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Abstract. The dynamicity requirements of urban sensor networks rise
new challenges to the development of data management and storage
models. Software component techniques allow developers to build a soft-
ware system from reusable, existing components sharing a common inter-
face. Moreover, the development of urban sensor networks applications
would greatly benefit from the existence of a dedicated programming
environment. This paper proposes SLEDS, a Domain-Specific Language
for Data-Centric Storage on Wireless Sensor Networks. The language
includes high-level composition primitives, to promote a flexible coordi-
nation execution flow and interaction between components. We present
the language specification as well as a case study of data storage coor-
dination on sensor networks. The current specification of the language
generates code for the NS2 simulation environment. The case study shows
that the language implements a flexible model, which is general enough
to be used on a wide variety of sensor network applications.

Keywords: WSN Storage · Software Components · Domain-Specific
Languages.

1 Introduction

Wireless sensor networks (WSNs) are essential components of urban computing.
They can be applied in a variety of contexts. For traffic monitoring, they can
be used to monitor the flow of vehicles in order to control the traffic lights and
minimize jams. For environment monitoring, they can be used to collect the
pollution level in order to detect critical areas and take actions that minimize
its effect on the population.

Sensor networks deployed on urban areas are usually dense. They are com-
posed of thousands of devices that communicate via radio, and have limited
resources for processing and storing data. There are three categories of data stor-
age models for WSNs [13, 22]: local, external, and data-centric. The local and
? This research was partially funded by INES 2.0, CNPq grant 465614/2014-0 and
Fundação Araucária.
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external categories store sensored data on the sensor device, and on an external
device with more resources (usually called the base station), respectively. These
categories are not appropriate for dense networks. This is because local storage
requires all devices to be contacted in order to collect data to answer queries,
which may result in poor response times. On the other hand, external storage
requires sensors to periodically report their readings to the base station, which
may cause unnecessary high traffic of messages. The data-centric approach, on
the other hand, combines both approaches, by electing a subset of sensors to act
as representatives of sets of devices, which store their readings. In this model,
groups of sensors compose clusters, represented by cluster heads - CHs. Thus,
in order to answer queries, only CHs have to be contacted, providing scalability
for dense networks, such as urban WSNs. There are a number of data-centric
storage models proposed for urban scenarios [11].

Validation of the proposed models usually involves programming them in a
simulation environment, given the costs and difficulties of deploying such large
networks in real settings. NS2, NS3, and OMNeT++ are among the simulation
environments used for WSNs. While developing previous works on urban data-
centric models we have noticed that: (1) the majority of programs are developed
from scratch, and there is little to no support for code reusability; and (2) there
are similarities among models on the flow of activities, which can be modeled
as state machines. We have tackled these problems by proposing a component-
based model for WSNs called RCBM [7], and a state machine to formalize the
interaction among components [5]. Although the state machine helps the spec-
ification of the overall flow of activities, the programmer is still responsible for
developing the code specified by the state machine. In this paper, we propose a
language that closely resembles a state machine, which allows the programmer
to define the flow of activities in a higher-level of abstraction. Our current spec-
ification generates code for the NS2 simulator. However, we envision that in the
future the same program can be used to generate code for sensor devices using
a platform-independent library such as wiselib [4].

The idea of specifying the control flow in a higher-level language can minimize
the complexity of developing event-based programs. Event-based programming
is often used as an abstraction mechanism for devices with limited resources. In
WSNs, this programming model is adopted by operating systems such as TinyOS
and Contiki, as well as for simulation environments: NS2, NS3 and OMNeT++.
However, the flow of events in these programs is hard to understand and maintain
[14]. Examining NS2 programs coded by different developers, we have noticed
that they found it difficult to control the flow of activities when they were not
triggered by an event, but by a logical condition or a timer. Each programmer
used a different approach for handling this type of state change, generating
completely different programs, which are thus hard to maintain.

Our proposed language, called SLEDS (State Machine-based Language for
Event-Driven Systems), overcomes this problem, by directly defining states and
transitions among them. Transitions may be event-based and logic-based. SLEDS
also supports primitives for point-to-point and broadcast communication among
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sensors. The language focus on the coordination flow of data-centric entities that
are associated with a set of components that implement common functionalities.
In this paper, we present the language specification, as well as a syntax-based
translation of SLEDS to NS2. A case study that implements data-centric storage
models for WSNs shows that the language is general enough to be used on a wide
variety of applications.

