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Abstract. In this paper, we present an RDF data distribution approach which
overcomes the shortcomings of the current solutions in order to scale RDF stor-
age both with the volume of data and query requests. We apply a workload-aware
method that identifies frequent patterns accessed by queries in order to keep re-
lated data in the same partition. In order to avoid exhaustive analysis on large
datasets, a summarized view of the datasets is considered to deploy our reasoning
through partitioning templates for data items in an RDF structure. An experimen-
tal study shows that our method scales well and is effective to improve the overall
performance by decreasing the amount of message passing among servers, com-
pared to alternative data distribution approaches for RDF.

1 Introduction

We have witnessed an ever-increasing amount of RDF data made available in different
application domains. The DBpedia dataset1 has now reached a size of 2.46 billion RDF
triples extracted from Wikipedia. According to the W3C, some commercial datasets
may be even bigger reaching the score of 1 trillion triples2. The envisioned architecture
to manage these huge datasets is based on elastic cloud-based datastores supported by
parallel techniques for querying massive amounts of data [5]. In order to scale RDF
storage, datasets must be partitioned across multiple commodity servers. By placing
partitions on different servers, it is possible to speedup query processing when each
server can scan its partitions in parallel. On the other hand, message passing among
servers can be required at query time when related data is spread among arbitrary par-
titions. These rounds of communication over the network can become a performance
bottleneck, leading to high query latencies. Therefore, the scalability of query process-
ing depends on how data is partitioned or replicated across multiple servers.

RDF data are represented by triples given by subject-predicate-object
(s, p, o) statements. In an RDF dataset, triples are related to each other repre-
senting a graph. Thus, the RDF partitioning problem has been addressed as a graph cut
problem [5], [15]. Likewise the general problem, partitioning a distributed database is
known to be NP-hard[8] and, therefore, heuristic-based approaches become more at-
tractive. In general, the heuristics applied by current methods are solely based on the
RDF graph structure, generating partitions that do not express query patterns of the

1 http://wiki.dbpedia.org/Datasets
2 http://www.w3.org/wiki/LargeTripleStores
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workload. As result, the query performance decreases when data required by the same
query pattern is distributed over different servers. Besides the workload-oblivious rea-
soning, most of the current approaches apply a graph partitioner algorithm on the whole
RDF graph. However, large graphs are hard to partition.

In this paper, we introduce a data partitioning approach which overcomes the short-
comings of current solutions by reasoning over a set of query patterns assumed as the
expected workload. The contribution of this approach is twofold. First, partitions are
extracted from clusters of data accessed together by frequent query patterns. Such cov-
erage of query patterns provides scalability for query processing by reducing the amount
of message passing among machines at query time. Second, we are able to define how
data items must be clustered solely based on the structure of query patterns. The query
patterns are formulated over a summarization schema that represents the data structures
for an RDF dataset. Thus, we define partitioning templates as the partitioning strategy to
be applied to instances of an RDF structure. By doing so, we avoid exhaustive analyses
on the whole data graph for defining data partitioning.

Despite the fact that most RDF datasets are schema-free, the lack of a schema makes
it harder to formulate queries on RDF graphs and define suitable strategies for indexing
and clustering. In fact RDF datasets range from structured data (e.g DBLP) to unstruc-
tured data (e.g. Wikipedia). However, there is a bit of regularity in RDF data[9] and it is
relatively easy to recover large part of the implicit class structure underlying data stored
in RDF triples as demonstrated in [7]. In our approach, RDF structures are applied to
identify the query patterns in order to partition datasets. By following such a workload-
agnostic approach, we are able to efficiently handle the most frequent queries. Likewise
in traditional design approaches and the so-called 20-80 rule, we favor the important
20% of queries which corresponds to 80% of the total database load.

The rest of the paper is organized as follows. Section 2 introduces the partitioning
problem. Our workload characterization method is presented in Section 3. In Sections 4
and 5, we describe our partitioning method involving data fragmentation and allocation.
In Section 6, we experimentally investigate the impact of our method and compare to
related approach. We discuss related work in Section 7 and conclude in Section 8.

