, GADDI and, SPath are 1.73, 1.99,
2.88, and 6.62 times slower than QuickSI on average, respec-
tively. We analyze this surprising phenomenon in depth as
follows: Although the average number of recursive calls for
VF2 is 1.05 times smaller than QuickSI, the average cost
of recursive calls for VF2 is 2.82 times larger than that
of QuickSI. This is due to QuickSI’s optimized design of
IsJoinable as we pointed out in Section 3.4. In GraphQL,
the filtering time spent for GraphQL neighborhood signa-
ture based filtering and pseudo-isomorphism based pruning
constitutes 63.16% of the total elapsed time while the filter-
ing time for QuickSI is zero. Note that the filtering is exe-
cuted before starting to call SubgraphSearch. In addition,
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the average cost of recursive calls for GraphQL is 1.94 times
larger than VF2. This is because 1) the query optimization
time of GraphQL constitutes 10.6% of SubgraphSearch
since the sizes of query graphs are relatively large compared
with the sizes of data graphs, and 2) GraphQL does not use
any pruning rule for RefineCandidates.

In SPath, the filtering time spent for SPath neighbor-
hood signature based filtering constitutes 61.23% of the to-
tal elapsed time. The average cost of recursive calls for
SPath is 5.18 times larger than that of GraphQL due to
the overhead in path-based matching. Furthermore, the
larger size of SPath neighborhood signature, compared to
the GraphQL neighborhood signature leads to slower read-
ing times for accessing data graphs. In GADDI, for each
query, calculating NDS distances for every pair of vertices
of the query graph is very expensive. The average cost of
recursive calls for GADDI is 3.76 times larger than that of
GraphQL since the data graphs are sparse, and thus the
NDS distances are often equal to zero, which does not help
to refine candidates. Note that, unlike GraphQL and SPath,
there is no additional filtering step for GADDI.

4.2 NASA Dataset
4.2.1 Database Construction
Table 3 shows the database size and database building

times for all five algorithms using the NASA dataset. Note
that the number of read I/Os for all algorithms is 3,077.
The size of the database for QuickSI is 1.34 times large than
that of VF2, since the sizes of the two B+-trees storing the
frequency information become large due to the large number
of unique labels (= 117,302). The size of the database for
SPath is 5.85 times larger than VF2 since the value of neigh-
borhood scope k0 is set to four instead of two. Note that set-
ting k0 to four shows the best query performance for NASA.
The increasing rate of GADDI over VF2 in NASA in terms
of the database size and the elapsed time is smaller than
that in AIDS since the average degree of NASA is smaller
than that of AIDS. The GADDI was run with the shortest
distance d = 1 and the neighborhood scope k0 = 2.

Table 3: Database size and construction time for
NASA dataset.

Alg. Size(MB) # of total I/Os Time(msec.)

VF2 44.04 8718 1697
QuickSI 58.99 10634 3769
GraphQL 57.65 10461 1950
SPath(k0=4) 257.68 36089 21737
GADDI 95.33 15288 32167

4.2.2 Query Processing
Figure 7 shows the subgraph isomorphism search perfor-

mance using the NASA dataset. SPath was run with the
best signature neighborhood scope k0 = 4, and GraphQL
was run with the best refinement level r = 2. The GADDI
was run with the shortest distance d = 1 and the neighbor-
hood scope k0 = 2.

The purpose of this experiment is to see if those five algo-
rithms exploit this important characteristics of the dataset.
VF2,QuickSI, and GADDI show exponential behaviors at
the sizes of query sets 8, 12, and 8, respectively. Only
GraphQL and SPath complete their query execution in a
reasonable time. This striking phenomenon is due to the se-
rious problems both in their join order selection and in the
absence of signature-based pruning. To verify our claim,
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Figure 7: NASA dataset.

we first changed the join orders of QuickSI with those of
GraphQL for some slow queries, and this modified version
of QuickSI completed these queries in a reasonable time.
We note that QuickSI uses statistics for label frequencies
for all data graphs in the database while GraphQL and
SPath use statistics for label frequencies for each data graph.
Thus, GraphQL and SPath can generate a better join order
than QuickSI for these queries. However, for the other slow
queries, especially, those having star-shaped subgraphs with
many same labeled vertices, although QuickSI uses the join
orders of GraphQL, it still shows exponential behavior. Note
that QuickSI compares one query vertex with one data ver-
tex at a time, and thus, it tries to explore all combinations
of query vertices and data vertices of the same label for such
star-shaped subgraphs. However, GraphQL and SPath can
efficiently prune such subgraphs if query vertex signatures
are not contained in the corresponding data vertex signa-
tures. Thus, both GraphQL and SPath efficiently process
such star-shaped queries, significantly reducing the number
of candidates. This indicates that we need to combine good
join order strategies with signature-based pruning for the
NASA query/data sets.