The remainder of the paper is organized as follows. Section 2 discusses the
related work. Section 3 presents SLEDS as well as a syntax-based translation.
Section 4 details a case study of data storage coordination on sensor networks.
We conclude in Section 5 highlighting future works.

2 Related Work

Data-centric storage has attracted a lot of attention, given that its decentralized
approach is more scalable for large-scale urban WSNs than external and local
storage models. In this model, some sensors in the network are responsible for
storing the readings of a group of sensors. MKSP [9] follows this approach by
mapping raw data to storage nodes. In order to exploit the spatial data simi-
larity of sensor readings, AQPM [6] and SILENCE [17] consider some sensors
elected as cluster heads to be the group representative, minimizing the commu-
nication overhead. Although recent efforts have been made to build efficient data
storage systems, the specific nature of WSNs and the lack of a common general
purpose development framework make the design of these applications a hard
task. RCBM [7] promotes software reuse from existing components to improve
the efficiency of system development and evaluation. The separation of the coor-
dinator from the application components proposed by RCBM allows developers
to explore similarities among models on the flow of activities.

Domain-Specific Languages (DSL) are programming languages to be used in
a well-defined context. As opposed to general-purpose programming languages,
DSLs are devised to closely follow practices of their application domain [10].
DSLs are commonly used in the context of Wireless Sensor Networks [8], as
well as for the definition of state-transition systems. In the context of WSNs,
Hood [23] provides a neighborhood programming abstraction. Algorithms are
designed based on a set of criteria for choosing neighbors and definition of vari-
ables to share among them. Hood is aimed at simplifying the use of operations
such as synchronization and communication with neighboring sensors. SenNet
[21] abstracts WSN programming complexity to develop node and group-level
applications. Although the purpose of Hood, SenNet and SLEDS is similar, to
provide a high-level abstraction for developing sensor-based application, the ap-
proaches adopted by each of them differ. SLEDS is based on a state machine
while Hood is based on the concept of neighborhood. SenNet does not adopt a
flexible execution model such as the one proposed by SLEDS.

Also in the Data-Centric context, Regiment [20] is a DSL which provides a
geo-temporal view of the WSN. The language provides primitives to manipulate
sets of geo-localized data streams. This centralized view is translated by the
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compiler into specific code to be run by each sensor in the network. The use of
DSLs for the definition of state machines is a well-studied topic [15]. For instance,
in [19], the authors propose a DSL to implement a specific type of state machines
to describe complex systems. However, it does not target sensor applications as
SLEDS. We observed that the development of programs to control data-centric
coordination and storage on WSNs follow patterns that can be modeled by state-
transition machines. Moreover, developing such applications is usually considered
complex by an average programmer. In order to tackle these problems, we defined
SLEDS, a DSL for managing data-centric storage on WSNs.

3 SLEDS: The Language

This section presents SLEDS (State Machine-based Language for Event Driven
Systems), a DSL used to implement state machines for data storage coordination
on sensor networks. Section 3.1 presents the language syntax, followed by a
specification of its translation to NS2 network simulation code in Section 3.2.

3.1 Syntax

The grammar illustrated in Figure 1 describes the SLEDS syntax. In our pro-
gramming model, each sensor executes an instance of a SLEDS program. A state
machine communicates with each other through asynchronous message passing.
A SLEDS program consists of (i) a Program declaration, its identifier and a se-
quence of input parameters, followed by (ii) a sequence of constants const, (iii)
a sequence of variables, and (iv) a sequence of state definitions StateDef.

A StateDef is composed of an identifier, a sequence of input parameters
followed by a list of actions ActionList. The actions correspond to sensor ac-
tivities triggered in response to an event or based on a logical condition. An
ActionList is a sequence of standard control flows, such as sequential, condi-
tional, and iteration, as well as primitives for sending and receiving messages, as
detailed below:

– Action ::= nextState State: describes a state change to a new State. Each
State declaration has a name Id with arguments representing the input
parameters of the state. The exit state finishes the program.

– Action ::= broadcast (Exp, Exp, ExpList): corresponds to the asyn-
chronous communication sent from a sensor to all its neighbor sensors, that
is, the ones within its communication range. The arguments are the message
type, message identifier and a list of parameters.

– Action ::= send (Exp, Exp, ExpList, ExpList): corresponds to the asyn-
chronous communication sent from a sensor to a set of destination sensors.
The arguments are the message type, message identifier, the set of destina-
tions and a list of parameters.