2 Preliminaries and Partitioning Objective

RDF data can be defined as a finite set of triples composed of subject, property
and object (s, p, o). Assume there are pairwise disjoint infinite sets U and L, where
U are URIs denoting Web resources, and L are literals. Thus, an RDF triple (s, p, o)
∈ (U×U×{U∪L}). RDF follows a data model in which triples are related to each other,
which can be represented as a directed graph. We denote an RDF graph asD. That is,D
is a set of triples which denote facts where the subject is the origin node of a property
labelled edge directed to its object node. As an example, the subject product1 is
related to the object feature1 through the property feature in Figure 1a.

SPARQL is the W3C Recommendation language for querying RDF datasets. The
SPARQL core syntax is based on a set of triple patterns like RDF triples except that
subjects, properties and objects may be defined as variables. In our work, pattern graphs
represent the conjunctive fragment of SPARQL queries. We assume the existence of a
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}
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Fig. 1: RDF Graph and a SPARQL Query Example

set V of variables that is disjoint of the sets U and L. Variables in V are denoted by a
question mark (?) prefix.

Definition 1. (Pattern Graph): A pattern graph is denoted by G = (V,E, r) where:
(1) V ⊆ {V ∪ U ∪ L}; (2) E ⊆ (V × U × V ), where for each edge (ŝ,p̂,ô) ∈ E, ŝ is
the source of the edge, p̂ is the property, ô is the target of the edge; and (3) r is a set of
filter expressions for variable nodes in G. A filter is expressed in the form ?x θ c, where
?x ∈ V , c ∈ {U ∪ L} and θ ∈ {=, >,6, <,>}. Hereafter, we use V (G) and E(G) to
denote the set of vertices and the set of edges of a pattern graph, respectively.

An example of pattern graph is given in Figure 1c where variable nodes are an-
notated with the associated filter expressions. The conjunctive fragment of SPARQL
queries involving operators AND, FILTER, OPTIONAL and UNION can be repre-
sented as graph patterns as follows. Pattern triples are represented by connected nodes
denoting operators AND (solid edges) and OPTIONAL (dashed edges). To simplify, we
represent pattern graphs connected by the UNION operator as independent graphs. Fig-
ure 1b shows a SPARQL query that retrieves data for products and features associated
with product where the dueDate is “2014-05”. The equivalent representation for the
pattern graph is shown in Figure 1c. Observe that although in the example the query is
represented as a tree, cycles are admitted by the pattern graph definition.

The workload is defined as pattern graphs representing a set of SPARQL queries Q.
Given that SPARQL is a graph-matching language, processing a query against RDF
graphs consists of a subgraph matching problem which can be computed by graph
homomorphism[17]. The subgraphs shown in Figure 2a correspond to matches of the
pattern graph of Figure 1c applied to the RDF graph in Figure 1a. We use B(q) =
{b1, ..., bn} to denote the result of a query q, where bi is a subgraph of an RDF graph
D, i.e., bi ⊆ D.

Consider now processing the same query over a partitioned dataset. Figure 2b illus-
trates the graph in Figure 1a partitioned across 3 server. When the query is issued, it is
processed in parallel in all servers. Ideally, each subgraph in a result should be stored in
a single server. However, in our example, subgraphs b1 and b2 are segmented across two
servers. Retrieving b1 requires Server1 and Server3 to be accessed, while Server1 and
Server2 are needed to retrieve b2. In order to avoid this message passing among servers,
the main goal of our approach is to partition data so that query can be processed in
parallel without inter-server communication whenever it is possible. More formally, we
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Fig. 2: SPARQL Query Results on Partitioned Data

are interested in generating a partitioning P = {P1, ..., Pm}, for an RDF graph denoted
by D across m servers, where the amount of partitions required to retrieve each sub-
graph in a query result B(q) is minimized. To this end, we define the segmentation of
the subgraphs in B(q) with respect to a partitioning P and a query q as follows :

Definition 2. (Query Segmentation): Given a partitioning P of an RDF graph D, the
query segmentation measure P̂ of P with respect to q is defined as:

P̂ (q,P) =
∣∣∣{(b, P ) ∈ (B(q)× P)|b ∩ P 6= �}

∣∣∣− ∣∣∣B(q)
∣∣∣ (1)