It should be noted that, at the query sizes 20, unlike
GraphQL, SPath shows jumps both in the number of recur-
sive calls and the elapsed time. This is due to serious prob-
lem in its join order selection. However, at the query size 24,
we observe that signature-based pruning significantly prune
candidate sets. For example,

∑
u∈V (q) |C(u)| for the 61st

query of size 24 is 71.01 times smaller than
∑

u∈V (q) |C(u)|
for the 61st query of size 20. Thus, in spite of the inherent
problem in join order selection of SPath, the elapsed time
of SPath significantly is reduced for the query size 24 by
exploiting the signature-based pruning of SPath.

The average number of recursive calls for GraphQL in-
creases as we increase the query size up to 16. This is due
to search space increments. However, when we increase the
query size further, the average number of recursive calls de-
creases. This phenomenon is explained as follows. As we
increase the size of a query, the search space also increases.
However, when a larger query has vertexes having infrequent
labels, the signature-based pruning of GraphQL significantly
prunes candidates, thereby significantly reduce the average
number of recursive calls.

In terms of the average elapsed time, the performance of
GraphQL is 10.38 times faster than SPath on average since
1) the loading time including in-memory signature construc-
tion time for GraphQL is 5.55 times faster than that for
SPath, 2) the filtering time for GraphQL is 2.45 times faster
than that for SPath since SPath uses k0 = 4, and 3) the to-
tal cost of recursive calls for GraphQL is 14.33 times smaller
than that for SPath. Note that setting r to two in GraphQL
filters the number of candidates very effectively. In order to
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compensate for the lack of the additional filtering step using
pseudo-subgraph isomorphism of the GraphQL algorithm,
we have to use a larger neighborhood scope (k0=4) for the
SPath algorithm. Thus,

∑
u∈V (q) |C(u)| of SPath is 1.21

times smaller than that of GraphQL. However, due to the
overhead of computing a larger SPath neighborhood signa-
ture, the filtering time of SPath is 2.45 times larger than
that of GraphQL.

4.3 Yeast Dataset
In this experiment, we use three types of query sets: sub-

graph, clique, and path. The query sets of the first type
are generated as is done for AIDS. The other types of query
sets are provided by the original authors of GraphQL. The
query sets of the second type contain clique queries (com-
plete graphs) that correspond to protein complexes. The
queries of the last type correspond to biological pathways.
The vertices of the last two types are randomly assigned
with the top 40 most frequent vertex labels, and each query
graph vertex has only one label. Note that, unlike subgraph
queries, path and clique queries do not satisfy the contain-
ment relationship since they are randomly generated.

4.3.1 Database Construction
Table 4 shows the database sizes and database building

times for all five algorithms using the Yeast dataset. The
SPath database is built with the best neighborhood scope
k0 = 1. That is, a larger neighborhood scope (i.e., k0 > 1)
decreases the query performance of SPath due to the over-
head of larger SPath neighborhood signatures, which is con-
trary to [18] suggesting a larger neighborhood scope for bet-
ter query performance. The GADDI was run with the short-
est distance d = 1 and the neighborhood scope k0 = 2.

Note that the number of read I/Os for all algorithms is
33. The size of the database for QuickSI is 2.58 times large
than that of VF2, because of the large size of the B+-tree
storing the frequencies. In the Yeast dataset, each vertex
has 7.55 labels on average. Therefore the number of all
distinct triples (source vertex label, edge label, target ver-
tex label) which we need to store in a B+-tree can increase
quadratically3. The size of the database for SPath is 9.02
times larger than that of VF2 since the number of triples
(d, l, c) in the SPath neighborhood signature and the num-
ber of adjacency lists in the SPath adjacency list increase
with the average number of vertex labels. The increasing
rate of GADDI over VF2 in terms of the average elapsed
time is much larger than that for the AIDS dataset since
the number and the cost of NDS distance calculations in-
crease due to the larger degree of Yeast. Note that the cost
of calculating an NDS distance depends on the size of the
neighborhood. The increasing rate of GraphQL over VF2 in
Yeast in terms of the database size and elapsed time is larger
than that of AIDS because of the larger average degree and
multiple labels for each vertex.