– Action ::= on recvBroadcast (Id, Id, IdList){ ActionList }: corresponds
to the receipt of a broadcast message.
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Program ::= Program Id(Type Id(, Type Id)∗) {
(const Id = (Num-Literal | Str-Literal); )∗

(Type V arList; )∗ StateDef∗ }
VarList ::= V ar (, V ar)∗;
Var ::= Assignment | Id
StateDef ::= State Id(Type Id(,Type Id)∗) { ActionList }
State ::= Id ( ExpList? ) | exit
ActionList ::= Action (Action)∗

Action ::= nextState State;
| broadcast(Exp, Exp, ExpList);
| send(Exp, Exp, ExpList, ExpList);
| on recvBroadcast(Id, Id, IdList) {ActionList}
| on recv(Id, Id, IdList, IdList) { ActionList }
| during(Exp) on recvBroadcast(Id, Id, IdList)
{ ActionList } nextState State;
| during (Exp) on recv(Id, Id, IdList, IdList)
{ ActionList } nextState State;
| while (Exp) { ActionList }
| for Id in Exp { ActionList }
| if (Exp) { ActionList } (else { ActionList })?
| Assignment;
| Method-call;

Method-call ::= Exp
Assignment ::= Id = Exp
Exp ::= Exp − > Exp | Exp . Id | Exp(Exp?) | Id
ExpList ::= Exp (, Exp)∗

IdList ::= Id (, Id)∗

Fig. 1. SLEDS Syntax

– Action ::= on recv (Id, Id, IdList, IdList){ ActionList }: corresponds to
the receipt of a send message.

– Action ::= during (Exp) on recvBroadcast (Id, Id, IdList) {ActionList }
nextState State: corresponds to the receipt of a broadcast message during
a time interval, and change to a new State at the end of this period.

– Action ::= during (Exp) on recv (Id, Id, IdList, IdList) { ActionList }
nextState State: corresponds to the receipt of a send message during a
time interval, and change to a new State at the end of this period.

As an example, consider the state machine for discovering neighbors illus-
trated in Figure 2. Note that there are two types of transitions:

– event state change: specifies a transition to a new state when the sensor
receives a message or upon the timer expiration (represented in blue lines).

– logic state change: a machine transitions to a new state triggered by the
result of a computation, and represented in red lines.

Some event-based languages, such as NS2 simulator, provide limited abstrac-
tion to implement state machine models. The SLEDS language facilitates this
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Wait_First_Sensor_ID
[send SENSOR_ID]

recv SENSOR_ID

recv SENSOR_ID

ACK_Neighbor_List
[send ACK_SENSOR_ID]

Store_Neighbor_List
[initTimer(tExit)]

recv ACK_SENSOR_ID

INI
[If ID==0
    send SENSOR_ID]

Form_Neighbor_List
[initTimer(tFlood)]

(b)(a)

timer  tFlood

Event state changeLogical state changeState of the coordinator

EXIT

timer  tExit

EXIT

Fig. 2. State machine of a discovery neighbors algorithm.

task allowing developers to describe the state machine in a high level abstrac-
tion and translates this representation into an NS2 simulation code. Listing 1.1
illustrates the SLEDS program that implements the neighbor discovery machine.

1 use compSensor as ComponentsSensor;
2 use compLibMSG as ComponentsLibMessage;
3
4 Program Coordinator () {
5 const tFlood =25;
6 const tExit =0.1;
7 int myID = compSensor ->getSensorId ();
8 list <int > listSensorAnnouncements;
9 int msgID;

10
11 STATE INI() {
12 if (myID == 0) {
13 msgID = compLibMSG ->GetNextMsgId ();
14 broadcast(SENSOR_ID , msgID , myID);
15 compLibMSG ->addSeenMsg(SENSOR_ID , msgID); }
16 nextState Wait_First_Sensor_ID (); }
17
18 STATE Wait_First_Sensor_ID () {
19 on recvBroadcast(SENSOR_ID , msgID , ID) {
20 listSensorAnnouncements.insert(ID);
21 if (!compLibMSG ->seenMsg(SENSOR_ID , msgID)) {
22 compLibMSG ->addSeenMsg(SENSOR_ID , msgID);
23 broadcast(SENSOR_ID , msgID , myID); }
24 nextState Form_Neighbor_List (); } }
25
26 STATE Form_Neighbor_List () {
27 during (tFlood) on recvBroadcast(SENSOR_ID , msgID , ID) {
28 listSensorAnnouncements.insert(ID); }
29 nextState ACK_Neighbor_List (); }
30
31 STATE ACK_Neighbor_List () {
32 send(ACK_SENSOR_ID , compLibMSG ->GetNextMsgId (),
33 listSensorAnnouncements , myID);
34 nextState Store_Neighbor_List (); }
35
36 STATE Store_Neighbor_List () {
37 during (tExit) on recv(ACK_SENSOR_ID , msgID ,
38 listSensorAnnouncements , fromID) {
39 for v in listSensorAnnouncements
40 if (v == myID)
41 compSensor ->listKnownNeighbors.insert(fromID ); }
42 nextState exit;}