In this equation, the minuend determines how many partitions (or servers) have to
be accessed to retrieve all triples in each subgraph result. That is, given a subgraph result
b ∈ B(q) and a partition P , a pair (b, P ) is in the minuend set whenever P contains a
triple in b. Ideally, no subgraph should be segmented. That is, the size of the minuend
should be equal to the number of subgraphs in the result B(q), which leads to P̂ = 0.
Intuitively, P̂ measures the amount of inter-server communication to compute a query
result. Given that a workload consists not only of a single query, but a set of queries Q,
the overall objective of our partitioning strategy is to minimize P̂ for the set Q. To this
end, we assume that each query q in the set is associated with its expected frequency in
a period of time, which is denoted by f(q). Thus, we can formally define our problem
as to find a partitioning P that minimizes the following equation:

min
∑
q∈Q

f(q).P̂ (q,P) (2)

Observe that frequent queries have a higher impact on the equation than infrequent
ones. Intuitively, our strategy is based on favoring the most frequent queries in the
workload. To achieve our goal, we characterize the workload for examining the paths
traversed by the queries and their frequencies in order to quantify the affinity between
pairs of nodes. Such affinity measure is the basis for our partitioning reasoning.

3 Workload Characterization

In this section we present a method for representing workload information. The core of
this method is based on identifying and measuring affinity relations among RDF nodes.
We start by defining an RDF Structure, containing both the structure of the RDF graph
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Fig. 3: Workload data

and the expected size of its instances. Although RDF can define a schema-free model,
in general an RDF graph represents both schema and instances. Most datasets define
the type property connecting entities to their respective classes. In Figure 3a, the RDF
Structure is illustrated in the dashed shape containing classes as well as relationships
among them. An RDF Structure is an undirected cyclic graph defined as a 6-tuple S =
(C,L, l, A, s, o), where (1) C is a set of labelled nodes representing RDF classes; (2) L
is a set of labelled nodes denoting class properties with literal values; (3) l assigns a data
type to each node inL; (4)A is a set of undirected edges (n1, n2)∈ (C×{C∪L}) which
corresponds to associations between nodes; (5) s is a function that assigns the expected
size for the instances of nodes in {C ∪ L}; and (6) o gives the expected cardinality of
associations between two nodes; that is, it is a function that maps a pair in (C×{C∪L})
to an integer that defines for each node n1 ∈ C the expected number of occurrences of
associations to a node n2 ∈ {C ∪ L}.

Figure 3a shows an RDF Structure. In the example, o(Product, Feature) = 8
because the average number of occurrences of Feature associated to an instance of
Product is 8. Similarly, an instance of Feature is related to 3 instances of Product
in average. That is, o(Feature, Product) = 3. Besides, there are multi-valued rela-
tionships between (Product, Offer) and (Vendor, Offer). We assume that for the re-
maining associations relating any other nodes n1 and n2 in the example, o(n1, n2) = 1.
The size of a node n is not depicted in the example. If n is a literal node, s(n) is the
number of bytes needed for storing its value. For class nodes, on the other hand, the
size corresponds to the size required to store their property structures. To simplify the
example, we consider that for any node n, s(n) = 1.

Given a representation of an RDF Structure, we now turn to the workload character-
ization. We define a workload as a set of queries Q represented as pattern graphs and a
function f that defines the expected frequency of each query inQ. The workload can be
represented as a usage matrix as depicted in Figure 3b. According to the example, q1 is
expected to be executed 70 times and involves the literal nodes label, dueDate,
flabel and the classes Product and Feature.

Given a workload on an RDF Structure, the affinity of two nodes ni and nj in an
RDF Structure as the frequency they are accessed together by any query in the work-
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load. Towards this goal, an affinity function aff (ni, nj) takes as input a set of queriesQ
and computes the sum of frequencies of queries that involve both ni and nj by a path in
a specific direction, i.e., ni is the source node and nj is the target node. More formally,
we define Qij = {q ∈ Q | (ni, pij , nj) ∈ q}, and aff (ni, nj) =

∑
f(q), q ∈ Qij .

