
Enabling Efficient OS Paging for Main-Memory OLTP
Databases

Radu Stoica

École Polytechnique Fédérale de Lausanne

radu.stoica@epfl.ch

Anastasia Ailamaki

École Polytechnique Fédérale de Lausanne

anastasia.ailamaki@epfl.ch

ABSTRACT
Even though main memory is becoming large enough to fit
most OLTP databases, it may not always be the best option.
OLTP workloads typically exhibit skewed access patterns
where some records are hot (frequently accessed) but many
records are cold (infrequently or never accessed). Therefore,
it is more economical to store the coldest records on a fast
secondary storage device such as a solid-state disk. How-
ever, main-memory DBMS have no knowledge of secondary
storage, while traditional disk-based databases, designed for
workloads where data resides on HDD, introduce too much
overhead for the common case where the working set is mem-
ory resident.

In this paper, we propose a simple and low-overhead tech-
nique that enables main-memory databases to e�ciently mi-
grate cold data to secondary storage by relying on the OS’s
virtual memory paging mechanism. We propose to log ac-
cesses at the tuple level, process the access traces o✏ine
to identify relevant access patterns, and then transparently
re-organize the in-memory data structures to reduce paging
I/O and improve hit rates. The hot/cold data separation
is performed on demand and incrementally through careful
memory management, without any change to the underly-
ing data structures. We validate experimentally the data
re-organization proposal and show that OS paging can be ef-
ficient: a TPC-C database can grow two orders of magnitude
larger than the available memory size without a noticeable
impact on performance.

1. INTRODUCTION
Database systems have been traditionally designed under

the assumption that most data is disk resident and is paged
in and out of memory as needed. However, the drop in
memory prices over the past 30 years led several database
engines to optimize for the case when all data fits in memory.
Examples include both research systems (MonetDB[6], H-
Store[13], Hyper[14], Hyrise [11]) and commercial systems
(Oracle’s TimesTen[2], IBM’s SolidDB [1], VoltDB[4], SAP

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

DaMoN ’13

Copyright 2013 ACM Copyright 2013 ACM 978-1-4503-2196-9/13/06

...$15.00.

Hana[7]). Such systems assume all data resides in RAM
and explicitly eliminate traditional disk optimizations that
are deemed to introduce an unacceptable large overhead.

Today storage technology trends have changed - along
with the large main memory of modern servers, we have
solid-state drives (SSDs) that can support hundreds of thou-
sands of IOPS. In recent years, the capacity improvements of
NAND flash-based devices outpaced DRAM capacity growth,
accompanied by corresponding trends in cost per gigabyte.
In addition, major hardware manufacturers are investing
in competing solid-state technologies such as Phase-Change
Memory.

In OLTP workloads, record accesses tend to be skewed:
some records are ”hot” and accessed frequently (the working
set), others are ”cold”and accessed infrequently. Hot records
should reside in memory to guarantee good performance;
cold records, however, can be moved to cheaper external
solid-state storage.

Ideally, we want a DBMS that: a) has high performance,
characteristic of main-memory databases, when the working
set fits in RAM, and b) the ability of a traditional disk-based
database engine to keep cold data on the larger and cheaper
storage media, while supporting, as e�ciently as possible,
the infrequent cases where data needs to be retrieved from
secondary storage.

There is no straightforward solution as DBMS engines op-
timized for in-memory processing have no knowledge of sec-
ondary storage. Traditional storage optimizations, such as
the bu↵er pool abstraction, the page organization, certain
data structures (e.g. B-Trees), and ARIES-style logging are
explicitly discarded in order to reduce overhead. At the
same time, switching back to a traditional disk-based DBMS
would forfeit the fast processing benefits of main-memory
systems.

