
PrInt: A Provenance Model to Support
Integration Processes

Bruno Tomazela
University of São Paulo
São Carlos, SP, Brazil

tomazela@icmc.usp.br

Carmem S. Hara
Federal University of Paraná

Curitiba, PR, Brazil
carmem@inf.ufpr.br

Ricardo R. Ciferri
Federal Univ. of São Carlos

São Carlos, SP, Brazil
ricardo@dc.ufscar.br

Cristina D. A. Ciferri
University of São Paulo
São Carlos, SP, Brazil
cdac@icmc.usp.br

ABSTRACT
In some integration applications, users are allowed to import
data from heterogeneous sources, but are not allowed to up-
date source data directly. Imported data may be inconsis-
tent, and even when inconsistencies are detected and solved,
these changes may not be propagated to the sources due to
their update policies. Therefore, they continue to provide
the same inconsistent data in the future until the proper au-
thority updates them. In this paper, we propose PrInt, a
model that supports user’s decisions on cleaning data to be
automatically reapplied in subsequent integration processes.
By reproducing previous decisions, the user may focus only
on new inconsistencies originated from source modified data.
The reproducibility provided by PrInt is based on logging,
and by incorporating data provenance in the integration pro-
cess.

Categories and Subject Descriptors
H.2.5 [Database management]: Heterogeneous Databases

General Terms
Management

Keywords
Data integration, reapplication of integration decisions, data

provenance, logging

1. INTRODUCTION
Data integration has been the focus of a lot of attention

in both academia and industry [5]. At instance level, data
integration aims at solving inconsistencies on data imported
from heterogeneous sources, which may contain information
on the same entity in the real world, but that differ on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’10, October 26–30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

value of their attributes. Although there are a number of
approaches proposed in the literature that investigate data
integration and data provenance separately, few of them con-
sider both in the same setting [8, 3, 2, 6, 1]. In this paper,
we address the use of provenance to support instance level
data integration.

Data provenance is the set of metadata that allows for
the identification of sources and transformations applied to
data, since its creation to its current state [7, 4]. There are
several advantages of incorporating data provenance into in-
tegration processes, such as the ability to provide curated
data back to external sources. However, there are a num-
ber of integration applications in which updates on external
sources are not allowed, for instance, due to lack of per-
mission. In this setting, even when the integration process
identifies that two pieces of information refer to the same
entity in the real world, and corrects them on local copies,
these updates may not be propagated to the sources. There-
fore, the same erroneous data continue to be provided until
the proper authority decides to update them.

Example 1. Suppose that a research center periodically
generates a list of publications of its personnel by import-
ing data from their home pages and also from digital li-
braries, such as DBLP and ISI Web of Knowledge. Three
researchers, John, Jack and Mary, are co-authors of a pa-
per, but the imported data are inconsistent, as shown in
Fig. 1a. Here, a paper is composed of attributes title, year
and venue, and papers are identified by the value of the at-
tribute title. Each paper also contains a set of authors, each
of them with attributes name and citationOrder. We con-
sider that in the context of a paper, each author is identified
by its name. A user integrating these sources may perform
the following actions: 1. the value of paper’s title for John

is manually edited from ‘Integrating...’ to ‘Integration...’; 2.
paper’s year is copied from John to Jack; 3. author ‘Bob’ is
removed from Mary ; 4. venue is copied from John to Jack;
and 5. author ‘Mary ’ from Jack is inserted into John. The
remaining actions (i.e., 6 to 9) represent copies, which are
similar to actions 2 and 4. After performing these actions,
the imported data become consistent and are stored as three
local copies, each one containing the integrated paper shown
in Fig. 1b. Due to lack of permission, corrections made in
local copies may not be propagated to the sources. Thus,
in subsequent integration processes the user must reprocess

the imported data, by taking the same decisions, in addition
to those over new detected inconsistencies.

Repeating manual interventions on integration processes
has two main drawbacks. First, it is error-prone, and may
lead to contradicting solutions among integration processes.
Second, it is time consuming, and it tends to get worse as
the volume of data increases. Therefore, another advantage
of incorporating data provenance into data integration pro-
cesses is to allow user’s decisions to be reproduced in future
iterations of the process.
The few provenance-based data integration systems that

have been proposed in the literature [8, 3, 2, 6, 1] do not aim
at reproducing integration decisions in applications where
the integration process cannot update external data sources.
In order to address this issue, a provenance model must guar-
antee that all decisions taken by the user in previous inte-
grations processes are solved automatically in subsequent
integration processes. For reproducing a sequence of oper-
ations and maintaining the same semantics, the provenance
model has to consider the effect of transitive and overlap-
ping operations, since they may mistakenly affect the final
result of the integration process. Furthermore, it must be
checked whether user’s decisions remain valid. We say that
a decision is valid if the context in which it has been made
remains unchanged. That is, if the data sources continue
to provide the same data used as basis for the decision in a
previous integration process.
In order to achieve the aforementioned goals, we propose