As an example, consider the workload given in Figure 3b. The affinity between Prod-
uct and label consists of the sum of frequencies of queries q1, q2, q4 and q5. Thus,
aff (Product, label) = f(q1) + f(q2) + f(q4) + f(q5) = 115. The affinity function
can be used to label edges in a directed graph involving all nodes in an RDF Structure,
as depicted in Figure 3c. We refer to this graph as an affinity graph, which is defined as
a tuple A = (N, Ê, aff), where N is the set of nodes in the RDF Structure and Ê is a
set of edges which relates two nodes ni and nj by an affinity value (aff(ni, nj)).

We present our partitioning technique in two steps. The first consists of data frag-
mentation. That is, determining how to cut an RDF Structure in order to keep closely
related data by affinity relations in a storage unit. The second concerns data clustering
thus, it relates to the problem of allocating related fragments in the same server.

4 RDF Fragmentation

Distributed query processing performance is not only affected by the amount of mes-
sage passing, but also by the size of the messages. A suitable size for messages mo-
tivated us to adopt a storage threshold as the basis for our partitioning technique. We
refer to this storage threshold as Γ . Intuitively, our goal is to partition nodes of an RDF
Structure, such that partitions contain as many correlated nodes as possible that can fit
in a given storage size. In what follows, we introduce the RDF fragmentation problem
and our proposal for solving it.

Given an RDF Structure S = (C,L, l, A, s, o) and an affinity graphA = (N, Ê, aff ),
we are interested in obtaining a fragmentation template T = {t1, ..., tm}, m ≥ 1, such
that ti is a subgraph of S,

⋃m
i=1(ti) = (N,E′), where E′ ⊆ E and each ti is defined

with disjoint sets of nodes. Figure 4a presents an example of a fragmentation template
for the RDF Structure depicted in Figure 3a. Instances of template t1 extracted from an
RDF graph according to this fragmentation template are illustrated in Figure 4.

Given that the fragmentation process is based on a storage threshold, we also need
the notion of the size of a fragmentation template ti ∈ T . The size of ti is given by the
sum of the expected number of occurrences of nodes multiplied by their sizes. The tree
composition of fragmentation templates requires us to measure the node occurrence
in the nested structure. The function occ(n) maps each node in a template ti to its
expected number of occurrences in an instance of ti. It is recursively defined as follows:
occ(n) = 1 if n is the root node of ti, and occ(n) = occ(p)×o(p, n) where p is a parent
node of n in ti. The size of ti is denoted by size(ti) =

∑
n∈ti

(occ(n)× s(n)).
In order to formally state our problem, we need the notion of a strongly correlated

set scs for a node in the affinity graph, defined as follows: scs(n) = {n′|aff (n, n′) ≥
aff (n′, n′′) for every node n′′ directly connected to n′}. Intuitively, scs determines
which nodes have stronger affinity with n than with any other in the graph. We denote
by scs+ the transitive closure of the scs relation.



Partitioning Templates for RDF 7

Product

labeldueDateFeature

flabel

labelfeat
ure

du
eD
at
e

fe
at
ur
e

Vendor

vlabel Offer

price

offervla
be
l

pr
ic
e

feat
ure

of
fe
r

t1

t2

of
fe
r

(a) Fragmentation template

product1

fla
be
l“tableW” “2014-05”

feature1
feature5

“sale”

fla
be
l

“Large”

product3product2 product4

labe
l

du
eD
at
e feature

feature

(b) Fragments for t1

“Lider”

pr
ic
e

product1
“$73”

vlab
el

off
er

offer1

pr
ic
e

“$35”
product3

offer

vendor1

ve
nd
or

offer2

vendor2

vendor

product3 product4

(c) Fragments for t2

Fig. 4: Templates and Fragments

We can now state our fragmentation problem: Find T such that the following con-
ditions are satisfied: (1) size(ti) ≤ Γ for every ti ∈ T ; and (2) if n1 and n2 are nodes
in the same fragment then n2 ∈ scs+(n1). The first condition defines that all fragments
in T must fit in Γ and the second generates fragments that are related by affinity values
higher than the values with nodes in other fragments.