In this paper, we take the first step toward enabling a
main-memory database to migrate data to a larger and cheaper
secondary storage. We propose to record accesses during
normal system runtime at the tuple level (possibly using
sampling to reduce overhead) and process the access traces
o↵ the critical path of query execution in order to identify
data worth storing in memory. Based on the access statis-
tics, the relational data structures are re-organized such that
the hot tuples are stored as compactly as possible, which
leads to improved main memory hit rates and to reduced
OS paging I/O. The data re-organization is unintrusive since
only the location of tuples in memory changes, while the
internal pointer structure of existing data-structures and
query execution remain una↵ected. In addition, the data

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160 180 200 220

T
ra

ns
ac

tio
ns

/s
ec

 (1
00

0s
)

Database size (GB)

3GB RAM 18GB RAM 62GB RAM

Start of swapping on FusionIO SSD

Figure 1: VoltDB throughput when paging to a SSD

re-organization is performed incrementally and only when
required by the workload.

We implement the data re-organization proposal in a state-
of-art, open source main-memory database, VoltDB [4]. Our
experimental results show that a TPC-C database can grow
50⇥ larger than the available DRAM memory without a
noticeable impact on performance or latency, and present
micro-benchmark results that indicate that a system can de-
liver reasonable performance even in cases where the work-
ing set does not fully fit in memory and secondary storage
data is frequently accessed.

In this paper we make the following contributions:

1. We profile the performance of a state-of-art main-memory
DBMS and identify its ine�ciencies in moving data to sec-
ondary storage.

2. We propose an unintrusive data re-organization strat-
egy that separates hot from cold data with minimal over-
head and allows the OS to e�ciently page data to a fast
solid-state storage device.

3. We implement the data re-organization technique in a
state-of-art database and show that it can support a TPC-
C dataset that grows 50⇥ bigger than the available physical
memory without a significant impact on throughput or la-
tency.

The remaining of this document is organized as follows.
Section 2 details the motivation for our work; Section 3 de-
scribes the architecture of the data re-organization proposal,
which is validated experimentally in Section 4; Section 5 sur-
veys the related work and, finally, Section 6 concludes.

2. MOTIVATION
Our work is motivated by several considerations: i) by

hardware trends that make storing data on solid-state stor-
age attractive; ii) by the workload characteristics of OLTP
databases; and iii) by the ine�ciencies of existing systems,
either traditional disk-based databases or newer main-memory
optimized DBMS.

2.1 Hardware trends
It is significantly cheaper to store cold data on secondary

storage rather than in DRAM. In previous work [17] we
computed an updated version of the 5-minute rule [10] and
found that it is more economically to store a 200B tuple on a
SSD if it is accessed less than approximately once every 100

DBMS engine

Binary trees

Query Sample accesses

Access logs

1

Hash Indexes Heap files

Network

Storage

Monitoring process
a) Access frequency
b) Memory allocation
c) Misplaced tuples

3 Process access logs

Hot
Cold

 Read optimal tuple
placement

4

Writer thread

2 Write access
logs

Data-structures

5 Re-organization

Insert/delete trx.

Figure 2: System Architecture

minutes. In addition to the price, the maximum memory
capacity of a server or the memory density can both pose
challenges. Today, a high-end workstation can fits at most
4TB of main memory, servers can handle around 256GB of
DRAM per CPU socket, while a 1U rack slot hosts less than
512GB of DRAM.

2.2 Skewed Accesses in OLTP workloads
Real-life transactional workloads typically exhibit consid-

erable access skew. For example, package tracking workloads
for companies such as UPS or FedEx exhibit time-correlated
skew. Records for a new package are frequently updated un-
til delivery, then used for analysis for some time, and after
are accessed only on rare occasions. Another example is
the natural skew found on large e-commerce sites such as
Amazon, where some items are much more popular than
others are or where some users are much more active than
the average. Such skewed accesses may change over time
but typically not very rapidly (the access skews might shift
over days rather than seconds).

2.3 Existing DBMS Architectures

2.3.1 Disk-based DBMS.
One possible option is to use a disk-based database archi-

tecture that optimizes for the case data is on secondary stor-
age. Traditional DBMS pack data in fixed-size pages, use
logical pointers (e.g. page IDs and record o↵sets) that al-
lows the bu↵er pool abstraction to move data between mem-
ory and storage transparently, and have specialized page re-
placement algorithms to maximize hit rates and reduce I/O
latency.

