
Exploring Controlled RDF Distribution
Raqueline R. M. Penteado

Universidade Estadual de Maringá
Maringá-PR, Brazil 87020-900

Email: raque@din.uem.br

Rebeca Schroeder
Universidade do Estado de Santa Catarina

Joinville-SC, Brazil 89219-710
Email: rebeca.schroeder@udesc.br

Carmem S. Hara
Universidade Federal do Paraná
Curitiba-PR, Brazil 81531-990

Email: carmem@inf.ufpr.br

Abstract—RDF datasets have increased rapidly over the last
few years. In order to process SPARQL queries on these large
datasets, much effort has been spent on developing horizontally
scalable techniques, which involve data partitioning and parallel
query processing. While distribution may provide storage scala-
bility, it may also incur high communication costs for processing
queries. In this paper, we present a parallel and distributed
query processing approach that explores the existence of data
allocation patterns, provided by a controlled data distribution,
that determine how RDF triples should be grouped and stored
on the same server. Fragments of the RDF datastore follow
a given allocation pattern and correspond also to units of
communication among servers. Based on this distribution model,
we define two communication strategies for query processing:
get-frag, which requests remote servers to send fragments that
contain data required by a query, and send-result, which forwards
intermediate results. These strategies are combined on a method,
called 2ways, that chooses the adequate communication strategy
whenever queries traverse fragment boundaries. We provide
a cost function used to determine this choice and present
experimental results. They show that our proposed technique
effectively reduces the communication cost and improves the
response time for processing SPARQL queries on a distributed
RDF datastore.

I. INTRODUCTION

In the last decade, the Web has become a major source
for knowledge acquisition of the contemporary society. The
Semantic Web has been proposed as a new form to publish
Web data in order to make them meaningful to computers.
RDF (Resource Description Framework) is the standard model
of the Semantic Web1. An RDF dataset is a set of triples
(s, p, o), representing that a subject s has a property p with
object (or value) o. Since o can be the subject of another
triple, an RDF dataset can be viewed as a directed labeled
graph where subjects and objects are vertices connected by
their properties. The flexibility and simplicity of the model
motivated the proliferation of RDF datasets such as DBPedia,
a knowledge base extracted from Wikipedia. According to
the W3C consortium, some commercial datasets have already
reached the size of 1 trillion triples2. Efficient query processing
on such huge datasets is a big challenge for existing RDF data
management systems (RDF-DMSs).

Some RDF-DMSs adopt a centralized storage approach,
such as [1] and [2]. However, they lack horizontal scalability,

1https://www.w3.org/TR/rdf-primer/
2http://www.w3.org/wiki / LargeTripleStores

and systems with distributed storage have been proposed, such
as [3], [4], [5] and [6]. In these systems, both data and queries
can be distributed among servers in order to promote dis-
tributed and parallel query processing. Distributed processing
implies communication costs, since data involved in a query
may be spread among multiple servers. Different methods
of data distribution have been proposed in the literature to
minimize this cost, based on workload [7], query patterns [8],
and graph partition algorithms [3].

In this paper, we propose a distributed query processing
approach that minimizes the communication overhead by
exploring controlled fragmentation and allocation strategies,
such as those proposed in [7] and [8]. More specifically,
we propose a query optimization strategy that explores the
information on how the RDF dataset is partitioned in order
to generate a query execution plan and choose between two
communication models, which we denote as get-frag and
send-result. Intuitively, given that the dataset is partitioned
into fragments, whenever a query involves data that is not
locally stored, we consider two ways to continue the execution:
request the required data from another server (get-frag) or
send the intermediate results to other servers (send-result). The
choice of the strategy may depend on the number of messages
and the volume of data to be transmitted.

To illustrate these ideas, consider the RDF dataset repre-
sented as a graph in Figure 1(a). Observe that it is distributed
over five servers (V, X, Y, W and Z), and dashed rectangles
denote fragments. Note also that fragments have been created
following a pattern. That is, they follow a controlled data
distribution method. In this example, there are four patterns,
PaProducer, PaProduct, PaOffer and PaPerson (as illustrated
in the RDF structure graph of Figure 1(b)). The dataset
contains five fragments of PaOffer, five fragments of PaPer-
son, one fragment of PaProducer and one of PaProduct. In
our setting, a fragment determines both co-allocation of its
components and also a transmission unit among servers.

Now consider the SPARQL query in Figure 2(a) for re-
trieving data related to offers with value < 60, 000. For these
offers, the query returns the names of their products, buyers
and buyers’ friends. The fragments involved in the query are
determined by searching for the required properties inside
patterns of the RDF structure graph. Consider a query plan that
follows the order defined by the query, starting with pattern
PaProduct (containing property name), traversing to pattern
PaOffer to obtain the offer value and following twice pattern978-1-5090-1445-3/16$31.00 c© 2016 IEEE (CloudCom’16)

v4 v5

PaProduct

valuename
v3

v1
name

parentOf

datevalue

PaOffer
v6

name
v9

PaPerson

parentOf

name

Server W

v7

is_made

PaPerson_1

PaPerson_5

PaPerson_4

v10

v2

ex
ec

ut
io

n
pl

an
/

re
su

lts

Cluster
Server YServer X

PaOffer_1 PaOffer_2
 47000

PaProduct_1

Server Z

(a)

PaProducer_1
 49000 “15/5/7”

PaOffer_3

Master

requisition/
final result

 48000“15/4/8”

“Linea” 51000

name value

“Fiat”

name

Producer1 Offer1

date value

“15/5/6”