As an example, consider Γ = 20 and the affinity graph depicted in Figure 3c.
The fragmentation template in Figure 4a satisfies our conditions because (1) the size
of templates fits in the storage threshold, that is size(t1) = 19 and size(t2) = 4; and
(2) the affinity between any node in t1 with any node in t2 is lower than the affinity
between any pair of nodes in the same fragment, for example, aff (Offer, Product) <
aff (Offer, Vendor).

We propose a fragmentation algorithm based on RDF Structures and workload. The
Algorithm affFrag takes as input an RDF Structure S with information on node sizes
and number of occurrences, an affinity graph A and a storage threshold Γ . The algo-
rithm computes templates of fragments based on strongly correlated sets of nodes if
their sizes lie within Γ .

The algorithm processes the edges in A in descending order of affinity. Given an
edge (n1, nb), the primary goal is to compute scs(n1). The node n1 is set to be the
root of the fragment being computed because it is the source node of the edge with the
highest affinity. A new fragment is generated by processing edges (n1, nb) in border
as follows: nb is only considered to be inserted in the current fragment if it is related
with higher affinity to some element in the current fragment than to any other outside
the fragment (Lines 14-15). According to Line 13, the candidate nodes are processed
in descending order of affinity in order to fill up the fragment with those with highest
affinity. At the end, all nodes have been assigned to some fragment. However, before
inserting new nodes in the tNodes we check whether it is possible to do so within the
size of Γ given the size and occurrence of the node to be included (Line 16-17).

As an example, consider the affinity graph of Figure 3c and Γ = 20 as the input to
affFrag. The first edge to be processed is the one with highest affinity involving nodes
Product and label. Product is inserted into a fragment t1 as the root node. The
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Algorithm affFrag
Input: RDF StructureS = (C,L, l, A, s, o), Affinity GraphA = (N,E, aff) and Γ
Output: T fragmentation template

1 T ← {};
2 allNodes ← N ;
3 allEdges ← E;
4 repeat
5 (n1, nb) ←edge in allEdges with highest affinity;
6 tNodes ← {n1};
7 tEdges ← {};
8 tSize ← s(n1);
9 Occ(n1 ) ← 1;

10 border ← {(n1, nb)|nb ∈ allNodes};
11 allNodes ← allNodes − {n1};
12 while tSize < Γ and border! = {} do
13 (n1, nb) ← extract edge from border with highest affinity, wheren1 ∈ tNodes andnb 6∈ tNodes;
14 nb Edges ← {(nb, n) ∈ allEdges|n ∈ allNodes};
15 if for all edges e ∈ nb Edges: aff (e) ≤ aff (n1, nb) then
16 Occ(nb) ← Occ(n1 ) × o(nb);
17 if s(nb) × Occ(nb) + tSize ≤ Γ then
18 tNodes ← tNodes ∪ {nb};
19 tEdges ← tEdges ∪ {(n1, nb)};
20 border ← border ∪ nb Edges;
21 allNodes ← allNodes − {nb};
22 tSize ← tSize + s(nb) × Occ(nb);
23 end
24 end
25 end
26 T ← T ∪ {(tNodes, tEdges)};
27 allEdges ← allEdges − tEdges;
28 until allNodes = {};
29 output T ;

size of t1 is initially set to 1, given our assumption that all nodes have size 1. Since
this is below the threshold, we keep inserting nodes to t1 among those connected to
Product which are kept in border. The one with highest affinity is label. Such
node is inserted in t1, since it is not connected to any other node with higher affinity
and this insertion does not exceed the value of Γ . The same happens for inserting nodes
dueDate, Feature and flabel into t1. At this point, tSize = 19 given the simple
occurrence of dueData and label with the multiple occurrence of Feature and
flabel. The next edges in border to be considered relates Product to Offer and
price. Offer should not be inserted in the fragment because its affinity is higher with
nodes that are not in the current fragment. Thus, the first fragment is created with nodes
Product, label, dueDate, Feature and flabel. A similar process creates the
second fragment with Offer, price, Vendor and vlabel. The final fragmentation
template generated is the one depicted in Figure 4a.

The fragmentation template defines how to partition instances of an RDF Structure,
i.e., an RDF graph. Thus, a fragment is generated for each instance of the root node
according to the fragmentation template of ti ∈ T . In the example, t1 must generate
fragments for each product instance. According to the RDF graph of Figure 3a, the
fragment generated for product instances may be represented by the trees in Figure 4b.