However, given current memory sizes and the lower la-
tency of SSDs compared to HDDs, such optimizations might
not be desirable. Stonebraker et al. [20] introduced a main-
memory database that is two orders of magnitude faster than
a general purpose disk-based DBMS, while Harizopoulos et
al. [12] showed that for transactional workloads the bu↵er
pool introduces a significant amount of CPU overhead: more
than 30% of execution time is wasted due to extra indirec-
tion layer. This overhead does not even include latching
bu↵er pool pages at every tuple access, or the overhead of
maintaining page-level statistics to implement the page re-
placement algorithm.

2.3.2 Default OS paging
At the other extreme, a straightforward way of extend-

ing available memory is to keep main-memory databases
unchanged and simply use the default OS paging. Unfor-
tunately, we find such an approach to cause unpredictable
performance degradation.

We show in Figure 1 the throughput of the VoltDB DBMS
when runing the TPC-C benchmark [3] (please see Section
4 for the detailed experimental setup). The working set
size of the TPC-C benchmark is constant, while the size of
the database grows over time as new records are inserted in
the Order, NewOrder, OrderLine, and History tables. We
vary the amount of physical DRAM available to the OS and
enable swapping to a 160GB Fusion ioDrive PCIe SSD [9].
The scale factor is 16 (the initial database occupies 1.6GB)
and in the beginning all data is memory resident. As the
database size grows, the RAM available is exhausted, and
the OS starts paging virtual memory pages that it deems
cold to the SSD.

Figure 1 shows the trade-o↵ between extending the mem-
ory size of a system by using flash memory and the per-
formance penalty incurred. When extending the memory
budget from 62GB to 220GB (3.5⇥ increase), the through-
put drops by 20%; increasing the main memory from 18GB
to 176GB (9.8⇥ increase), the throughput decreases by 26%;
finally, when extending the memory size from 3GB to 161GB
(53⇥ increase), the throughput penalty is 66%. The results
are sub-optimal as the TPC-C working set fits in memory
even if the database grows. Clearly, the performance impact
of paging is significant and needs consideration.

3. DATA RE-ORGANIZATION
Our data re-organization proposal, as depicted in Figure

2, is composed of five independent steps: First, tuple level
accesses are logged as part of query execution (phase one);
then, the access logs are shipped (phase two) for the process-
ing stage that identifies which tuples are hot or cold (phase
three); finally, the output of the processing stage is propa-
gated back to the database engine (phase four) that performs
the data re-organization when needed (phase five). The rest
of this section details each step of the data re-organization
process.

1 Sample accesses. In the first phase, each worker
thread samples probabilistically tuple accesses and writes
the access records to a dedicated log-structure (a circular
bu↵er). Each worker thread has one such log-structure in
order to avoid any synchronization-related overhead. Time
is split in discreet quanta, each time quantum receiving a
single time stamp to further reduce overhead and reduce
the access log size.

Each access log quantum has the following syntax: <TimeS-
tamp, AccessRecord*>, while an AccessRecord is composed
of <ObjectID, [Key | TupleID], FileO↵set>. The ObjectID
is an identifier that represents the relational object data-
structure containing the tuple (can be either a table or an
index). The next field, [Key | TupleID], identifies the tu-
ple accessed; we use the primary table key or indexing key,
denoted as Key, for this purpose. However, the primary key
can be replaced with the tuple ID in systems that such sup-
port such identificators. The last field, FileO↵set, presents
the memory o↵set of the tuple relative to the beginning
of the relational data-structure. FileO↵set is used during

the processing phase to determine if the location of a tuple
matches its access frequency (i.e. whether the position of a
tuple matches its cold/hot status). The total length of an
AccessRecord is 1B + 4B + 8B = 13B.

A quantum of 1s is used as it is su�ciently fine grained to
di↵erentiate between tuples with di↵erent access frequencies
at the time granularity of interest (as mentioned, a cold
tuple should be moved to a SSD if accessed less than once
every tens to hundreds of minutes). We experimented with
multiple sampling probabilities and decided to use a default
sampling probability of 10% (we log at most 10% of the total
tuple accesses) that o↵ers a good tradeo↵ between logging
overhead and precision.