4.3.2 Subgraph Queries
The purpose of this experiment is to analyze the trends

in query performance for Yeast using the same query gener-
ation technique as for AIDS and NASA datasets. We used
ten subgraph query sets with sizes ranging from one to ten.
These query sets have the same containment property as for
AIDS and NASA.

3i.e., =O
(
(the average number of vertex labels)2

)

Table 4: Database size and construction time for
Yeast dataset.

Alg. Size(MB) # of total I/Os Time(msec.)

VF2 0.41 89 46
QuickSI 1.07 175 378
GraphQL 2.03 296 284
SPath(k0=1) 3.73 514 437
GADDI 0.91 152 25272

Figure 8(a) and Figure 9(a) show the subgraph isomor-
phism search performance using subgraph queries for Yeast
dataset. SPath was run with k0 = 1, and GraphQL was run
with r = 4. Note that if we increase k0 further, the query
performance decreases due to the increased filtering cost.
The GADDI was run with d = 1 and k0 = 2. Only QuickSI,
GraphQL, and SPath complete their query execution in a
reasonable time. VF2 and GADDI show exponential behav-
ior at query sizes nine and eight, respectively. This is due to
the combined factors of increased search space and inefficient
join ordering strategies of both algorithms. The average
number of recursive calls increases with the size of queries.
Note that such a trend is different from the results of the
experiments on AIDS and NASA datasets. In terms of aver-
age elapsed time, QuickSI is the fastest algorithm until query
size eight. However, on average, QuickSI, SPath, GADDI,
and VF2 are 2.20, 3.78, 5.89, and 369.50 times slower than
GraphQL, respectively. Although QuickSI is designed for
handling small graphs, it often outperforms the more re-
cent algorithms GraphQL and SPath which are designed
for handling large graphs. This indicates that signature-
based pruning might not be very effective for the Yeast
dataset. To analyze this phenomenon, we calculate the size
of

∑
u∈V (q) |C(u)| for QuickSI, GraphQL, and SPath. The

size of
∑

u∈V (q) |C(u)| for QuickSI is only 2.01 and 2.78 times

larger than those for SPath and GraphQL on average, re-
spectively. However, increased filtering and loading times
of SPath and GraphQL negate the advantage of signature-
based pruning.

4.3.3 Clique Queries
Figure 8(b) and Figure 9(b) show the subgraph isomor-

phism search performance using clique queries for the Yeast
dataset. We use the same parameter values as used in sub-
graph queries except for setting r = 1.

The average number of recursive calls for every algorithm
increases as we increase the query size until three or four,
then it decreases, if we increase the query size further. This
trend is similar to that for NASA. Thus, all algorithms be-
have well despite their inherent exponential time complex-
ity by choosing good join orders and by exploiting effective
pruning rules. In terms of the average number of recursive
calls, the ranking order is GraphQL, QuickSI, GADDI, VF2,
and SPath.

In terms of the average elapsed time, the ranking order
is QuickSI, GraphQL, VF2, SPath, and GADDI. This is
due to the lower cost of a recursive call of QuickSI and
VF2. Note that, although the numbers of recursive calls
of GraphQL and SPath decrease as we increase the size of
queries from five to seven, the elapsed times of GraphQL
and SPath slightly increase. This is due to increasing over-
head of filtering in GraphQL and SPath. As for GADDI,
since the data graphs are dense, the comparison costs based
on the NDS distance and the shortest path exponentially in-

142



 0.1

 1

 10

 100

 1000

1 2 3 4 5 6 7 8 9 10

A
vg

. e
la

ps
ed

 ti
m

e 
(m

se
c.

)

Subgraph size (# of edges)

QSI
VF2

GQL(r=4)
SPA(k=1)

GAD

(a) subgraph queries.

 0.1

 1

 10

 100

 1000

2 3 4 5 6 7

A
vg

. e
la

ps
ed

 ti
m

e 
(m

se
c.

)

Subgraph size (# of vertices)

QSI
VF2

GQL(r=1)
SPA(k=1)

GAD

(b) clique queries (Y-axis in log
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Figure 8: Average elapsed time for Yeast PIN dataset.
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Figure 9: Average number of recursive calls for Yeast PIN dataset.

crease as the size of a query increases. Thus, GADDI shows
the worst performance in terms of the average elapsed time.

4.3.4 Path Queries
Figure 8(c) and Figure 9(c) display the subgraph isomor-

phism search performance using path queries for the Yeast
dataset. We use the same parameter values as used in sub-
graph queries except for setting r = 1.