Offer2
date value

Offer3
date value

Product1

PaOffer_4

“16/2/3” 56000

date value
Offer4

PaOffer_5

“15/6/5” 59000

date value
Offer5

offers

(b)

v8

PaProducer

is_made

offers
friendOf

“John”
name

Person6
“Peter”

name

Server V

is
_b

ou
gh

t

fri
en

dO
f

fri
en

dO
f

PaPerson_2

“James”

name
Person2

“Michel”

PaPerson_3

name
Person3

“Mary”

name
Person4

“Peter”

Person5

is
_b
ou

gh
t

offers
offers

offers

of
fe

rs

fri
en

dO
f

fri
en

dO
f

Person1

is_bought

is_bought

Fig. 1: (a) RDF graph; (b) RDF structure graph

PaPerson to obtain the buyer and his/her friends. To execute
the query, the plan is sent to all servers to be processed in
parallel, starting with locally stored fragments of PaProduct.
However, in this particular dataset, only server X contains a
fragment of PaProduct. From this fragment the name of the
product (“Linea”) is extracted. In order to continue the query
processing, fragments of PaOffer stored on servers W and Z
are required. At this point, server X may choose between
two communication strategies, namely send-result and get-
frag. In this case, there is a single intermediate result to
be sent, and five PaOffer fragments to be retrieved. Thus,
server X chooses strategy send-result, and forwards the product
name with some associated data to servers W and Z, which in
turn continue the query execution in parallel. Both servers,
after processing PaOffer fragments, realize that they are from
the same PaPerson fragment, which is located on server Y.
Thus, each server should choose a communication strategy to
continue. In this case, the size of the intermediate results is
larger than the single PaPerson fragment and thus both servers
choose the get-frag strategy, requesting server Y to send the
required fragment. Finally, both servers processes the fragment
PaPerson 1 and choose the send-result strategy to forward
their intermediary results to server V . This strategy is chosen
because the size of the four fragments of PaPerson stored on
V is larger than the intermediary results on both servers. When
finishing the execution, V sends the final results to the master
server, that is, the server to which the query has been initially
submitted.

We have implemented a SPARQL query processing system
based on a graph exploration algorithm and the two com-
munication strategies. Our experimental study shows that the
combination of these strategies, which we call 2ways, presents
better performance than each strategy considered alone. To
the best of our knowledge, this is the first distributed query
execution model that combines more than one communication
strategy. The rest of this paper is organized as follows. In Sec-
tion II we discuss related work. Section III introduces the basic
concepts related to this work. Our query processing approach
is presented at Section IV. In Section V we experimentally
investigate the impact of the 2ways strategy and conclude in
Section VI.

II. RELATED WORK

The distributed execution of SPARQL queries is a three-
fold problem involving query processing, query planning and
communication. Regarding processing, a traditional approach
for speeding up queries consists of creating indexes on RDF
triple elements (subject, predicate, object). Works such as
chameleon-db [9] and Triad [6] improve query performance
classifying and indexing data fragments in order to prune RDF
triples that cannot contribute to the results of a given SPARQL
query. Our approach indexes data fragments exploring the
pattern-based data distribution model.

With respect to planning, in distributed storage systems,
correlated data should ideally be allocated in the same server
in order to avoid data exchange at query time. When the
distribution model is known, query optimizers may gener-
ate plans accordingly. Systems such as RAPID+ [10], [11],
SHAPE [12] and AdPart [13] adopt data distribution patterns
based on hash partitioning on the subject, predicate and/or
object. More complex graph structures are considered by graph
partitioners in [3], Warp [14], CliqueSquare [15] and [16].
In this case, graph cut algorithms define partitions solely
based on graph properties. In addition, systems such as [3],
[12], [14] and [13] adopt data replication methods to extend
their patterns and maximize processing locality on servers.
The query optimization method proposed in this paper is
orthogonal to the partition model, as long as the structural
summarization of the data used to group them on the same
server is provided.

Different approaches have been proposed to distributed
SPARQL query processing. Regarding the communication
strategy, send-result is used by the majority of RDF sys-
tems. Considering the works cited above, [10], [15] and [16]
adopt MapReduce on their computation model [17]. Given a
query, reducer jobs receive and process intermediary results
generated by mapper jobs. [3], [12] and [14] adopt hybrid
processing approaches where reducer jobs process intermedi-
ary results generated by local query processors. Conversely,
[13] adopt an owner processing approach where each server
executes entire query plans asking intermediary results of
subqueries to others servers. To minimize their communication

SELECT ?nameProduct, ?namePerson,
?nameFriend
WHERE {
 ?product name ?nameProduct .
 ?offer offers ?product .
 ?offer value ?valueOffer .
 ?offer is_bought ?person .
 ?person name ?namePerson .
 ?person friendOf ?friend .
 ?friend name ?nameFriend .
 FILTER (valueOffer < 60000)
}

S = [
 s1: ((?product, name, ?nameProduct), out, PaProduct, 1, { }),
 s2: ((?offer, offers, ?product), in, PaProduct, 1, { }),
 s3: ((?offer, value, ?valueOffer), out, PaOffer, 2,
 {(?valueOffer<60000)}),
 s4: ((?offer, is_bought, ?person), out, PaOffer, 2, { }),
 s5: ((?person, name, ?namePerson), out, PaPerson, 3, { }),
 s6: ((?person, friendOf, ?friend), out, PaPerson, 3, { }),
 s7: ((?friend, name, ?nameFriend), out, PaPerson, 4, { })
]

(b) (c)

?valueOffer is_bought

?nameProduct

?product

value
?offer

?namePerson

?person

name
offers

name

[<60000]

friendOf

?nameFriend

?friend
name

Type:PaProduct
Id:1

Type:PaOffer
Id:2

Type:PaPerson
Id:3

Type:PaPerson
Id:4

(a)

Fig. 2: (a) SPARQL query; (b) Query graph; (c) Sequence of mQS

costs, these systems use different techniques to reduce the data
volume exchanged in the network. For instance, the replication
methods proposed in [14] and [13] dynamically adapt their
allocation patterns based on query workloads. The communi-
cation model adopted by MAPSIN [11] is similar to the get-
frag strategy. MAPSIN is a framework that aims at reducing
the communication cost of MapReduce jobs executing map-
side joins. To this end, each server locally processes triple sets
retrieved from the other servers at query time. Works such
as [18] and [19] consider that data fragments are retrieved
from federated databases by clients (requesters), distributing
the execution load among the clients.