5 Clustering Fragments

Given our approach for the fragmentation problem, we now turn to the allocation prob-
lem. That is, given that a fragment is our storage unit, we are now interested in deter-
mining which fragments should be allocated in the same server. Although our fragmen-
tation algorithm cuts the affinity graph based on affinity relations, nodes in distinct frag-
ments may still keep strong affinity relations. This is because the fragmentation process
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Fig. 5: Clustering Templates and Fragments

has been designed to satisfy a storage threshold. Since there may be several template
elements connected by affinity relations, we choose to group the ones with stronger
affinities. More specifically, consider a fragmentation template T = {t1, ..., tm} de-
fined based on an affinity graph A = (N, Ê, aff). Let ET ⊆ Ê be the set of edges
connecting a node in a fragment ti to the root of a fragment tj . Observe that it is pos-
sible that i 6= j as well as i = j. By connecting templates through a root node, we are
able to extend their tree structures to define a nesting arrangement among related data.
We define a clustering template as G = {g1, ..., gn}, n ≤ m, such that G is a forest of
linked fragmentation templates. Similar to the affFrag algorithm, groups in G are built
considering edges in ET in descending order of affinity values. Although we do not
define a threshold for the group size, it is limited by the storage capacity of the server.

According to the fragmentation template in Figure 4a, the dashed arrows denote un-
processed edges in the fragmentation process. As discussed before, only edges directed
to root nodes in template elements are considered to define clusters of fragments. Here,
the edges (Feature, Product) and (Offer, Product) meet this requirement. Given
that both edges are directed to Product, we choose only one of them in order to
nest Product and keep the tree structure among the template elements. To do so, we
choose the one with the highest affinity. Figure 5a presents a clustering template that re-
lates t1 and t2 through the edge (Offer, Product) with the highest affinity. Instances
of this cluster template are presented in Figure 5b.

We apply a clustering template to an RDF graph in order to extract fragments and
cluster them properly. Some issues can arise in this process. First, a fragment should
be generated for each of the root classes in the fragmentation template. However, it
is possible that more fragments are required given by the variability of the size of the
nodes and the number of instances for multi-valued relationships in the RDF graph. It
is important to remind that both the size and the instances considered in the RDF struc-
ture correspond to average values provided as the expected workload. These values are
applied to predict the size of fragments in order to define fragmentation templates. In
addition, we create edges to represent edges unprocessed by the fragmentation process.
To do so, edges are created in the fragments that contain their source nodes. As an
example, notice that the edge (Offer, Product) denotes the cut between the frag-
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mentation templates t1 and t2 in Figure 4a. However, the edges among Offer and
Product instances are created in the instances of t2 in order to keep the connection
among fragments as depicted in Figure 5a.

The tree structure created by clustering and fragmentation templates may produce
some data redundancy of nested data related to multi-valued relationships. However,
we control the amount of replicas by applying a threshold to the amount of replicated
data allowed. Due to space limitations, we omit a detailed discussion here.

6 Experimental Study

We have developed ClusterRDF, a system to deploy our approach based on an architec-
ture where RDF data is partitioned across a set of servers over a distributed in-memory
key-value store. We use the key-value datastore Scalaris[12] as a scalable system to
leverage scalability and content locality in order to support our clustering solution. We
have conducted an experimental study for determining the effect of our approach on the
performance of query data retrieval. We compare ClusterRDF with its closest related
approaches: the one introduced by Huang et al[5] and Trinity.RDF[16] using the Berlin
SPARQL Benchmark (BSBM).

Huang et al. applies the METIS[1] partitioner on an RDF graph, followed by a
replication step to overlap data across partitions according to an n-hop guarantee. We
refer to this approach as METIS-2hops because we have implemented the undirected
2-hop guarantee version of this method. Although Trinity.RDF is focused on providing
a query engine for RDF data, this system considers a hash partitioning of RDF nodes
and the power law distribution of node degrees to cluster data.

