
Phoenix
A Relational Storage Component for the Cloud

Davi E. M. Arnaut, Rebeca Schroeder and Carmem S. Hara
Universidade Federal do Paraná, Curitiba, PR, Brazil

{davi,rebecas,carmem}@inf.ufpr.br

Abstract—This paper describes the design and architecture
of a cloud-based relational database system. The system’s core
component is a storage engine, which is responsible for mapping
the logical schema, based on relations, to a physical storage, based
on a distributed key-value datastore. The proposed stratified
architecture provides physical data independence, by allowing
different approaches for data mapping and partitioning, while
the distributed datastore is responsible for providing scalability,
availability, data replication and ACID properties. A prototype
of the system, named Phoenix, has been developed based on
the proposed architecture using a transactional key-value store.
Experimental studies on a cluster of commodity servers show
that Phoenix preserves the desired properties of key-value stores,
while providing relational database functionality at a very low
overhead.

Index Terms—cloud computing, dht, distributed databases,
peer-to-peer

I. INTRODUCTION

The ever-increasing volume and diversity of data coupled

with the dissemination and maturation of various concepts

of cloud computing are transforming the economic aspects

of computing, mainly due to the introduction of data based

services with an affordable cost, which are on-demand and in

real time [1], [2]. One aspect of this paradigm shift is due

to new ways of handling and delivering data across service-

based distributed architectures, so that data can be easily

accessible and ubiquitous [3]. This new computing model

enables scalability of services and enhances opportunities

for collaboration, integration and analysis on a common and

shared platform.

There are several systems developed recently to explore

storage services in the cloud such as Amazon SimpleDB [4],

[5], Google App Engine [6], [7], Windows Azure platform [8],

Cassandra [9], PNUTS [10], and G-Store [11]. They all pro-

vide a similar service: a simple interface to store and retrieve

key-value pairs individually. In addition to similar service-

based interfaces, scalability and availability are commonly

achieved through a synthesis of peer-to-peer (P2P) techniques,

such as self-organization, decentralization and load balancing.

These cloud storage systems provide a scalable framework

for accessing and managing data of large-scale web applica-

tions [7], [9]. However, disregarding several of the underpin-

nings of relational database management systems (RDBMS)

can be considered a huge step backwards as it hinders im-

portant factors such as data independence, reliable transac-

tions, and other cornerstone characteristics often required by

applications that are fundamental to the database industry. In

particular, the majority of today’s cloud storage systems are

suitable for OLAP applications, but not for OLTP [3], largely

because it is hard to maintain strong consistency over replicas

that may be spread over large geographic distances.

In a recent paper [12], it has been shown that a Paxos-based

replication protocol, which ensures key range partitioning,

and a transactional service is a competitive alternative to

weaker notions of consistency adopted by the majority of

cloud datastores. The question we tackle in this paper is to

determine whether such a datastore is suitable to serve as the

physical layer component of a database management system.

More specifically, instead of reading and writing records

directly to disks like traditional RDBMS, we would like to rely

on a Paxos-based transactional key-value datastore to handle

storage and distribution of data.

To this end, we propose a new architecture for providing

a relational interface on top of a transactional key-value

datastore, thus leveraging traditional RDBMS features with

the availability and scalability of a cloud storage system.

The goal is to provide a database system with low startup

and maintenance costs, which is simple to manage. That

is, a system that does not require highly skilled specialized

personnel for tuning and managing, which is often the case

for traditional distributed database systems. The envisioned

scenario is a datacenter composed of a cluster of commodity

servers, where the system can be deployed to provide a

database service for the cloud. It means that data are stored

on the cloud, but may be accessed using the same interface as

standard RDBMSs, and with the same functionality expected

from them.

The system has been designed upon one main princi-

ple: data independence. Logical data independence makes it

possible to change the logical data structure with minimal

impact on application programs. Physical data independence

enables modifications to the physical storage structure without

affecting the logical view of the data. Similar to traditional

RDBMSs, we achieve data independence by adopting a strat-

ified architecture, in which the physical level consists of a

distributed key-value datastore, and the logical level consists

of a traditional RDBMS.