PrInt, a novel data provenance model that supports in-
stance level data integration processes. The model focuses
on applications in which data sources are read-only, i.e.
users are allowed to import data, but are not allowed to
update them. The goal of PrInt is the reproduction of
user’s decisions among distinct integration processes. Using
our model, all actions performed by the user in Example 1
are reapplied automatically, guaranteeing the proper man-
agement of transitive and overlapping operations while per-
forming validation. As a result, the user will only solve new
inconsistencies generated from source modified data.
This paper is organized as follows. Section 2 gives an

overview of the properties satisfied by the PrInt model,
which are detailed in Sections 3 to 5. Section 6 concludes
the paper.

2. THE PRINT MODEL
The integration scenario considered by the PrInt model

is depicted in Fig. 2. In this scenario, a first integration pro-
cess, denoted as IntProc1, is executed by receiving as input
several heterogeneous sources (Fig. 2a). It uses an integra-
tion tool to identify and solve inconsistencies. As the user
manually decides how to solve the inconsistencies (Fig. 2b),
these actions are mapped to operations stored in a reposi-

tory (Fig. 2c). Consistent copies of the imported data are
locally stored, since direct updates on heterogeneous sources
are not allowed (Fig. 2d).
In a subsequent integration process, which we denote

as IntProc2, the local copies from IntProc1 are replaced
by up-to-date versions of the imported data. However, in
IntProc2, the sources may or may not continue to provide
the same inconsistent data (Fig. 2e). Thus, before reap-
plying the operations defined by IntProc1, we first need
to check whether the source have been updated. That is,

we validate the repository of operations with respect to the
sources’ current version (Fig. 2f). This step is followed by
the reapplication of all valid operations on the imported
data. This process reproduces the user’s integration deci-
sions taken in IntProc1 (Fig. 2g). As a result, manual in-
tervention for solving inconsistencies among data sources in
IntProc2 are limited to those new inconsistencies originated
from source updates since IntProc1 (Fig. 2h and b).

Performing a “validation and reapplication” pre-
processing on imported data based on a repository of

operations can drastically reduce the number of manual
interventions in an integration process. As a result, integra-
tion becomes less error-prone and less time-consuming. To
support this process, the PrInt model has been designed
to satisfy two properties, as follows.

• Consistency of the Repository: Given a set of data
sources S and a repository consisted of a sequence of
operations Op, each data item in S is updated at most
once by operations in Op.

• Strict Reproduction of User’s Decisions: If a
value conflict has been solved based on a set of data
item values V , then the same strategy for solving the
conflict is guaranteed to be taken by the user in sub-
sequent processes if V remains unchanged.

The motivation for the first property is to guarantee that
there are no two operations that determine the final value of
a data item. In order to achieve consistency, relationships
between operations must be considered. For instance, if in
an integration process the user takes a decision that over-
rides a previous one, then operations related to the older
decision must be managed properly. The management of
relationships between operations is described in Section 4.

The second property, described in Section 5, refers to the
idea that if a decision has been made based on a set of data
values V , we can only apply the same strategy if these val-
ues remain unchanged. For instance, suppose that two data
sources provide distinct values, v1 and v2, for the same data
item, and the user chooses v1 over v2. Once one of them, say
v2 is modified to v3, it is not clear whether the decision of
choosing v1 over v3 is correct. In this case, we do not reap-
ply the corresponding operations so that inconsistencies are
not introduced in local copies without the user’s consent.

Before describing the PrInt’s properties, we provide in
Section 3 details on operations supported by our model.

3. STORAGE OF INTEGRATION DECI-
SIONS AS OPERATIONS

External data sources may keep information on distinct
data formats. After importing these source data into PrInt,
entities are represented as objects, which are composed of
attributes and subobjects. We consider that each object
can be uniquely identified by the value of a subset of its
attributes, called key attributes.

In PrInt user’s integration decisions are mapped to a se-
quence of operations, which are stored in a repository. We
consider four operations: insert, remove, edit, and copy.
Insert and remove are operations on objects, while edit

and copy are attribute-level operations. Observe that these
operations do not directly reflect user actions for integrat-
ing data as the ones described in Example 1. That is, user