Our processing approach defines the 2ways method which
provides the ability to choose between two strategies at query
time. This choice depends on the amount of data involved.
Such flexibility is not found in any other related work. The
results in Section V show that 2ways presents better perfor-
mance than each strategy considered alone.

III. PRELIMINARIES

This section presents basic definitions used throughout the
paper. An RDF dataset is a set of triples (subject, property,
object), which can be viewed as a directed labeled graph where
subjects and objects are vertices connected by their properties.
In this work, we define an RDF graph GD as a set of vertices
with their adjacency list. That is, each vertex v is defined by
a tuple (uri,val,in,out), where: uri(v) is the vertex’s unique
identifier, val(v) is a literal value, in(v) is the set of incident
edges in v, and out(v) is the set of outgoing edges from v. In
the RDF graph of Figure 1(a), vertices in PaProducer 1 are
define as: Producer1 = (uri: “http://example”, val: undefined,
in:{(is made, Product1)}, out: {(name, vFiat)}), and vFiat =
(uri: undefined, val: “Fiat”, in:{(name, Producer1)}, out:{}).

We consider a controlled data distribution of the RDF graph,
which has been partitioned into fragments of a given structure.
Although some RDF datasets are schema-free, [20] shows
that a large number of real datasets have regular structures.
Our approach targets these datasets. More specifically, we
consider that an RDF structure graph GS = (VS , ES) has
been extracted from the RDF graph. We apply a technique
similar to the one proposed in [20] in our experiments, which
is based on the concept of characteristic sets and ensures that
triples that share the same subject are allocated on the same

server. However, our query processing model can be applied to
any distribution model that fragments/categorizes data through
predefined patterns. Consider again the RDF graph GD in
Figure 1(a). The RDF structure graph in Figure 1(b) models
GD, and there is a total mapping from nodes in GD to VS . For
example, Producer1 7→ v1, and we say that type(Producer1)
= v1.

A partition P of the RDF structure graph GS defines
disjoint set of (connected) vertices in VS , which we call
allocation patterns (PAs). PAs are used to partition an RDF
graph GD into fragments that follow their structure, as
illustrated in Figure 1(b). Allocation patterns define storage
co-allocation and communication units. That is, vertices in
GD that belong to the same fragment are allocated in the
same server and any communication between servers carries
along all vertices in a fragment. We define a function Pa
mapping VS to P , and thus Pa(v1) = PaProducer. Figure
1(b) shows four PAs. As an example, PaProducer = {v1,
v2}. Observe that edges in GS can connect vertices in the
same PA or in distinct PAs. We call the first as an intra-PA
property (I) and the latter as an inter-PA property (E). In our
running example, PaPerson = {v9,v10}, where v9 = (in :
{(is bought, v6, E), (parentOf, v9, I), (friendOf, v9, E)},
out : {(name, v10, I), (parentOf, v9, I), (friendOf, v9,
E)}). Intuitively this PA defines that persons in the same
family are grouped in the same fragment, while offers
and friends are stored in distinct fragments, as shown in
Figure 1(a).

We adopt a SPARQL fragment with the operators select,
filter and concatenation via a point symbol, as illustrated in
Figure 2(a). Queries of this form can be represented as a query
graph GQ = (VQ, EQ, F, P), where VQ is a set of vertices
that correspond to variables, EQ is a set of directed labeled
edges, F is a set of filters, and P are the projection variables
on the select clause. Figure 2(b) shows the query graph that
corresponds to the query in Figure 2(a). Observe that although
in the example the query is represented as a tree, cycles are
admitted. However, we only consider connected query graphs.

SPARQL query processing can be transformed to a problem
of subgraph matching where subgraphs of GD that are homo-
morphic to GQ are retrieved. That is, given that in GQ pairs
of vertices (u, v) are connected by property p – (u, v, p) ∈
EQ – and ED connects vertices in GD, the homomorphism

is defined as a function f such that (p, f(v)) is in the set
of outgoing edges of f(u) whenever (u, v, p) ∈ EQ. Our
distributed query processing approach is a variation of the
subgraph isomorphism algorithm proposed in [21]. It is a
backtracking algorithm which finds solutions by incrementing
partial solutions or abandoning them when it determines they
cannot be completed [22].

IV. QUERY PROCESSING APPROACH

The approach proposed in this paper considers a shared-
nothing Master-Slave architecture. The master server receives
and analyses query requisitions, generates execution plans and
requires slaves in a cluster to execute the plan. All slaves
start to process the plan in parallel with their local data.
When the query requires data stored on remote servers, a
communication with each of them is started following one
of the strategies proposed in our model: get-frag or send-
result. This architecture follows the inter-node parallelism with
asynchronous BSP (Bulk Synchronous Parallel) computation
model, similar to [23]. In this model, each server executes in
parallel the same query plan, without requiring synchronism
among servers for transitions between steps. Our processing
model is divided in query planning and execution.

A. Planning

Given that our model is based on graph exploration, a query
plan determines in which order triple patterns in a query will
be traversed on an RDF graph. Our approach explores the
controlled distribution storage model for minimizing inter-
server communication. More specifically, given that nodes in
the same allocation pattern (PA) are guaranteed to be stored
on the same server, the query plan explores intra-PA properties
before traversing inter-PA properties.