Listing 1.1. Neighbor discovery SLEDS program
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The program assumes the existence of components: compSensor and com-
pLibMSG. The first provides basic sensor functionality, such as returning the
sensor identification (function getSensorId), and storage of its list of neighbors
(listKnownNeighbors). The compLibMSG provides functionality related to mes-
sages exchanged among sensors. There are functions to create a new message
identification (GetNextMsgId) and to store, for each sensor, the type and identifi-
cation of messages already received (addSeenMsg). In fact, in a component-based
programming environment, a SLEDS program plays the role of a coordinator,
which is responsible for the flow of activities that glue the software components,
specifying the interactions among them. After including references to the com-
ponents (l.1-2), the program declares a set of constants and variables. Constant
tFlood defines the delay of message transmissions in the network, and constant
tExit determines the delay needed between sending a message and receiving an
acknowledgement in order to avoid collisions. Variable myID keeps the sensor
unique identifier, which is obtained executing function getSensorId() provided
by the compSensor component (l.7).

Every sensor executes the same SLEDS program, starting in the INI state
(l.11). In this state, the sensor with myID zero, obtains a new message identi-
fier and sends a message of type SENSOR_ID to all its neighbors (l.12-14), and
stores the message identifier type and identifier in order to avoid sending dupli-
cated messages (l.15). The sensor with myID zero and the remaining sensors
perform a logical state change to Wait_First_Sensor_ID (l.16). The sensors
that receive the first message SENSOR_ID store the ID contained in the mes-
sage and send their identifier to their neighbors (l.19-23) and perform an event
state transition to Form_Neighbor_List (l.24). In state Form_Neighbor_List,
sensors continue to store the ID from their neighbors during a time interval
tF lood (l.26-28). When the timer expires, nodes perform an event state change
to ACK_Neighbor_List (l.29) and send an ACK message to the known neighbors
recorded in variable listSensorAnnouncements (l.32). After sending the ACK mes-
sage, the sensors make a logical state change to Store_Neighbor_List (l.34).
In state Store_Neighbor_List, during a time interval tExit (l.36-38), sensors
that receive the message check if they are the final destination and update its
list of neighbors (l.40-41). At the end of the flooding, each sensor has in its
local listKnowNeighbors variable, its list of neighbors. Next section presents a
proposal to translate SLEDS programs to NS2 simulation codes.

3.2 Translation to NS2

In a NS2 program, the coordination of the sensor activities is implemented in
two main functions: recv and TimerHandle. Function recv is responsible for
managing messages and contains the code for state transitions triggered upon a
message receipt. Function TimerHandle is activated by the expiration of a timer.
Observe that in the state machine illustrated in Figure 2, both are represented
as event-based transitions, and there is no distinction among them in the SLEDS
program in Listing 1.1. However, in the NS2 program, they have to be coded
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in different functions, which adds complexity to understand the flow of activi-
ties. Moreover, states may generate code not only for the recv or TimerHandle
functions, but for both. Examples for each case are presented next.

1  STATE INI() {
2 if (myID == 0) {
3         msgID = compLibMSG→GetNextMsgId();
4         broadcast(SENSOR_ID, msgID, myID);
5         compLibMSG→addSeenMsg(SENSOR_ID, msgID);
6 }
7 nextState Wait_First_Sensor_ID();
8  }

1   void WSN_ComponentsAgent::TimerHandle(State st) {
2  switch (st) {
3 case INI: {
4    if (myID == 0) {
5                   msgID = compLibMSG→GetNextMsgId();
6                   broadcast(SENSOR_ID, msgID, myID); 
7               compLibMSG→addSeenMsg(SENSOR_ID, msgID);
8     }
9     nextState=Wait_First_Sensor_ID;
10 }
11   }
12  }

Fig. 3. SLEDS code and NS2 translation of INI state

The INI state of Listing 1.1 is an example that generates code only for the
TimerHandle function as shown in Figure 3. The translated code is composed of a
switch command, with case clauses, one for each state identifier. The case for the
INI state contains the same code provided by the SLEDS program, which ends
with a state transition to state Wait_First_Sensor_ID (l.9). The translation of
this state generates code only for the recv function, as illustrated in Figure 4.