John
paper
WLWOH��µ,QWHJUDWLQJ«¶

\HDU��µ����¶

YHQXH��µ&,.0¶

author
QDPH��µ-RKQ¶

citationOrder��µ�¶
author
QDPH��µ-DFN¶

citationOrder��µ�¶

John - Jack - Mary
paper
WLWOH��µ,QWHJUDWLRQ«¶

\HDU��µ����¶

YHQXH��µ&,.0¶

author
QDPH��µ-RKQ¶

citationOrder��µ�¶
author
QDPH��µ-DFN¶

citationOrder��µ�¶

author
QDPH��µ0DU\¶

citationOrder��µ�¶

1.edit

Jack
paper
WLWOH��µ,QWHJUDWLRQ«¶

\HDU��µDFFHSWHG¶

venue: µ&RQIHUHQFH���¶
author
QDPH��µ-RKQ¶

citationOrder��µ�¶
author
QDPH��µ-DFN¶

citationOrder��µ�¶

author
QDPH��µ0DU\¶

citationOrder��µ�¶

Mary
paper
WLWOH��µ,QWHJUDWLRQ«¶

\HDU��µ����¶

venue: µ,QWO�&RQ���¶
author
QDPH��µ-RKQ¶

citationOrder��µ�¶
author
QDPH��µ-DFN¶

citationOrder��µ�¶
author
QDPH��µ0DU\¶

citationOrder��µ�¶
author
QDPH��µ%RE¶

citationOrder��µ�¶
3.remove

(a) heterogeneoussources (b) local copies

2.copy

4.copy

6.copy

7.copy

5.insert

8.copy

9.copy

Figure 1: Inconsistent sources and actions performed by the user to integrate them.

Figure 2: The PrInt model’s architecture.

actions or decisions can be expressed in a high-level lan-
guage, and be mapped to a sequence of basic operations in
the repository. For instance, consider action 5, which inserts
author ‘Mary ’ in John’s data, based on the values provided
from Jack. The insert action is mapped to a sequence of
operations consisted of an insert operation to create a new
author subobject for John, followed by a copy operation
from Jack to John on attribute citationOrder. Similarly, ac-
tion 3 for removing author ‘Bob’ from Mary consists of an
edit operation for setting ‘null ’ to the non-key attribute ci-

tationOrder, followed by a remove operation. On the other
hand, edit and copy actions are mapped to edit and copy
operations, respectively.
A repository R is an array of records, where each record

contains information on a basic operation. The array or-
der reflects the temporal execution order of the operations.
Each record in R is composed of the following attributes:
(i) id: integer that identifies an operation in R (id ≥ 1); (ii)
op: the type of the operation, cp, ed, in, rm denoting copy,
edit, insert and remove, respectively; (iii) origin: source
that provides the correct value; (iv) target: source that is
the target of the operation; (v) objKey : values of key at-
tributes of the object; (vi) objAtt: attribute name involved
in op; (vii) originValue: origin’s attribute value; (viii) tar-

getValue: original target’s attribute value before the execu-
tion of op. Given a record a in R, we denote by a.att the
value of attribute att of a.

4. CONSISTENCY OF THE REPOSITORY
There are two types of relationships between operations in

a repository that may affect its consistency: transitive and
overlapping operations, which are described in Section 4.1.
In Section 4.2, we define a strategy, called the redo policy, for
detecting and managing inconsistencies among operations.

4.1 Relationships between Operations
When an operation b uses the result of another operation

a, b is transitive to a. Transitive operations can be direct
(a→ b) or indirect (a→n b), and capture the idea of prop-
agating operations results to subsequent ones.

We also consider operations that overwrite previous re-
sults, which we denote as overlapping operations and dis-
tinguish between origin (a ←o b) and target (a ←t b) over-
lapping. When a ←o b or a ←t b, operation a is said to be
the overlapped operation and operation b is said to be the
overlapping operation. Intuitively, a ←t b if both operations
writes on the same data item, and a ←o b if operation a

uses the value of a data item that is later overwritten by
operation b.

Given the notions of transitive and overlapping opera-
tions, a repository is consistent if transitive operations do
not create cycles and there are no overlapped operations.
Transitive operations may propagate a value back to its ori-
gin, creating a cycle, which is not desirable because it could
generate an infinite number of operations to be stored in the
repository. This problem is avoided in PrInt by not allow-

ing copy operations to have the same value on its originValue
and on its targetValue, i.e., in a given copy operation a,
a.originValue must be different from a.targetValue. There-
fore, cycles of transitive operations never occur in PrInt.