The RDF structure and allocation patterns are used to
reduce the search space for entry points in the RDF graph
for processing a query. Recall that each vertex in the RDF
structure belongs to a single allocation pattern. Thus, by
matching the query graph with the RDF structure, we are able
to determine which patterns are required for processing the
query and thus reduce the search space to only fragments of
these patterns. To do so, we adopt a two steps process. In the
first step, a graph exploration algorithm finds subgraphs of the
RDF structure GS that is homomorphic to the query graph GQ.
Although graph matching has exponential time complexity, in
practice, query graphs are usually small and RDF structures
are much smaller than the RDF dataset itself. The result is a set
of mappings MQS from VQ to nodes in VS . Considering again
the query graph in Figure 2(a), the bolded edges in Figure
1(b) highlight its homomorphic subgraph in GS . Observe that
in general, there may exist multiple resulting mappings. For
example, the query (SELECT ?nameAll WHERE {?x name
?nameAll.}) finds three homomorphic subgraphs in GS in
Figure 1(b). For each such homomorphism, we build a query
plan, and the execution of a query is defined as the union
of the results generated by these set of query plans. Thus,
for the second step, we detail how query plans are generated

for each mapping mQS ∈ MQS . Initially, the query graph
is partitioned into PA occurrences, based on mQS as follows.
PA occurrences are defined as the largest connected subgraphs
(VPA, EPA) of VQ such that all nodes in VPA are mapped to
nodes in the same PA and they are connected only by intra-
PA properties. As an example, Figure 2(b) shows the four PA
occurrences of the query in Figure 2(a). Each PA occurrence
oc has a type, consisting of the PA to which all nodes in oc are
mapped to, and is associated with a unique identifier id(oc).

PA occurrences are used to generate a linear query plan
in which nodes in the same allocation pattern are visited
successively, before moving to other patterns. Formally, given
a query graph GQ = (VQ, EQ, F, P), and a structure graph
GS , the result of the query plan generator for a mapping mQS

is a linear graph traversal sequence S = [s1, . . . , sn], such
that each step si of the traversal is a tuple (a, dir, pat, id, f),
where: (1) a is a triple pattern (s, p, o) ∈ EQ, (2) dir ∈
{in, out}; if dir = out the traversal is from the subject s to
the object oc, and we define source(si) = s, and target(si)= o.
Conversely, if dir = in the traversal is from the object oc to
subject s, and we define source(si)= o, and target(si)= s;
(3) pat is the type of the PA occurrence which contains the
triple pattern (s, p, o); (4) id is a unique identifier of a PA
occurrence. Here, we say that all steps with the same id
compose a PA traversal. (5) f is a set of filters defined on
target. Given a query plan S, the source of the first step in
the sequence defines the graph initial point of exploration.
Consider again the example in Figure 2(b). A possible plan
traversal sequence consists of the steps shown in Figure 2(c),
where ?product is the initial point of exploration.

We say that a traversal sequence S is valid with respect
to a graph query GQ = (VQ, EQ, F, P), the structure graph
GS , and a mapping mQS if it satisfies the following condi-
tions: (C1) it processes GQ, that is,

⋃
s∈S{s.a} = Eq and

|S| = |Eq|; (C2) for every step sj , 2 <= j <= |S|, if
source(sj) = v then there exists a step si, i < j such that
v =source(si) or v =target(si); (C3) for any pair of step si,
sj , i < j, if id(si)=id(sj) then for every step sk, i < k < j,
id(sk)=id(si); (C4) for every step si, if source(si)=v and v
is a vertex in the PA occurrence oc then id(si) = id(oc) and
pat(si) = type(o). The condition C1 requires that all steps of
S are executed. The condition C2 requires that starting from
the initial points of exploration every step traverses an edge
from vertices obtained in previous steps. The condition C3
requires traversals inside each pattern to be grouped in the
sequence. The condition C4 requires that all PA occurrences
have the correct patterns and steps.

Note that the order in which PAs are explored impacts query
processing performance. However, determining an optimized
PA exploration order is outside the scope of this work. Our
experimental results show that 2ways is effective regardless
the ordering of PAs.

B. Execution

Query execution plans, composed of a set of traversal
sequences S = {S1, . . . Sm} are generated by the master and

sent to all servers in a cluster to start execution in parallel.
As slaves finish computing the entire sequence, their results
are sent to the master, which is responsible for gathering and
returning them to the user. We assume that each server in the
cluster has an index mapping patterns to their fragments that
are locally stored.

The Pseudo-code in Figure 3 shows the query execution al-
gorithm, where each sequence Si ∈ S is processed by a server
L as follows. Let Si = [s1, . . . , sn] and GL be the subset of
the RDF dataset stored in L. First, fragments of s1.pat are
retrieved to obtain nodes in the RDF graph that correspond to
the initial points of exploration source(s1) (lines 1-5). Recall
that function type maps nodes in an RDF graph to nodes in
an RDF structure GS , and mQS is a mapping from nodes in
a query graph GQ to GS . Thus, we compute the initial points
of exploration for a sequence Si in a server L as [[s0]]L =
{{source(s1) 7→ vD} | typevD = vS , mQS(source(s1)) = vS
and vD ∈ GL}. In our running query example, considering the
RDF graph in Figure 1(a), we have [[s0]]X = {{?product 7→
Product1}}, since type(Product1) = v3, mQS(?product) =
v3 and Product1 is stored on server X . For the other servers,
[[s0]]Y =[[s0]]Z=[[s0]]W =[[s0]]V ={}.