1   STATE Wait_First_Sensor_ID() {
2     on recvBroadcast(SENSOR_ID, msgID, ID) {
3       listSensorAnnouncements.insert(ID);
4       if  (!compLibMSG→seenMsg(SENSOR_ID, msgID)) {
5          compLibMSG→addSeenMsg(SENSOR_ID, msgID);
6          broadcast(SENSOR_ID, msgID, myID);
7      }
8   nextState Form_Neighbor_List();
9     }
10 }

1   void WSN_ComponentsAgent::recv(Packet* pkt, Handler *) {
2  WSN_Components_Message p = pkt;
3  switch(nextState) {
4    case (Wait_First_Sensor_ID): {
5          if (param.getMsgType() == SENSOR_ID) {
6             listSensorAnnouncements.insert(param.getSensorID());
7             if  (!compLibMSG→seenMsg(p.getSensorID(), p.getMsgID())) {
8                  compLibMSG→addSeenMsg(p.getSensorID(), p.getMsgID());
9                  broadcast(SENSOR_ID, msgID, myID);
10            }
11            nextState=Form_Neighbor_List;
12      }
13    }
14  }
15 }

Fig. 4. SLEDS code and NS2 translation of Wait_First_Sensor_ID state

Similar to TimerHandle, the recv function in NS2 is also composed of a
switch command, with case clauses, one for each state. Part of the generated
code in NS2 is to obtain the parameters from the the packet received, but most
of the code inside each case clause is identical to the SLEDS program. The trans-
lation to NS2 is not so direct when it involves both functions TimerHandle and
recv, as shown in Figure 5, which corresponds to state Form_Neighbor_List.
The recv function sets a timer tFlood (l.7). During this period the sensor stores
the neighbor announcements (l.10) at every SENSOR_ID message received. How-
ever, the transition to the next state ACK_Neighbor_List cannot be made in
this function, since the sensor may receive multiple message of this type. Thus,
the transition is coded in the TimerHandle function, which is triggered at the
expiration of tFlood timer.
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1 STATE Form_Neighbor_List() {
2   During (tFlood) on recvBroadcast(SENSOR_ID, msgID, ID) {
3    listSensorAnnouncements.insert(ID);
4   }
5   nextState ACK_Neighbor_List();
6 }

1   void WSN_ComponentsAgent::recv(Packet* pkt, Handler *) {
2       WSN_Components_Message p = pkt;
3    switch(nextState) {
4 case (Form_Neighbor_List): {
5 if (param.getMsgType() == SENSOR_ID) {
6     if (nextState != previousState) {
7   libTimer.resetTimer(tFlood);
8   previousState=Form_Neighbor_List;
9     }
10     listSensorAnnouncements.insert(p.getSensorID());
11       }
12 }

1   void WSN_ComponentsAgent::TimerHandle(State st) {
2  switch (st) {
3 case Form_Neighbor_List: {
4 nextState=ACK_Neighbor_List;
5 libTimer.resetTimer(0);
6 }
7  }
8   }

Fig. 5. SLEDS code and NS2 translation of Form_Neighbor_List state

Due to space limit, we have not included the translation for states ACK_
Neighbor_List, which generates code in function TimerHandle, and Store_
Neighbor_List, which generates code in both functions.

We have adopted a syntax directed translation to generate the NS2 code
from a SLEDS program. In this technique, attributes and semantic rules are
associated to each production of the grammar [1]. The general approach consists
of building a derivation tree and then determine the attribute values in each node
of the tree during its traversal. Semantic rules express the relationship between
the computation of attribute values and the productions, by associating code
fragments to each attribute. The set of attributes and semantic rules is denoted
as an attribute grammar [18]. There are two types of attributes: synthesized
and inherited. In our approach, synthesized attributes are used to pass semantic
information up the parse tree, while inherited attributes help pass semantic
information down.