BSBM provides a workload with 12 queries and a data generator that supports
the creation of arbitrarily large datasets using the number of products as scale factor.
Among the 12 queries defined for the benchmark, we have chosen 11, because the re-
maining one does not satisfy our definition of a pattern graph. For a specific dataset
size and workload provided by BSBM, we have generated data clusters according to
ClusterRDF, METIS-2hops and Trinity.RDF. Table 6b summarizes the statistics of the
datasets used in this study. As expected, ClusterRDF and Metis-2hop produce space
overhead in terms of triple replication. However, Metis-2hop produces twice as many
triples compared to our method.

The goal of the experiments reported in this section is to determine the effect of our
clustering method on the system performance, and compare it with both Metis-2hops
and Trinity.RDF. The comparison is based on the response time required to retrieve
query data from the datastore.

First, we compare the clustering approaches on a cluster of 8 servers and BSBM 5
dataset. The results are shown in figures 6a-7b. The reported times in milliseconds are
the average values computed over multiple runs of the experiment and represent the
cost of retrieving query data in parallel on a distributed datastore. Each server in the
distributed system starts a thread and performs an arbitrary number of local or cross-
server requests to retrieve the query data. In such a parallel retrieval, the thread that
executes the highest number of cross-server requests determines the query response
time. We have collected both the maximum number of distributed requests issued by
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(a) Response Time - 8 servers and BSBM 5

Triple Overhead
Dataset #Triples Size ClusterRDF Metis-2hops
BSBM 1 40405 10.2MB 14141 27071
BSBM 2 75620 19.2MB 22686 44615
BSBM 3 191650 48.9MB 67329 120739
BSBM 4 375163 96MB 105045 213842
BSBM 5 3567636 922.3MB 891909 1748141
BSBM 6 35300350 9.97GB 7766077 15532154
BSBM 7 100399052 27GB 20079810 40159620

(b) Statistics of datasets

Fig. 6: Response Time and Statistics

a single server as well as the total number of distributed requests for all threads in
Figure 7a. Observe that the total number of distributed requests corresponds to the query
segmentation denoted by the P̂ measure (Definition 2). In addition, we have collected
the total number of requests (local and distributed) in Figure 7b. Observe that the latter
corresponds to the size of query results. That is, it is a measure of the total number of
fragments retrieved.

Cross-server requests. As expected, there is a direct correspondence between the
number of distributed requests and the response time. That is, a high number of cross-
server requests induces a high cost to retrieve data spread among distributed servers.
Indeed, observe that the execution of Q1 on ClusterRDF requires at most 4 servers
accesses per thread, which takes 37.27 ms. The execution of the same query on the
Metis-2hops and Trinity.RDF almost doubles the number of requests and has the same
effect on the response time (70.94 ms and 67.52, respectively).

Intuitively, the number of cross-server requests required to retrieve query data mea-
sures the effectiveness of the partitioning methods. The difference between the results
for the approaches can be explained by the coverage that each method provides in terms
of the query patterns. We may say that Metis-2hops assures a 2-hop coverage for any
pattern graph. However, a 2-hop guarantee is not enough to cover the whole pattern of
the majority of queries in the BSBM workload.

Trinity.RDF provides a simple pattern graph coverage in most cases given its fine-
grained storage unit based on RDF nodes. This explains why Trinity.RDF presents the
worst results among the three. ClusterRDF provides a complete coverage for queries
Q2 andQ6, given that requests are issued to only one server. For the remaining queries,
ClusterRDF does not avoid cross-server requests. However, it reduces the number of
servers to be accessed if compared to the two other alternatives. The results reported
in Figure 6a show that ClusterRDF outperforms Metis-2hops and Trinity.RDF for most
queries, except for Q5 and Q9. This is because ClusterRDF assigns data to clusters
according to the access pattern of the most frequent queries of the workload.

Total requests. The size of query results is reported by the quantity of total requests
in Figure 7b. This measure represents the total amount of fragments (storage units) re-
trieved. Scalaris provides a functionality for packing a set of requests for the same server
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Fig. 8: Data and Server Scalability

into a single message for minimizing the cost of message passing. We have observed
that the cost of these packed message can be ignored when the amount of requests is up
to 10 requests per server. This measure is also related to the amount of irrelevant data
in the fragments being retrieved. Notice that ClusterRDF requires a lower number of
server requests than Metis-2hops inQ6, however ClusterRDF achieves a higher number
of fragment requests. This can be explained by the fact that the requested data are in
the same cluster but probably not in the same fragment. In Trinity.RDF, this amount is
even bigger for all queries because of the its fine-grained storage model.