Starting from these initial points of exploration, each step
si of the traversal sequence adds a new variable mapping by
following the RDF graph according to its triple pattern (s, p, o)
and direction dir; if the pattern is not found or the new variable
mapping does not satisfy the filters, the corresponding map-
ping is removed from the result set (lines 6-14). Filters of si
consider constant values and instantiations on previous triple
patterns of its target. In our example, after processing the first
step, [[s1]]X = {{?product 7→ Product1 , ?nameProduct 7→
v“Linea′′}}. Observe that s2 can be processed in the same
server X as step s1 because s1.id = s2.id (line 16). That
is, the source nodes in both steps are in the same pattern
allocation and thus they are guaranteed to be stored on
the same server. Continuing with our running example, the
result of processing step s2 in X contains five mapping:
[[s2]]X = {[[s1]]X∪{?offer 7→ Offer1}, [[s1]]X∪{?offer 7→
Offer2}, [[s1]]X∪{?offer 7→ Offer3}, [[s1]]X∪{?offer 7→
Offer4}, [[s1]]X ∪ {?offer 7→ Offer5}}. However, the
processing can not continue in the same server for step s3
since s3.id 6= s2.id (line 18). Indeed, in our example every
?offer is mapped to a node stored on a remote server via
an inter-PA property offers. As a result, in order to continue
the query, either server X requests the remote servers to
transmit the fragments in which these offer nodes are stored
and the query continues to be processed on server X , or the
existing mappings are forwarded to the remote servers, and
they continue the execution of the plan (lines 20-33). We call
the first communication strategy as get-frag, and the second
as send-result.

The choice of the communication strategy is made during
query execution, based on the number of requisitions and the
volume of the data to be transmitted. Let si be the step in
which a traversal to a different pattern occurs. That is, si.id 6=
si+1.id, i >= 1. Let varJoin be the si+1’s source variable

Function PlanExecution on server L
Input: mQS , sequence S = [s1, . . . , sn], step number j, M;
Output: a set of mappings M ;
1. Let sj be ((s, p, o), dir, pat, id, f);
2. if j = 1 then /* looking for initial points*/
3. for each vertex v in a fragment f of type pat stored in L do
4. if type(v) = mQS (source(s1)) then
5. insert {(source(s1) 7→ v)} in M ;
6. newM:= {};
7. for each m in M do
8. Let v be a node in GD such that source(sj) 7→ v is in m;
9. if dir = in then
10. targetSet = {vnew | (p,vnew) is an incoming edge in v.in};
11. else targetSet = {vnew | (p,vnew) is an outgoing edge in v.out};
12. for all vnew in targetSet do
13. if vnew satisfies filters f then
14. newM:= newM ∪ {m ∪ {target(sj) 7→ vnew}};
15. if j < |S| then
16. if sj+1.id = sj .id then
17. execute PlanExecution(mQS ,S, j + 1, newM) on L;
18. else /* continue process in server that stores sj+1 */
19. Initialize partial[R] and frag[R] with empty sets for every server R;
20. for each mapping m in newM do
21. Let joinNode be a node such that sourcej+1 7→ joinNode is
22. in m and let R be the server that stores joinNode;
23. partial[R]:= partial[R] ∪ {m};
24. frag[R]:= frag[R] ∪ {joinNode};
25. for each server R with frag[R] 6= { } do
26. if R=L then
27. execute PlanExecution(mQS ,S,j+1,partial[L]) on server L;
28. else
29. if CostSR[R] < CostGF [R] then
30. execute PlanExecution(mQS ,S,j+1,partial[R]) on server R;
31. else
32. request frag[R] from server R;
33. execute PlanExecution(mQS ,S,j+1,partial[R]) on server L;
34. else return newM to master server; /* execution plan completed*/

Fig. 3: Execution algorithm for a query plan

and [[si]]|R be the subset of [[si]] with mappings of varJoin to
a node in server R. That is, [[si]]|R = {m ∈ [[si]]|varJoin 7→
joinNode is in m, and joinNode ∈ GR}. Intuitively, these
are the intermediate results to be sent to each server R by the
send-result strategy. In this case, the number of messages to
be transmitted to a remote server R (NMR) is the size of set
[[si]]|R (line 23). The volume of data (SMR) to be transmitted
in each message is the size (in bytes) of an intermediate result.
Given these, a server L may compute for each remote server
R, the cost of applying the send-result (SR) strategy by:

CostSR[R] = NMR ∗ (cc+ SMR/tr)

where cc is the (hardware-dependent) cost of establishing a
connection from L to R and tr is the (network-dependent)
transmission rate from L to R.

Observe that several mappings in [[si]]|R may share the same
value for varJoin. That is, there may exist more than one
intermediate result that “point to” the same node stored on a
remote server R. Thus, if we apply the get-frag strategy, only
one fragment has to be transmitted from the remote server to L
in order to continue processing multiple intermediate results.
We define these sets of (distinct) nodes to be requested from a
server R to apply the get-frag strategy as [[si]]|R[varJoin] =
{joinNode | m ∈ [[si]]|R, (varJoin 7→ joinNode) is in m}
(line 24). Thus, the number of messages to be transmitted

from a remote server R to L (NMR) is the size of the set
[[si]]|R[varJoin]. The volume of data to be transmitted in each
message varies for each pattern allocation. We consider that
the average size of fragments of a given pattern pat (SMpat)
is determined during loading time of the dataset. Given these,
a server L may compute for each remote server R, the cost
of applying the get-frag (GF) strategy by:

CostGF [R] = NMR ∗ (cc+ SMpat/tr + SMpat ∗ st)

where cc and tr are as already defined, and st (repository-
dependent) is the cost of storing a fragment locally on L.