In our grammar, there are three attributes: rc, tc, and dest. The first two
are synthesized attributes and determine whether the code fragment is going to
be included in function recv or TimerHandle, respectively. Attribute dest is
inherited, and may contain either the value rc or tc, and it is used to pass down
the tree the function in which the code will be generated, based on the node
context.

The attribute grammar in Figure 6, describes the attributes and grammar
rules to generate code for the state Form_Neighbor_List, and Figure 7 the re-
sulting parse tree. Observe at the bottom of the tree that the inherited attribute
dest of node Action contains the value rc in order to pass the information
down the tree that the Method-call should generate code for attribute rc. This
attribute, will then receive the code fragment, which is passed up the tree in
order to compose the final rc value at the tree root. This is the code that will
be included in the recv function. The same process is used to compose the fi-
nal value of the tc attribute, with the code to be included in the TimerHandle
function.
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Examples presented in this section show how a SLEDS program can generate
NS2 code using an attribute grammar specification. The next section presents a
case study that shows how SLEDS programs can be used to generate data-centric
storage models for WSNs in a component-based development framework.

(r1) State ::= State1 Id1“(”Type Id2(, T ype Id3)
∗) “{” ActionList “}”

if (ActionList.tc != null)
State.tc = “switch (nextState):{ case” + Id1.txt + “:”

+ “{” ActionList.tc + “}}”
if (ActionList.rc != null)

State.rc = “switch (nextState):{ case” + Id1.txt + “:”
+ “{”+ ActionList.rc + “}}”

(r2) Action ::= during “(”Exp“)”on recvBroadcast “(”Id1, Id2, IdList“)”
“{”ActionList “}” nextState State“)”

Action.rc = “if (nextState != previousState) {”
Action.rc += “libTimer.resetTimer(”+Exp.txt+“)”
Action.rc += “previousState=”+Action.pst
Action.rc += ActionList.rc + “}”

(r3) Method− call ::= Exp

if(Method− call.dest==rc) {Method− call.rc = Exp.rc}
else { Method− call.tc = Exp.tc }

Fig. 6. Attribute grammar to generate code for state Form_Neighbor_List

4 Validation

RCBM [7] is a component-based framework to develop WSNs storage models
that promotes code reusability. It is depicted in the central box of Figure 8.
RCBM addresses data-centric entities that share concepts and functionalities,
which represent various instances of WSN storage systems. These shared func-
tionalities are the components of the system. Although it has been shown that
the framework is efficient for promoting code reusability, the application de-
veloper is still responsible for coding the coordination among the components.
SLEDS, with its high-level composition primitives, can be used to generate code
for the RCBM coordinator, as we will show in this section.

RCBM has been implemented on the NS2 simulator and considers three
types of components: library components, application components, and the co-
ordinator. Library components provide a toolbox, that can be used to implement
application components, associated with WSN entities. For data-centric models,
these entities include: (i) sensor devices; (ii) cluster members (CM), which con-
sist of a set of sensors; and (iii) cluster-heads (CHs) that are sensors responsible
for storing the information of all cluster members. These entities define a hier-
archical storage model, where each cluster designates a sensor as cluster-head
for storing the readings of its group members. The coordinator is responsible for
the execution flow and message exchanges. Next section shows a case study that
implements data-centric storage models for WSNs.
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State

Id ActionList

Exp
.txt=T

Actionduring
.txt=libTimer.
       resetTimer

.txt=Form_Neighbor_List

nextState
.txt=nextState .txt=ACK_Neighbor_List

Id4

.tc = nextState=ACK_Neighbor_List;
        libTimer.resetTimer(0);

.tc = switch (nextState) : {
          case Form_Neighbor_List: {
            nextState=ACK_Neighbor_List;
            libTimer.resetTimer(0);
        }
     }

State

Method-call
.dest=rc

on recvBroadcast Id1 Id2 IdList
.txt=T .txt=recvBroadcast .txt .txt .txt

.rc = listSensorAnnouncements.insert (p.getSensorID()); 

.dest=rc

.rc = listSensorAnnouncements.insert (p.getSensorID()); 

.rc = if (nextState != previousState) {
libTimer.resetTimer(tFlood);
previousState=Form_Neighbor_List;

        }
        listSensorAnnouncements.insert(p.getSensorID());

.rc = switch (nextState) : {
  case ( Form_Neighbor_List): {
    if (param.getMsgType() == SENSOR_ID) {

                  if (nextState != previousState) {
                         libTimer.resetTimer(tFlood);
                         previousState=Form_Neighbor_List;