2 Write access logs. A single dedicated thread writes
the access logs either to a file or to the network. The writer
thread has three functions. Firstly, it decouples transaction
execution from any other I/O or communication overhead.
Secondly, it throttles the rate at which the logs are generated
to insure minimal system interference. If the access logs
are not flushed fast enough and fill up, the backpressure
will cause worker threads to reduce the sampling frequency.
Thirdly, the design allows us to decouple the database engine
from the later processing stage of the access logs.

3 Process access logs. The access traces are processed
o✏ine to identify data placement ine�ciencies. The analy-
sis step takes place ideally on a separate server to avoid
interference with ongoing query execution. The output of
the processing step is: a) a memory budget for each data-
structure (table or index), and b) two lists of hot/cold mis-
placed tuples for each object. A hot misplaced tuple list
identifies which tuples are accessed often enough to justify
storing them in memory and are not yet placed in the hot
memory region of the object, while the cold misplaced tuple
list represents the tuples that are the best candidates for
eviction from the hot memory region of each object.

The access traces are processed as follows:
Step 1 - estimate access frequency. The access frequency

is estimated using a variant of the Exponential Smoothing
algorithm [17], although any other standard algorithms such
as ARC[18], CAR [5], or LRU-K [19] variants can be used.
The advantages of the Exponential Smoothing algorithm
over other frequency estimation algorithms are twofold: i)
it estimates more accurately access frequency, resulting in
higher hit rates, and ii) it is e�cient as it supports paral-
lelization and minimizes the number of access records pro-
cessed (by scanning the access logs in reverse time order).

Step 2 - compute optimal memory allocation. The ac-
cess frequencies alone are not su�cient to decide what data
should be stored in memory – we also need to consider the
size of each tuple to maximize the access density. We use the
average tuple size corresponding to each object to normalize
the tuple access frequency. After the normalization, the hot
tuples of each object can be identified. The memory budget
of each object is simply the number of tuples qualifying as
hot multiplied by the average tuple size.

Step 3 - identify misplaced tuples. Finally, we identify mis-
placed tuples based on the memory allocation of each object.
As mentioned, each tuple access contains the relative mem-
ory o↵set of the tuple. The relational data structures are
allocated contiguous in memory (as described below), thus
we can identify if the access frequency of a tuple matches its
location by simply comparing the tuple’s relative memory
o↵set with the hot memory budget of the relation object.

Cold Data Region

Hot free space list

Grow

Hot Data Region
New inserts

Tuple migration

Shrink/Grow

Cold free space list

(a) Memory allocation strategy

Binary Tree

Data re-organization

7

6

1

2

3

4

5

Initial layout

4

2

3
7

6

5
1

Hot Cold
Initial layout

Hot Cold

Hash Index

Data re-organization

(b) Node re-organization for binary trees and hash indexes

Figure 3: Memory allocation and hot/cold data placement

4 Read optimal tuple placement. A dedicated thread
reads the output of the processing step. It first reads and
sets the target memory budget for each object, then incre-
mentally reads the lists of misplaced tuples for each object
as needed by the tuple re-organization.

5 Re-organization. Each data-structure is allocated
memory sequentially in the virtual address space of the database
process using the facilities of the OS. The memory layout of
a data-structure is presented in Figure 3(a). The beginning
portion of the data file is logically considered “hot” and is
pinned in memory. The rest of the file is left to contend for
system RAM and uses the default OS paging policy. The
OS is left to manage at least 10% of available memory to
insure there is enough memory for other processes.

The tuple re-organization is performed without changing
the pointer structure or record formant of the relational ob-
jects – we change only how memory is allocated as depicted
in Figure 3(b). The memory allocator of each data-structure
has two free-space lists, one for the hot memory region, and
the other for the cold memory region. When inserting, the
data-structure can request either hot or cold memory; when
deleting, memory is reclaimed by comparing the memory o↵-
set with the hot/cold threshold and appending the memory
region to the corresponding free space list. A tuple move-
ment can be logically thought of as a delete operation of the
misplaced tuple followed by its re-insertion in the appropri-
ate memory region.