One of the challenges for developing the proposed architec-

ture is the definition of mappings between the relational and

key-value models, and also transforming operations defined

within the logical level of the relational database to corre-

sponding operations for the cloud datastore. This is equivalent

to the physical design of traditional RDBMSs, where the

database administrator takes into consideration both properties

of the physical storage device and the query workload when

defining a data storage schema that maximizes the system’s

performance. In a distributed system, this also involves deter-

mining different levels of granularity for partitioning data.

Contribution. We make the following contributions:

• an architecture for a relational cloud datastore;

• a model for bridging the gap between the relational and

key-value pair-based models. The proposed model allows

different forms of data partitioning, and also exploits the

key-range data distribution provided by some datastores;

• development of a system, named Phoenix, based on the

proposed architecture;

• an experimental study that determines the feasibility of

our approach. It shows that Phoenix provides relational

database functionality on top of a distributed datastore

without sacrificing scalability and consistency. Moreover,

the overhead associated with the use of Phoenix is min-

imum, compared to a datastore with no relational layer.

Organization. The remainder of this paper is organized as

follows. Section II presents the design, architecture and system

components. The implementation of Phoenix is described in

section III and the experimental study is the subject of section

IV. Section V presents related work, and we conclude on

section VI by outlining some future work.

II. SYSTEM DESIGN

In this section we present an architecture for a relational

cloud datastore. We follow the traditional three layers ap-

proach supported by relational database systems, consisted of

physical, logical, and external layers. As depicted in Figure

1, the logical and external layers rely on traditional database

concepts, but physical storage is provided by a cloud datastore.

Applications

External Layer

Relational DBMS

Logical Layer

Cloud Datastore

Physical Layer

SQL JDBC APIs

App 1 App 2 App N

RDBMS 2 RDBMS NRDBMS 1

Datacenter 1 Datacenter 2 Datacenter N

Fig. 1. Relational cloud datastore.

There may be multiple RDBMSs, and they may all be

manipulating data stored on datacenters distributed over the

network. Moreover, since the query language and application

interface of the RDBMS remain unchanged, existing software

have no conversion costs.

A. Cloud Datastore

The cloud datastore is responsible for ensuring the storage

of data in the system, in the form of a distributed, and scalable

service. In general, key-value stores are DHT (Distributed

Hash Table) systems that provide a generic interface with three

operations: put(key,value), to store the value associ-

ated with a given key on a P2P network node; get(key)

and delete(key) are operations to retrieve and remove the

value associated with a key, respectively.

Although these systems provide a number of desirable

functionalities to serve as a distributed storage component of

a traditional RDBMS, such as decentralization, redundancy,

adaptability, self-organization and low operating cost, there are

two additional features that we believe they should provide in

order to be used as the basis for our architecture: support for

transactions with strong consistency, and content locality.

In traditional database systems, the transaction manager

works with the storage engine for supporting atomicity, consis-

tency, isolation and durability (ACID) properties. High-level

queries are mapped to a sequence of read/write operations

on disks, which are in turn packed into an atomic unit by

the transaction manager. That is, transactions are defined as

sequences of basic operations, that are executed by the storage

engine. In our proposed architecture, the storage engine does

not operate directly on disks, but do so through a datastore

service. In order to provide a transactional functionality sim-

ilar to a traditional database system, datastores should allow

sequences of put-get operations to be packed into an atomic

unit. That is, the datastore should provide a transactional

service. Traditionally, datastores do not have support for strong

notions of consistency. However, in a recent paper, it has been

shown that with very low overhead a datastore based on Paxos

protocol can achieve stronger notions of consistency [12].

The ability to support strong consistency is closely related

to the ability to maintain data locality. The majority of cloud

datastores favors availability over consistency based on the

fact that it is hard to maintain strong consistency over data

that may be spread over possibly distant geographic sites.

Usually, DHT-based applications do not have any control over

the placement of data, since the P2P node that stores a (key,

value) pair is determined by the result of a hash function

applied on key. Load balancing is the main motivation for

randomly distribute data among peers that compose a network.