Then, if the send-result cost (CostSR[R]) is less than the
get-frag cost (CostGF [R]) the intermediate results (mappings)
are sent to server R, which continues processing the query
(line 30). Otherwise, server L requests the required fragments
and continues the query execution (lines 32-33). Note that
L may also contain fragments pointed by joinNode (line
26). Finally, when a slave server explores the last step of the
traversal sequence, its set of mappings is projected over the
variables in the select clause and the result is sent to the master
(line 34) .

Note that the cost for each communication strategy is com-
puted for each remote server (line 25). As a result, it is possible
that for a remote server R1, CostSR[R1] < CostGF [R1], and
for another server R2, CostSR[R2] > CostGF [R2]. Thus, we
propose the method 2ways, that chooses for each server, the
strategy that is expected to have lower communication cost.
Observe that we consider a model in which multiple messages
to the same server are not “packed” in order to minimize the
cost of establishing connections. For such systems, the cost
function would have to be modified accordingly. Moreover,
we have defined the cost function based solely on information
locally acquired by each individual server. Other variables that
require global knowledge, such as the load of each server,
could be considered in the cost function. However, obtaining
such information requires additional communication among
the servers. As a final remark, the actual value of cc, tr and
st may differ between pairs of servers and periods of time.
Their (dynamic) calibration is outside the scope of this paper.

V. EXPERIMENTAL STUDY

We have conducted an experimental study for determining
the effect of the communication strategies on the performance
and scalability of SPARQL query processing on top of a dis-
tributed graph exploration processor. In particular, we compare
send-result, get-frag and 2ways, where send-result represents
the communication strategies used in [3] and SHAPE [12], and
get-frag represents the strategy used in MAPSIN [11].

A. Experimental Settings

The query processing approach presented in Section IV was
implemented in Java adopting its RMI native communication
model. The system was deployed on a cluster of dedicated
Amazon EC2 m4.large instances, each one with 8 GB of
memory and 2 virtual 24 GHz CPUs. In order to evaluate the
scalability of communication methods, three different clusters

were built varying the amount of EC2 instances: 4 (C1), 8
(C2) and 12 (C3) servers. We use the Berkeley DB repository3

as the storage layer. Berkeley DB was deployed as an in-
memory datastore on top of the EC2 cluster.

Datasets and queries applied in this study are extracted from
BSBM [24], which is built around an e-commerce use case
where the schema models the relationships between products,
product features, producers, offers, vendors and product re-
views. BSBM provides a query mix and a data generator
that uses the number of products as scale factor. We have
generated 3 datasets for our experiments: BSBM 1 with
5,000 products (1,811,316 triples), BSBM 2 with 10,000
products (3,567,636 triples) and BSBM 3 with 15,000 prod-
ucts (5,323,644 triples). Data and metadata were uniformly
distributed among the servers with fragments following the
model described in Section III.

We considered a workload of 10 queries (Q1 − Q10). In
this set, Q1 − Q5 are based on BSBM. Queries Q6 − Q10
were created to address different communication situations in
order to properly evaluate the communication strategies. We
highlight some experimental results in the following sections.
Query statements and detailed results are available as a web
supplement4.

B. Performance

The purpose of this experiment is to determine the response
time for queries in the workload. Queries were processed using
only the send-result (SR) and get-frag (GF) strategies, and
their performance is compared with the 2ways approach. Table
I presents the average query response time in milliseconds,
considering the BSBM 2 dataset on a C3 cluster. Each query
may involve one (Q1), two (Q2, Q4, Q7, Q9), or three PAs
(Q3, Q5, Q6, Q8, Q10) and the exploration order defined in
the query plan follows the order they are presented in each row,
from PA1 to PA3. Columns #fr and #rt refer to the number
of fragments required to process the query, and the number
of intermediate results generated after processing each PA.
Indeed, they correspond to the sum of the number of messages
(NM) for all servers in the cost functions presented in Section
IV for get-frag and send-result, respectively.

Table I shows that for some queries send-result presents
better performance compared to get-frag, and for others get-
frag performs better. Moreover, the 2ways performs as well
as the best strategy, and for some cases better, such as
for Q6. Q1 is processed locally given that only one PA is
required. Therefore, all communication models achieve the
same response time. For queries Q2, Q3, Q5, Q7 and Q8,
send-result was the best strategy for all transitions, and thus
the response time of 2ways is similar to send-result. For most
of them, this choice has been made mainly because the number
of intermediate results after processing one PA is smaller than
the required fragments of the next PA. As an example, for
Q2 the query processor can either send 1 intermediate result

3http://www.oracle.com/technetwork/database/database-technologies/berkeleydb
4http://www.inf.ufpr.br/rrmpenteado/2ways/

TABLE I: Allocation patterns and response time of three communication strategies on BSBM 2− C3

Q PA1 PA2 PA3 Response Time (ms)
pattern #fg #rt pattern #fg #rt pattern #fg #rt SR GF 2ways

Q1 PaProduct 10k 1 - - - - - - 110 110 110
Q2 PaProduct 10k 1 PaFeature 17 17 - - - 134 161 133
Q3 PaOffer 200k 1 PaProduct 1 1 PaProducer 1 1 1003 1027 980
Q4 PaReview 100k 7036 PaProduct 2 7036 - - - 4068 1427 1430
Q5 PaProduct 10k 1 PaOffer 14 14 PaVendor 2 14 143 160 144
Q6 PaVendor 508 213 PaOffer 80157 80157 PaProduct 4 80157 15002 24917 9826
Q7 PaProducer 206 206 PaProduct 10k 10k - - - 1231 2748 1230
Q8 PaProducer 206 206 PaProduct 10k 10k PaOffer 200k 14330 2919 31986 2920
Q9 PaProduct 10k 10k PaProducer 206 10k - - - 1755 1618 1620
Q10 PaOffer 200k 14330 PaProduct 2 14330 PaProducer 2 14330 11298 2849 2853