Overall, the key insights of our technique are as follows: i)
we decouple, to the extent possible, all data re-organization
operations (logging, analysis, re-organization) from the crit-
ical path of query execution, ii) we optimize data locality
such that hot tuples are stored compactly in a contiguous
memory region, and iii) we restrict OS paging decisions by
preventing code memory sections and the hot data regions
of relational objects from being paged out.

4. EVALUATION
In this section, we evaluate experimentally how e↵ective

is the data re-organization technique in reducing OS pag-
ing overhead. We first demonstrate the end-to-end perfor-
mance of a main-memory DBMS when running a TPC-C
benchmark where the majority of the database resides on
an SSD. We show that the data re-organization strategy and
paging-related I/O have little impact on the overall system
throughput or latency even when the database size outgrows
the RAM size by a factor of more than 50⇥. As a TPC-C
database has a predictable working set and data growth, we
then explore the impact of a full workload change on the
overall system performance through a micro-benchmark.

4.1 Experimental Setup
DBMS. We use the open-source commercial VoltDB [4]

DBMS (version 2.7) running on Linux to implement the data
re-organization technique. VoltDB uses data partitioning to
handle concurrency and insure scaling with the number of
cores. Each worker thread has its own set of data structures
(both tables and indexes) that it can access independently
of the other worker threads. Thus, each logical table is com-
posed of several physical tables, each worker thread being
assigned one such physical table. In all experiments, the
database is partitioned to match the number of available
cores.

Memory management. The core VoltDB functional-
ity is implemented in C++, while the front-end (network
connectivity, serialization of results, query plan generation,
DBMS API) are implemented in Java. The memory over-
head of the front-end is independent of the database size
and we found it crucial to keep memory resident the front-
end related objects and code. We pin in memory all code
mappings, front-end data structures, and Java heap and al-
low only the large relational data-structures (tables, hash
and binary tree indexes) to be paged out to the SSD. We
track which address ranges correspond to code sections or to
other data-structures by examining the /proc process infor-
mation pseudo-file system. For relational objects, we allo-
cate memory sequentially in the virtual address space of the
database process by using the mmap()-related system calls
and pin/unpin pages in memory using themlock()/munlock()
system calls.

We note that the VoltDB core engine already optimizes
memory allocation. VoltDB allocates memory in large con-
tiguous chunks for each object in order to reduce malloc()
call overhead and reduce memory fragmentation. Each re-
lational data-structure has its own memory allocation pool
and memory chunks never contain data from more than one
table or index, which insures that virtual memory pages con-
tain data of the same type. Therefore, the performance ben-
efits of the data re-organization stem only from taking into
account access frequency rather than from other memory
management optimizations.

Query execution. Transactions run as stored proce-
dures (no query optimization is performed at runtime), with
query execution and result externalization being handled by
separate threads. The benchmark client, responsible for sub-
mitting transactions, is placed on a di↵erent machine on the
same 10Gb local network. For throughput results, we make
sure the server is fully loaded by maintaining su�cient in-
flight transactions and measure throughput every second in
all experiments. The network bandwidth is never saturated
and the network latency does not a↵ect any throughput re-

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160

T
ra

ns
ac

tio
ns

/s
ec

 (
10

00
s)

Database size (GB)

In-memory Data-reorganization Default paging

Database size > physical RAM

Figure 4: TPC-C throughput.

Trx.Name
Server latency(µs) Client latency(µs)
No Paging Paging No Paging Paging
avg � avg � avg � avg �

NewOrder 283 135 318 182 3270 5430 3301 5509
OrderStatus 82 26 126 58 2950 5486 2990 5499
Payment 149 52 183 107 3027 5458 3094 5492
Delivery 314 152 347 214 3317 5331 3358 5513
StockLevel 797 243 898 348 3531 5372 3611 5570

avg = average, � = standard deviation

Table 1: TPC-C transaction latency

sults due to the batch-style processing architecture.
Hardware. In all our experiments we use a 4 socket

Quad-Core AMD Opteron (16 cores in total) equipped with
64GB of physical DRAM (the amount of memory visible to
the OS varies according to each experiment). The paging de-
vice is a single 160GB FusionIO PCIe SSD that can support,
according to our measurements, up to 65,000 4kB random
read IOPS and between 20,000 (long term throughput) and
75,000 (peak throughput) 4kB random write IOPS.