4.2 The Redo Policy
Inconsistencies among operations are derived from over-

lapping operations, and are propagated to others by transi-
tivity. Managing the repository consistency consists of de-
veloping policies for repairing inconsistencies generated from
overlapping operations. These actions take place during the
integration process. In this section, we propose the redo

policy for keeping the repository consistency. This policy is
maintained by modifying and reordering operations stored
in the repository.
Consider first origin overlapping. If a ←o b then oper-

ation a uses the value a.originV alue for updating an at-
tribute value of another object on data source a.target;
a.originV alue is later overwritten by operation b with a
different value b.originV alue. In this case, we infer that the
user’s decision for applying operation a is based on the fact
that she chooses the value provided by a.origin over that
provided by a.target. In order to maintain this decision,
given that a.originV alue is updated by operation b with
b.originV alue, this new value should also be propagated to
a.target (i.e., b→ a becomes true). Therefore, the redo pol-
icy for solving this inconsistency is to modify a by changing
a.originV alue to b.originV alue, and moving a to the end of
the repository. Operations that are direct or indirect tran-
sitive to a also use a.originV alue. Thus, the same strategy
is applied to these operations. Operations modified by the
redo policy must be imediatelly executed using their new
originV alue.
Now, consider target overlapping operations. Recall that

if a ←t b then both operations update the same data item
in some source (i.e., a.target = b.target). Since operation
b is executed after a, in the end result the outcome of a’s
execution has no effect on the integration process. Thus,
the redo policy removes a from the repository. Nevertheless,
operations that are transitive to a must be adjusted. This is
because given an operation c, if a→ c, c takes as input the
value written by a. Since the final value of this data item
is now given by operation b, c.originV alue is changed to
b.originV alue, and c is moved to the end of the repository.

5. REAPPLICATION OF OPERATIONS
The main goal of the PrInt model is to provide a means

for reapplying operations that reflect the same decisions
made by the user in previous integration processes. Since
data sources are autonomous, they can be updated between
two integration processes. Thus, we need to validate the
operations before reapplying them. Validating an operation
consists of verifying if both origin and target attributes still
store the same value on the data item involved. Intuitively,
we can only assume that the user would take the same ac-
tion for solving the conflict if the data remain unchanged.
Otherwise, the model would require additional user input.
Validation has the property that if an operation is invalid,

then all its transitive operations are invalid as well. Another
property is that validation is executed at attribute level.
Copy and edit actions satisfy this condition, but insert and
remove actions do not, as they are defined over objects. In
order to perform validation, insert actions are mapped to

insert and copy operations, and remove actions are mapped
to remove and edit operations, as described in Section 3.
Thus, an insert action is valid if its corresponding insert

and copy operations are valid, and a remove action is valid
if its corresponding remove and edit operations are valid.

To reapply operations, we propose VRT (Validate and

Reapply in Tandem), a method which consists of the fol-
lowing steps. It first checks whether each operation in the
repository is valid with respect to the origin. If this condi-
tion is true, then it also checks for validity with respect to
the target. Given that the operation is valid both on origin

and target, it is reapplied on target. After processing all
operations in the repository, the integrated data sources are
available to be used in the new integration process, with all
previous decisions made by the user already in place.

6. CONCLUSION
In this paper, we propose PrInt, a provenance model

that supports instance level data integration processes. The
model focuses on systems in which the integration process is
not allowed to update heterogeneous sources directly accord-
ing to user’s integration decisions. Therefore, it updates lo-
cal copies of data sources, and keeps a consistent repository
of operations for reproducing user’s decisions in subsequent
integration processes automatically.

We are analyzing new policies for the management of over-
lapping operations to support a wider range of integration
scenarios. We also plan to extend PrInt to support schema
level integration [5]. Another future work is to deal with con-
current schedule of operations in multiuser environments.

Acknowledgments. This work has been supported by
the following Brazilian research agencies: FAPESP, CNPq,
CAPES and FINEP.

7. REFERENCES
[1] D. W. Archer, L. M. L. Delcambre, and D. Maier. A

framework for fine-grained data integration and
curation, with provenance, in a dataspace. In TaPP,
2009.

[2] O. Benjelloun, A. Das Sarma, A. Halevy, M. Theobald,
and J. Widom. Databases with uncertainty and lineage.
The VLDB Journal, 17(2):243–264, 2008.

[3] P. Buneman, A. Chapman, and J. Cheney. Provenance
management in curated databases. In SIGMOD, pages
539–550, 2006.

[4] J. Freire, D. Koop, E. Santos, and C. T. Silva.
Provenance for computational tasks: A survey. IEEE
Computing Science & Engineering, 10(3):11–21, 2008.

[5] A. Y. Halevy, A. Rajaraman, and J. Ordille. Data
integration: The teenage years. In VLDB, pages 9–16,
2006.

[6] Z. G. Ives, T. J. Green, G. Karvounarakis, N. E.
Taylor, V. Tannen, P. P. Talukdar, M. Jacob, and
F. Pereira. The orchestra collaborative data sharing
system. SIGMOD Record, 37(3):26–32, 2008.

[7] A. Kementsietsidis and M. Wang. Provenance query
evaluation: what’s so special about it? In CIKM, pages
681–690, New York, NY, USA, 2009. ACM.

[8] N. Shiri and A. Taghizadeh-Azari. Lineage tracing in
mediator-based information integration systems. In
ISSADS, pages 267–282, 2005.