        }
        listSensorAnnouncements. insert (p.getSensorID());

              }

Action
.rc = if (nextState != previousState) {

libTimer.resetTimer(tFlood);
previousState=Form_Neighbor_List;

}
listSensorAnnouncements. insert(p.getSensorID());

.tc = nextState=ACK_Neighbor_List;
        libTimer.resetTimer(0);

Fig. 7. Parse tree for the Form_Neighbor_List state

Communication Platform

Coordinator
Component Template

Coordinator Component

Application Components

CM CH Sensor

Library Components

Timer Agregation Input

Application Components
Template 

CM Sensor CH

SLEDS
Program

Parser

1    TimerHandle(State st) {
2    switch (st) {
3 case SELECT_CH: {
4 …...
5 }
6            break;
7 case JOIN_CLUSTER: {
8 …...
9 }
10             break;
11    }
12  }

1     recv(Packet* pkt, Handler *) {
2    switch(nextState) {
3 case (SELECT_CH): {
4 if (getMsgType() == CH_ANNOUNCE) {
5                                       ...
6 }
7        }
8             break;
9 case (JOIN_CLUSTER): {
10 if (getMsgType() == ACK_CH_ANNOUNCE) {
11                                      ...
12 }
13        }
14           break;
15       }
16   }

Specification

Implementation

    recv(Packet* pkt, Handler *) {
       switch(nextState) {

case (SELECT_CH): {
                  if (getMsgType() == CH_ANNOUNCE) {
                                       ...

     }
 }

                 break;
              case (JOIN_CLUSTER): {
                    if (getMsgType() == ACK_CH_ANNOUNCE) {
                                      ...
                    }
              }
               break;
       }
   }

RCBM framewok

Fig. 8. SLEDS back-end architecture.

4.1 LEACH Coordinator Component Implementation

LEACH (Low-Energy Adaptive Clustering Hierarchy) [16] is a probabilistic model
that forms one-hop clusters. LEACH assumes that all nodes are within the
communication range of each other. Sensors elect themselves as cluster-heads
with a probability p. In RCBM, the compCH component defines the function
selectCH(map<K, V>) that the developer should implement according to the
target model. For the coordination that implements the cluster formation of
LEACH, every sensor si executes selectCH(si, p), where K = si and V = p.
Listing 1.2 depicts the SLEDS coordination code of the CH election phase.

1 // Program executed by each sensor
2 use compSensor as WSN_ComponentsSensor;
3 use compCH as WSN_ComponentsCH;
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4 use compCM as WSN_ComponentsCM;
5 use compLibMSG as ComponentsLibMessage;
6
7 Program Coordinator () {
8 const p=0.2;
9 const tCluster =25;

10 const tExit =0.1;
11
12 double RSS;
13 int myCH;
14 int myID=compSensor ->getSensorId ();
15 list <int , double > knownCHs;
16 list <int > sensorList;
17
18 STATE Select_CH () {
19 if (compCH ->selectCH(myID , p)) {
20 broadcast(CH_ANNOUNCE , compLibMSG ->GetNextMsgId (), myID);
21 compSensor ->role = CH; }
22 else {
23 compSensor ->role = CM; }
24 nextState Join_Cluster (); }

Listing 1.2. The CH Election Coordination

The Select_CH state (l.18) describes the actions that should be executed
during the election phase. First, each node calls selectCH() (l.19). If the func-
tion returns true then the sensor broadcasts its role as cluster-head (CH) to
the network (l.20-21) and performs a state transition to Join_Cluster (l.24).
Otherwise, the sensor role is set as a cluster member (CM) (l.22-23). Listing 1.3
illustrates the Join_Cluster state code.

25 STATE Join_Cluster () {
26 During (tCluster) on recvBroadcast(CH_ANNOUNCE , msgID , ID) {
27 RSS = compSensor ->getRSS(ID);
28 knownCHs.insert(ID, RSS); }
29 nextState Cluster_Formation (); }

Listing 1.3. The Join Cluster Coordination

In the next state (l.25), sensor nodes wait for tCluster time units for CH
announcements and update the value of knownCHs based on the received signal
strength (RSS) (l.26-28). When the timer expires, remaining sensors join the
cluster, as illustrated in Listing 1.4.