4.2 TPC-C Results
We use the TPC-C benchmark [3] to validate the overall

e�ciency of the data re-organization strategy. The scaling
factor is set to 16 to match the number of cores and the
database is partitioned on the warehouse ID (standard TPC-
C partitioning), where each worker thread is responsible for
executing all transactions related to its given warehouse. To
maximize the number of growing tables and the database
growing speed, we disable for the Delivery transaction the
deletions of fulfilled orders from the NewOrder table.

4.2.1 Throughput
We measure the TPC-C transaction execution throughput

in three scenarios. In the first case, we run the unmodified
VoltDB database with all of the 64GB of RAM available
to the OS (⇠62GB were useful for actual data storage). In
the second scenario, we run TPC-C on the same unmodified
engine but restrict the amount of physical memory to 5GB
(⇠3GB useful memory) and turn on swapping to the SSD.
In the third case, we run VoltDB modified with our data re-
organization technique and maintain the same memory con-
figuration (⇠3GB of useful memory); the memory mapped
data files are backed directly by the SSD without an in-
between file-system.

As shown in Figure 4, the hot/cold data separation stabi-
lizes throughput within 7% of the in-memory performance,
although the actual data stored grows 50⇥ larger than the
amount of RAM available. On the other hand, the through-
put of the unmodified engine drops by 66% when swapping
to the SSD.

4.2.2 Latency
Paging potentially introduces I/O operations in the criti-

cal path of a transaction and a relevant question is how SSD
I/O changes transaction latency. We repeat the same TPC-
C experiments, only this time we throttle the maximum

number of transaction at 50% of the maximum through-
put (to prevent transaction latency from including queuing
times).

We show in Table 1 the transaction latency as measured
from both the server- and client- side and compute for each
transaction its standard deviation. As shown, paging in-
creases the average transaction latency by ⇠50µs and its
standard deviation by ⇠100µs. However, the variability in-
crease is small relative to the total transaction execution
time and becomes insignificant from the client perspective.
The transaction latency, as experienced by the client, is
dominated not by the actual transaction execution but rather
by the software overhead of submitting a transaction to the
server, by the overhead of the network I/O, and finally by
transaction management on the server side. To put the val-
ues into perspective, the advertised I/O latency for the Fu-
sion ioDrive SSD is 25µs and the network latency (round-
trip wire latency plus switching) is ⇠30µs.

4.3 Response to workload changes
The TPC-C working set size is fixed (the size of the hot

data does not change over time) and only 4 tables out of 9
are growing. In addition, accesses show a predictable time
correlation: the newest tuples in the growing tables are also
the hottest. We expect that in most workloads such a time
correlation exits, nonetheless we want to understand the sta-
bility of the system if the working set shifts in unpredictable
ways or if the working set does not fully fit in RAM.

To answer these questions, we develop a micro-benchmark
with a dual purpose: to measure performance for the case
where the working set does not fully fit in memory, and to
test how fast the system reacts to workload changes. We
generate a database composed of 108 200B tuples indexed
by a 4B integer primary key. The total memory footprint of
the VoltDB DBMS (the table, index, plus VoltDB memory
overhead) is 26.2GB. The database size is constant and the
available memory is to 5GB (physical memory is ⇠20% of
the total database size). We execute a single query that
retrieves single tuples of the form:

SELECT * FROM R WHERE PK = <ID> ;

The ID values for the select query are generated according
to a Zipfian distribution with skew factor 1 (80% of accesses
target 20% of data). To measure how fast the system adapts
to a workload change, we randomize the set of hot tuples

while preserving the same access distribution and measure
how throughput varies over time.