Re
sp

on
se

 ti
me

(m
s)

BSBM_1
BSBM_2
BSBM_3

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
0k

2.5k

5k

7.5k

10k

12.5k

Highcharts.com

(a) Data scalability on C2 cluster

Re
sp

on
se

 ti
me

(m
s)

C1
C2
C3

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
40

100

200

400

1k

2k

4k

10k

20k

Highcharts.com

(b) Server scalability - BSBM 1

Re
sp

on
se

 ti
me

(m
s)

C1
C2
C3

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
100

200

400

1k

2k

4k

10k

20k

Highcharts.com

(c) Server scalability - BSBM 3

Fig. 4: Data and server scalability of the 2ways strategy

computed from a PaProduct fragment or request 17 fragments
of PaFeature from remote servers, and thus chooses the first.
For Q2, the number of transmissions were the same for both
strategies, but the size of the intermediate result were smaller
than the fragments. For Q5, the 14 PaOffer results were spread
over the cluster, each of them requiring 2 PaVendor fragments.
Since the choice is made locally, all of them chose the send-
result strategy.

For queries Q4, Q9 and Q10 get-frag presented better
performance for all PA transitions, and thus the response
time of 2ways is similar to get-frag. In our query mix, Q6
was the only query for which 2ways chose send-result from
PA1 to PA2 and get-frag from PA2 to PA3. This mixed
strategy resulted in a response time 35% lower than send-
result and 61% lower than get-frag. These results show the
following. First, there may exist a difference of several orders
of magnitude between the response time of send-result and
get-frag such as in queries Q8 and Q4. Thus, our approach
outperforms systems that rely on a single communication
strategy for all queries such as SHAPE [12] and MAPSIN
[11]. Second, our cost function for strategy 2ways has correctly
chosen the best strategy for every transition between PAs in
our workload. We can conclude that 2ways is an effective and
efficient method for query optimization.

As a final notice, we would like to point out that queries
Q1 − Q8 have “optimized” query plans, in the sense that
PAs have been ordered by their selectivity in order to reduce
the number of intermediate results. This optimization has not
been applied for the last two queries. In fact, Q9 and Q10
execute the same query as Q7 and Q8, respectively, but with

a different (PA) exploration order. Comparing their response
times, we can see that indeed the “optimized” query plan has
better performance for send-result, but this is not the case
for get-frag. For this strategy, the “unoptimized” query plans
are 59% and 11 times faster. However, the 2ways strategy
have similar response times for both plans. It shows that our
proposed query optimization technique is orthogonal to query
planning.

Regarding experiments with different cluster sizes and
datasets, the communication strategy applied by 2ways were
similar to the ones reported in Table I. However, Q9 had its
predominant communication strategy changed on BSBM 3−
C2 and BSBM 3 − C3. The send-result strategy presented
better performance in these scenarios and 2ways has correctly
chosen it. The change was caused by the larger size (in bytes)
of PaProducer fragments in these scenarios, which increased
the cost of the get-frag strategy.

C. Scalability

The scalability of 2ways is evaluated by scaling the dataset
size and the number of servers in the cluster. Figure 4a shows
the scalability of our processing model running on the C2
cluster on datasets BSBM 1, BSBM 2 and BSBM 3. As
expected, the response time of the queries increase with the
size of the dataset, given that the input data size usually deter-
mines the number of intermediate results and data exchange
among servers. Moreover, this increase also affects the local
processing time of data fragments on servers. This effect is
more evident for queries involving large data volumes, such
as Q3, Q6, Q8 and Q10. In Q3, for example, the number of

messages is the same for the three datasets. However, the re-
ported difference on the response time results from the number
of PaOffer fragments processed: 100, 200 and 300 thousand
on BSBM 1, BSBM 2 and BSBM 3, respectively.

We have also determined the effect of the number of servers
in the cluster on the query response time. The results are shown
in Figures 4b and 4c on BSBM 1 and BSBM 3 datasets,
respectively. The dataset BSBM 2 behaved as BSBM 3.
It can be noticed that when the number of server increases,
the response time decreases for datasets. However, increasing
the number of servers to 12 (C3) does not have the same
effect for most queries on BSBM 1 and some queries on
BSBM 3. This shows that distributing data and processing
queries in parallel are beneficial up to a point in which the
cost of communication among servers to retrieve all required
data in a query surpasses the gain. In our experiments, this
point is reached with 8 servers for BSBM 1 and 12 servers
for BSBM 3. Thus, for this particular workload, allocating
more servers than this number decreases performance both
energy-wise and time-wise.

VI. CONCLUSION

This paper proposes an optimization technique called 2ways,
which aims at reducing the communication cost for processing
queries on a distributed RDF datastore. We assume that frag-
ments of the datastore have been distributed among servers,
and that fragments group RDF triples according to allocation
patterns (PA). Information on PAs are used to generate
query plans that explore data inside fragments, which are
guaranteed to be stored on the same server, before exploring
other fragments, which may be stored remotely. Whenever
data on a remote fragment is required, 2ways chooses between
two communication strategies, send-result and get-frag, based
on a cost function that takes into consideration the number
of messages and the volume of data to be transmitted. Our
experimental analysis shows that 2ways can effectively and
efficiently reduce the query response time compared to strate-
gies send-result and get-frag considered alone. This paper
brings contributions in the context of large-scale databases,
since the proposed strategy can be exploited by RDF data ma-
nagement systems to provide scalability for processing queries.
Future work includes studies on the ordering of PAs during
query planning and the calibration of hardware, network and
repository-dependent variables in the cost function.

ACKNOWLEDGMENT

This work was supported in part by CAPES and AWS in
Education.