Data scalability. We test the methods running on a cluster of 8 servers on 7 datasets
(BSBM 1 to BSBM 7) of increasing sizes. The results are shown in Figure 8a for query
7(in logarithmic scale). In general, the results of these queries increase as the size of the
dataset increases. The increase of the dataset size leads to a higher number of distributed
requests in most cases. This may be explained by a higher degree of the RDF nodes
which requires to balance the load among servers. However, this only happens when
the whole set of query data items is not set to be clustered.
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Server scalability. We have deployed the systems in clusters with varying num-
ber of servers, and test its performance on dataset BSBM 5. The results are shown in
Figure 8b for query 3. In general, the increase on the number of servers brings the ben-
efits of the parallel processing and reduces the load of servers. However, this increase
can also lead data to be distributed among servers when query data items are not set
to be clustered. We believe that the high number of requests being performed by each
thread in parallel increases the competition for resources and impacts the system per-
formance. The worst effect of this competition is observed inQ3 on a cluster of 8 server
for METIS-2hops, where each thread requires to access all servers. Notice that the ef-
fect of the parallel processing only reduces the response time when system capacity is
increased to 12 servers and the number of server requests remains stable.

7 Related Work

Similar to our work, there are several graph-based approaches focused on database par-
titioning. However, they differ on the data model and the heuristics applied. A similar
heuristic is used in the traditional algorithm MakePartition [6] proposed for relational
databases. However, the number of fragments generated for a given dataset tends to be
larger given that they do not focus on the storage capacity of the fragments. Affinity-
based solutions have also been applied to XML fragmentation [3] [13] [11]. Our ap-
proach targets the RDF model and provides an extended coverage of such affinity-based
approaches by clustering affinity fragments.

Our approach to generate fragmentation templates is similar to traditional vertical
fragmentation techniques. Here, each instance of a template root node produces a frag-
ment with its adjacent nodes. It is also similar to the hierarchical data model applied
by Google F1 [14]. Clustering templates may also be associated to horizontal parti-
tioning of traditional databases. In this paper we have compared ClusterRDF to other
methods based on RDF graphs. As pointed out in Section 6, Huang et al.[5] assigns an
RDF graph to a traditional graph partitioner and replicates cross-partition nodes in order
to improve the query coverage. However, they only consider the associations of RDF
vertexes and not the query patterns in order to provide an approximated coverage. Trin-
ity.RDF[16] applies a simplest heuristic on RDF graph. In this case, high-degree nodes
are identified to be clustered together with their adjacent nodes. We have demonstrated
through a benchmark use case that a clustering approach based on workload analysis
achieves a better approximation in terms of the coverage of frequent query patterns.

8 Conclusion Remarks

We have proposed an approach for partitioning RDF data according to an application
workload defined on the structure of RDF graphs. This work makes contributions in the
context of highly distributed databases, where communication costs must be reduced to
provide a scalable service. In particular, ClusterRDF is able to reduce communication
costs for distributed query evaluation by providing a suitable partition for datasets. Our
experiments show that ClusterRDF can improve the query performance by roughly 27%
to 86%, compared to METIS-2hops[5], a closely related approach for RDF partitioning.
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We have also reported that ClusterRDF can perform up to 10 times faster then the
hash-partitioning introduced by Trinity.RDF. Although ClusterRDF and METIS-2hops
replicates RDF data in order to provide better results, ClusterRDF reduces by 50% the
replication storage overhead produced by METIS-2hops.

Recent works evidence both the feasibility of such methods [2], [10] as well as the
availability of workload data [4]. In ClusterRDF, both the query patterns as well as the
partitioning strategy are formulated over a summarization schema that represents the
data structures for an RDF dataset. By doing so, the same partitioning template for a
query workload may be continually applied to new data. However, considering dynam-
icity of query patterns is a topic for future work. In addition, we plan to investigate
metadata management, indexing structures and query optimization strategies.
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Araucária and by AWS in Education.
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