The performance results of all the algorithms increase as
the query size increases. In terms of the average elapsed
time, the ranking order is QuickSI, GraphQL, SPath, GADDI,
and VF2. This is because 1) QuickSI generates reasonably
good join orders for path queries, and 2) the cost of a recur-
sive call for QuickSI is the lowest. In terms of the average
elapsed time, QuickSI is 2.53, 3.22, 56.96, and 65.12 times
faster than GraphQL, SPath, GADDI, and VF2 on average.
The VF2 and GADDI algorithms show exponential behav-
iors at query size ten because of the serious problems in their
join order selection.

4.4 Human Dataset
4.4.1 Database Construction
Table 5 shows the database sizes and database building

times for all five algorithms. Note that the number of read
I/Os for all algorithms is 148. SPath was run with k0 = 3 for
subgraph queries. Otherwise, it was run with k0 = 1. The
GADDI was run with d = 1 and k0 = 2. The ratio of the size
of a QuickSI database over a VF2 database is 1.11, which
is smaller than the ratio for the Yeast dataset. This is due
to the smaller number of distinct vertex labels. Since this
dataset has a larger average degree than Yeast, the database
sizes of GraphQL and SPath are 5.27 and 13.58 times larger
than that of VF2. Due to a larger degree than Yeast, the cost
of calculating NDS distances sharply increases, and thus, the
ratio of the building time of GADDI over VF2 accordingly
increases compared with that for Yeast.

4.4.2 Subgraph queries
Figures 10(a) and 11(a) show the results of subgraph iso-

morphism search test using subgraph queries for the Human

dataset. SPath was run with k0 = 3, and GraphQL was run
with r = 4. The GADDI was run with d = 1 and k0 = 2.
Table 5: Database size and construction time for
Human dataset.

Alg. Size(MB) # of total I/Os Time(msec.)

VF2 1.55 349 93
QuickSI 1.72 373 964
GraphQL 8.13 1193 774
SPath(k0=1) 11.28 1596 1669
SPath(k0=3) 17.09 2340 3323
GADDI 4.88 775 624265

In terms of the average elapsed time and the average num-
ber of recursive calls, the performance of all algorithms in-
creases as the query size increases. Although QuickSI shows
the best performance in terms of the average elapsed time
until the query size four, all algorithms except GraphQL fail
to complete the subgraph queries due to their exponential
behaviors at query sizes five, seven, eight, and eight for VF2,
GADDI, QuickSI, and SPath, respectively. This is due to 1)
the increasingly large search space size with increasing query
sizes and 2) the join order selection problem. Note that this
dataset has a higher density and fewer unique vertex labels
than those of Yeast.

4.4.3 Clique and Path Queries
Figures 10(b) and 11(b) show the performance results for

the clique queries. Figures 10(c) and 11(c) show the perfor-
mance results for the path queries. We also use the same
parameter values except for setting r = 1 and k = 1 for
clique queries and setting r = 4 and k = 1 for path queries.

The performance trend of both types of queries for the
Human dataset is similar to that of path queries for the
Yeast dataset. The only notable difference is that, in path
queries, the performance of QuickSI at query size ten is bet-
ter than that at query size nine. This is because QuickSI
fortunately selects better join orders at query size ten.

5. CONCLUSION
In this paper, we provide a fair comparison of subgraph

isomorphism algorithms by using a common framework. We
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Figure 10: Average elapsed time for the Human dataset.
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Figure 11: Average number of recursive calls for the Human dataset.

performed extensive experiments with small and large real
datasets and analyzed performance in depth.

Although there is no single winner for all experiments,
to our surprise, QuickSI, the algorithm designed for han-
dling small graphs, performs the best for many queries for
both small and large data graphs (the AIDS and YEAST
datasets) since the cost of its recursive call is the lowest.
QuickSI, VF2, and GADDI failed to find embeddings in
trees (the NASA set) in a reasonable time, showing expo-
nential behavior due to serious problems in their join order
selection. GADDI shows very bad performance for many
queries tested due to expensive NDS distance calculation
and lowest pruning power. GraphQL is the only algorithm
that completed all queries tested, although it is slower than
QuickSI for most queries. SPath almost performed worse
than GraphQL due to its large SPath neighborhood signa-
ture overhead and the serious problem in its join order selec-
tion. We also note that all existing algorithms had problems
in their join order selections, and signature-based pruning is
only effective for some datasets. This calls for new subgraph
algorithms which exploit both good join order selection and
selective signature-based pruning.

We believe that our community will benefit greatly from
our implementations and new findings. The source code of
all algorithms that we implemented will be released along
with publication of this paper.
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