30 STATE Cluster_Formation () {
31 if (compSensor ->role = CM) {
32 myCH = compCM ->joinCluster(knownCHs );
33 sensorList.insert( myCH );
34 send(ACK_CH_ANNOUNCE , compLibMSG ->GetNextMsgId (), sensorList , myID);
35 nextState EXIT;
36 } else {
37 nextState Store_Members (); }

Listing 1.4. The Cluster Formation Coordination

In LEACH, a cluster member (l.31) decides to join the cluster that requires
the lowest energy consumption to communicate. Thus, it sets as CH the sen-
sor with the maximum RSS recorded by knownCHs (l.32). Then, it sends an
ACK_CH_ANNOUNCE message to the chosen one and move to the EXIT state (l.33-
35). Otherwise, the CHs perform a logical state change to Store_Members (l.36-
37). Listing 1.5 depicts the SLEDS code implementation.
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38 STATE Store_Members () {
39 During (tExit) on recv(ACK_CH_ANNOUNCE , msgID , destListID , fromID) {
40 for v in destListID{
41 if (v = myID) {
42 compCH ->members.insert( fromID ); } } }
43 nextState EXIT ;}

Listing 1.5. The Store Members Coordination

The CHs execute the actions corresponding to the Store_Members state
(l.38). First, CHs wait for timer tExit units to receive ACK_CH_ANNOUNCE mes-
sages from group members (l.39). If it receives a message, the sensor updates
its list structure of members (l.40-42). When the timer tExit expires, the pro-
gram terminates its execution (l.43). Figure 9 illustrates a state machine of the
LEACH coordination flow, an instance of a data-centric WSN storage system.

recv CH_ANNOUNCE

Cluster_Formation
[send ACK_CH_ANNOUNCE]

Store_Members
[initTimer(tExit)]

recv ACK_CH_ANNOUNCE

Select_CH
[broadcast CH_ANNOUNCE]

Join_Cluster
[initTimer(tCluster)]

Event state changeLogical state changeState of the coordinator

timer tCluster

INI
[If ID==0
    send SENSOR_ID]

EXIT

timer  tExit

 

EXIT

Fig. 9. State machine of a data-centric storage model.

The flow of execution depicted in Figure 9 is similar to the one adopted
by the component-based framework CBCWSN [2], which has been shown to
express a number of data-centric storage instances. As we will show next, the
same can be said of the SLEDS program. In order to implement LCA [3], only
three lines of code have to be modified, mainly to take into consideration a
distinct criterion for CH election. LCA elects as CH the sensor with the lowest
ID among its neighbors that not received a CH announcement. Listing 1.6 shows
the two states in which there are lines in the SLEDS program that differ from
the LEACH code. Line 27 from Listing 1.3 has been removed and Lines 5 and
14 differ on the arguments to functions selectCH and knownCHs.insert.

1 Program Coordinator () {
2 list <int > knownNeighbors;
3
4 STATE Select_CH () {
5 if (compCH ->selectCH(myID , knownNeighbors )) {
6 broadcast(CH_ANNOUNCE , GetNextMsgId (), myID);
7 compSensor ->role = CH; }
8 else {
9 compSensor ->role = CM; }

10 nextState Join_Cluster (); }
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11
12 STATE Join_Cluster () {
13 During (tCluster) on recvBroadcast(CH_ANNOUNCE , msgID , ID) {
14 knownCHs.insert(ID); }
15 nextState Cluster_Formation (); }

Listing 1.6. The LCA Coordination

The two case studies presented in this section show that the model instances
share the same state machine specification, promoting reusability. The program-
mer develops a few lines of code with the specificities of each model. Moreover,
the state machine primitives adopted by SLEDS does not impose any fixed flow
of activities (such as CBCWSN), but allow the developer to define the coordi-
nation of any data-centric model.

5 Conclusion

In this paper we proposed a Domain-Specific Language, called SLEDS, for pro-
totyping Wireless Sensor Network applications that adopt a data-centric storage
approach. The current specification of the language generates code to run on
the NS2 simulation environment, using a library of components provided by
RCBM [7]. We validate our approach by defining a syntax-directed translation
into NS2 code. As case studies we developed SLEDS programs for LEACH and
LCA data-centric models. Our experiments showed that both models share many
similarities on the flow of activities. The achieved results show that SLEDS al-
lowed code reuse and agile development for the LCA specification. Our proposal
answers some of the challenges identified in [12]. In the future, we intend to im-
plement the parser to translate SLEDS program to NS3 code, a more intuitive
NS2 evolution as well as to other simulators and real networks.
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