We show in Figure 5 the impact of the working set shift on
the throughput of the system. We distinguish five distinct
phases. The initial steady-state (phase 1) represents the
long term behavior of the system when the table and index
data structures are fully optimized according to the access
pattern. Once the workload shift occurs, the performance of
the system is immediately a↵ected (phase 2) and drops by
96% from 75,000 to 4,500 queries/sec. The OS page replace-
ment algorithm first reacts to the workload shift (phase 3)
as the hottest pages from the cold file portions are identified
and bu↵ered in memory. As the access distribution contains
significant skew, even the small memory budget available to
the OS is enough to capture the most frequently accessed
pages. As a result, throughput improves to around 25,000
queries per second. The throughput remains stable (phase
4) until the data re-organization starts to relocate tuples
(with the configurable delay of 60s). Once, the data relo-
cation commences, the throughput quickly stabilizes to the
original level of 65,000 queries/sec (phase 5).

We note that the unmodified VoltDB system is unable to
execute any queries. The high memory pressure combined
with the lack of a clear working set cause a high OS paging
activity that renders the database unresponsive.

5. RELATED WORK
There has been much work on exploring OLTP engine

architectures optimized for main-memory access. Research
prototypes include [6, 13, 14, 11, 15] and already there are a
multitude of commercial main-memory o↵erings [2, 1, 4, 7].
Such engines assume that the entire database fits in memory,
completely dropping the concept of secondary storage. We
diverge from the memory-only philosophy by considering a
scenario where a main-memory database may migrate cold
data to secondary storage by using OS paging and investi-
gate how to e�ciently separate hot from cold data in order
to improve memory hit rate and reduce I/O.

The work closest to ours is HyPer’s cold-data management
scheme [8]. In Hyper, hot transactional data is identified
and separated from cold data that might be only referenced
by analytical queries. Once identified and separated, the
cold data is compressed to reduce its memory footprint in
a read-optimized format suitable for the analytical queries.
However, Hyper’s data re-organization scheme has a di↵er-
ent goal, namely to reduce the overhead of creating new
OLAP threads. This is achieved by minimizing the number
of pages that are actively modified by the OLTP threads and
by compressing and storing the OLAP-only data on large
virtual memory pages. Hyper also takes a di↵erent approach
for implementing the data re-organization: it keeps access
statistics at a larger granularity (at the VM page level) by
overriding the OS’ virtual memory infrastructure, and uses
an online heuristic to separate hot from cold data as an in-
tegral part of query execution.

Compression techniques can reduce the memory footprint
of a database and can help in supporting larger in-memory
datasets. Compression, however, is an orthogonal topic.
Compressing relational data, without changing the tuple or-
der inside the underlying data-structure, does not create a
separation of cold from hot data, but rather can be viewed
as a technique for expanding the available system memory.
The incentives of separating data based on the access fre-

0
10
20
30
40
50
60
70
80

0 30 60 90 120 150 180

Q
ue

ri
es

 /s
ec

 (1
00

0s
)

Time(s)

In-memory Data-reorganization Uniform accesses

1

2 3

4

5

Figure 5: Throughput for a shifting Zipfian working set.

quency remain the same. In addition, if data is stored based
on its access frequency, the hot and cold datasets can be
compressed through di↵erent techniques. A similar idea is
used in [8] where only the cold data is compressed.

6. CONCLUSIONS
Our data re-organization proposal is generally applicable

as it does not change the pointer structure of the physi-
cal data-structures, or the concurrency mechanism of the
database engine. The hot/cold data separation can be sim-
ply thought of a better way of allocating memory by taking
into account access frequency, while the tuple re-organization
can be modeled as short search/delete/insert transaction of
individual tuples. At the same time, our proposal can be
suboptimal: some data structures maintain invariants that
might force accessing cold data along the way of retrieving
hot tuples. For example, the hash index proposed in [16]
uses linear hashing, i.e. maintains tuples sorted on keys in-
side the hash buckets to allow incremental expansion of the
hash index. Our data re-organization technique cannot dis-
tinguish between logically cold and hot data as it relies on
physical accesses; cold tuples in a hash bucket accessed on
the way to the target hot tuple are considered as hot as the
target tuple. Possible solutions for such cases could be either
to change the original data-structures or to use two di↵erent
data stores, one data store for the hot and the other store for
the cold data. Unfortunately, both approaches have deeper
architectural implications.