REFERENCES

[1] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach, “SW-Store:
A Vertically Partitioned DBMS for Semantic Web Data Management,”
The VLDB Journal, vol. 18, no. 2, pp. 385–406, 2009.

[2] T. Neumann and G. Weikum, “The RDF-3X Engine for Scalable
Management of RDF Data,” The VLDB Journal, vol. 19, no. 1, pp.
91–113, 2010.

[3] J. Huang, D. J. Abadi, and K. Ren, “Scalable SPARQL Querying of
Large RDF Graphs,” 37th International Conference on Very Large Data
Bases, vol. 4, no. 11, pp. 1123–1134, 2011.

[4] M. Przyjaciel-Zablocki, A. Schaetzle, E. Skaley, T. Hornung, and
G. Lausen, “Map-Side Merge Joins for Scalable SPARQL BGP Process-
ing,” in 5th International Conference on Cloud Computing Technology
and Science, vol. 1. IEEE Computer Society, 2013, pp. 631–638.

[5] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang, “A distributed graph
engine for web scale RDF data,” in 39th international conference on Very
Large Data Bases, 2013, pp. 265–276.

[6] S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald, “TriAD: A Dis-
tributed Shared-nothing RDF Engine Based on Asynchronous Message
Passing,” in ACM SIGMOD International Conference on Management
of Data. New York, USA: ACM, 2014, pp. 289–300.

[7] R. Schroeder and C. S. Hara, “Partitioning Templates for RDF,” in
Advances in Databases and Information Systems: 19th East European
Conference, ser. Lecture Notes in Computer Science, M. Tadeusz,
P. Valduriez, and L. Bellatreche, Eds., vol. 9282. Springer, 2015, pp.
305–319.

[8] L. Gai, W. Chen, and T. Wang, “A partition-based Summary-Graph-
Driven Method for Efficient RDF Query Processing,” CoRR, vol.
abs/1510.07749, 2015.

[9] G. Aluç, M. T. Özsu, K. Daudjee, and O. Hartig, “chameleon-db: a
Workload-Aware Robust RDF Data Management System,” Tech. Rep.
CS-2013-10, 2013.

[10] P. Ravindra, H. Kim, and K. Anyanwu, “An Intermediate Algebra
for Optimizing RDF Graph Pattern Matching on MapReduce,” in The
Semanic Web: Research and Applications: 8th Extended Semantic Web
Conference, 2011, pp. 46–61.

[11] M. Przyjaciel-Zablocki, A. Schtzle, T. Hornung, C. Dorner, and
G. Lausen, “Cascading Map-side Joins over HBase for Scalable Join
Processing,” CoRR, vol. abs/1206.6293, 2012.

[12] K. Lee and L. Liu, “Scaling Queries over Big RDF Graphs with
Semantic Hash Partitioning,” VLDB Endowment, vol. 6, no. 14, 2013.

[13] R. Harbi, I. Abdelaziz, P. Kalnis, N. Mamoulis, Y. Ebrahim, and
M. Sahli, “Accelerating SPARQL Queries by Exploiting Hash-based
Locality and Adaptive Partitioning,” The VLDB Journal, vol. 25, no. 3,
pp. 1–26, 2016.

[14] K. Hose and R. Schenkel, “WARP: Workload-aware replication and
partitioning for RDF,” in ICDE Workshops. IEEE Computer Society,
2013, pp. 1–6.

[15] F. Goasdoué, Z. Kaoudi, I. Manolescu, J. Quiané-Ruiz, and S. Zam-
petakis, “CliqueSquare: efficient Hadoop-based RDF query processing,”
in BDA’13 - Journées de Bases de Données Avancées, 2013.

[16] B. Wu, H. Jin, and P. Yuan, “Scalable SAPRQL Querying Processing
on Large RDF Data in Cloud Computing Environment,” in Pervasive
Computing and the Networked World: Joint International Conference,
ICPCA/SWS 2012, ser. Lecture Notes in Computer Science, Q. Zu,
B. Hu, and A. Elçi, Eds., vol. 7719. Springer, 2012, pp. 631–646.

[17] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Communications of the ACM - 50th Anniversary Issue:
1958 - 2008, vol. 51, no. 1, pp. 107–113, 2008.

[18] R. Verborgh, M. V. Sande, O. Hartig, J. V. Herwegen, L. D. Vocht, B. D.
Meester, G. Haesendonck, and P. Colpaert, “Triple Pattern Fragments:
a low-cost knowledge graph interface for the Web,” Journal of Web
Semantics, vol. 37, pp. 184–206, 2016.

[19] C. Buil-Aranda, A. Polleres, and J. Umbrich, “Strategies for Executing
Federated Queries in SPARQL1.1,” in International Semantic Web
Conference (2), 2014, pp. 390–405.

[20] P. Minh-Duc, P. Linnea, E. Orri, and P. Boncz, “Deriving an Emergent
Relational Schema from RDF Data,” in 24th International Conference
on World Wide Web, 2015, pp. 864–874.

[21] J. R. Ullmann, “An Algorithm for Subgraph Isomorphism,” Journal of
the ACM (JACM), vol. 23, no. 1, pp. 31–42, 1976.

[22] J. Lee, W.-S. Han, R. Kasperovics, and J. Lee, “An In-depth Comparison
of Subgraph Isomorphism Algorithms in Graph Databases,” in 39th
international conference on Very Large Data Bases, 2013, pp. 133–144.

[23] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Power-
Graph: Distributed Graph-parallel Computation on Natural Graphs,” in
10th USENIX Conference on Operating Systems Design and Implemen-
tation, 2012, pp. 17–30.

[24] C. Bizer and A. Schultz, “The Berlin SPARQL Benchmark,” Interna-
tional Journal on Semantic Web and Information Systems, vol. 5, no. 2,
pp. 1–24, 2009.