We proposed a simple solution for a main-memory database
to e�ciently page cold data to secondary storage. Our tech-
nique logs accesses at the tuple level, processes the access
logs o✏ine to identify hot data and re-organizes accordingly
the in-memory data structures to reduce paging I/O and
improve memory hit rates. The hot/cold data separation
is performed on demand and incrementally through careful
memory management, without any change to the underly-
ing data structures. Our experimental results show that it is
feasible to rely on the OS virtual memory paging mechanism
to move data between memory and secondary storage even if
the database size grows much larger than the main memory.
In addition, the hot/cold data re-organization o↵ers reason-
able performance even in the cases where the working set
does not fully fit in memory and can adapt in a time frame
of a few minutes to full workload shifts.

7. REFERENCES
[1] IBM SolidDB. Available: http://www.ibm.com.
[2] Oracle TimesTen In-Memory Database. Information

available at: http://www.oracle.com.
[3] Transaction Processing Performance Council TPC-C

Standard Specification. Available:
http://www.tpc.org/tpcc/spec/tpcc_current.pdf .

[4] VoltDB In-Memory Database. Available:
http://www.voltdb.com.

[5] S. Bansal and D. S. Modha. CAR: Clock with
adaptive replacement. In FAST, 2004.

[6] P. A. Boncz, M. Zukowski, and N. Nes.
MonetDB/X100: Hyper-pipelining query execution. In
CIDR, 2005.

[7] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd,
S. Sigg, and W. Lehner. SAP HANA database: data
management for modern business applications. ACM
Sigmod Record, 2012.

[8] F. Funke, A. Kemper, and T. Neumann. Compacting
transactional data in hybrid OLTP & OLAP
databases. In VLDB, 2012.

[9] Fusion IO. Technical specifications. Available:
http://www.fusionio.com/PDFs/Fusion%20Specsheet.pdf.

[10] J. Gray and F. Putzolu. The 5 minute rule for trading
memory for disc accesses and the 10 byte rule for
trading memory for CPU time. 1987.

[11] M. Grund, J. Krüger, H. Plattner, A. Zeier,
P. Cudre-Mauroux, and S. Madden. Hyrise: a main
memory hybrid storage engine. In VLDB, 2010.

[12] S. Harizopoulos, D. J. Abadi, S. Madden, and
M. Stonebraker. OLTP through the looking glass, and

what we found there. In SIGMOD, 2008.
[13] R. Kallman, H. Kimura, J. Natkins, A. Pavlo,

A. Rasin, S. Zdonik, E. P. Jones, S. Madden,
M. Stonebraker, Y. Zhang, et al. H-store: a
high-performance, distributed main memory
transaction processing system. In VLDB, 2008.

[14] A. Kemper and T. Neumann. HyPer: A hybrid
OLTP&OLAP main memory database system based
on virtual memory snapshots. In ICDE, 2011.

[15] P.-Å. Larson, S. Blanas, C. Diaconu, C. Freedman,
J. M. Patel, and M. Zwilling. High-performance
concurrency control mechanisms for main-memory
databases. In VLDB, 2011.

[16] P.-Å. Larson, S. Blanas, C. Diaconu, C. Freedman,
J. M. Patel, and M. Zwilling. High-performance
concurrency control mechanisms for main-memory
databases. In VLDB, 2011.

[17] J. Levandoski, P.-A. Larson, and R. Stoica. Identifying
Hot and Cold data in Main-Memory Databases. In
ICDE, 2013.

[18] N. Megiddo and D. S. Modha. ARC: A self-tuning,
low overhead replacement cache. In FAST, 2003.

[19] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The
LRU-K page replacement algorithm for database disk
bu↵ering. 1993.

[20] M. Stonebraker, S. Madden, D. J. Abadi,
S. Harizopoulos, N. Hachem, and P. Helland. The end
of an architectural era:(it’s time for a complete
rewrite). In VLDB, 2007.