For database systems, however, physical design expects some

control over data locality in order to allow data clustering.

Indeed, clustered indexing has long been recognized as a major

technique for improving query performance. Similar to single-

server database systems, in which clustering may minimize the

number of disk accesses, data locality in a distributed system

can minimize the volume and cost of data communication over

the network. Moreover, the ability to control content locality

on a distributed datastore provides a number of advantages for

data retrieval, including improved availability, performance,

manageability, and security [13].

Currently, datastores provide content locality in two dif-

ferent ways: either by providing key-range partitioning, as in

PNUTS [10], App Engine’s BigTable [7], and Spinnaker [12],

or using a DHT-based system that maintains keys in lexico-

graphical order, as in Scalaris [14]. One important observation

is that in both approaches, values associated with similar keys

are kept either in the same or close servers. That is, these

systems support content locality provided that appropriate keys

have been defined on the datastore. In the next section, we

propose a model for mapping relations to key-value pairs that

exploits the idea of data clustering based on keys.

B. Relational and Cloud Interface

One of the main issues to be considered in our architecture is

the interface between the relational and cloud datastore, which

involves transformation between data models. Thus, data and

operations defined on one model have to be mapped to equiv-

alent ones on the other. In order to define such mappings, we

propose an intermediate data model, called VOEM. Relations

can be easily mapped to VOEM objects, which can in turn

be mapped to different forms of key-value pairs, expressing

multiple ways of fragmenting the original relation. Moreover,

in VOEM, keys can be defined to exploit the range-order

partitioning functionality provided by the underlying datastore.

In short, VOEM is an intermediate representation of data

that provides both fragmentation and data clustering in the

proposed architecture.

1) VOEM: VOEM is an extension of the Object Exchange

Model (OEM) [15], and stands for Value-based OEM. OEM

is a self-describing object model which provides a substrate

for representing a variety of other data structures. It represents

complex data structures using concepts such as object identity

and nesting. That is, in OEM every object has a unique identi-

fier (oid) and relationships between objects are represented by

using oids as subobjects or attribute values. In contrast, in the

relational model, relationships between data are represented

using the concept of key and foreign keys. That is, while OEM

relationships are oid-based, in the relational model they are

value-based. To bridge this gap, we propose VOEM, which

extends OEM with the notion of a key, that is, a set of sub-

objects that uniquely identify an object through values.

A VOEM object is a quintuple 〈oid, label, type, value, key〉.
The oid is a unique identifier for the object, and label describes

what the object represents. An object’s type can either be

atomic or complex. An atomic object value is an instance of

one of the basic atomic (scalar) data types, while the value

of a complex object is a set of object references (oids). The

key of a complex object is a pair (contextOid, subobjs), where

contextOid is an object identifier that defines the context in

which the key is defined, and subobjs is a subset of the object’s

value that can uniquely identify the object within the context.

Examples of VOEM objects are given in Figure 2b.

The nested structure of VOEM objects can also be repre-

sented as a directed labeled graph, as depicted in Figure 2c. In

this representation, nodes are labeled with oids, and edges are

labeled with object labels. A useful application of the graph

representation is the concept of path expression. A path can

be used to navigate through the object hierarchy. In a VOEM

graph, a path expression is a sequence of edge labels, as in

/books/book/identifier. Here, the leftmost “/” denotes the

root node, while the others denote edge traversal.

Given the notion of VOEM graphs, we can now give a

definition of VOEM keys, which is similar to the notion

of XML keys [16]. First, we need to introduce some nota-

tion. Given objects o1 and o2 with oids i1 and i2, respec-

tively, we denote by path(i1, i2) the path defined by the

edge labels traversed to reach o2 from o1. As an example,

path(bookR, t1) = book/title. We also define functions

valueOf(i1) and labelOf(i1) to extract the value and label

associated with an object. To represent the set of objects reach-

able by a path expression, we introduce the following notation:

o[[p]] is the set of VOEM objects obtained by following path p
starting from the node identified by o. If o is not specified than

p’s traversal starts from the root of the graph. For example,

bookR[[book/title]] = { 〈t1, title, string, “Voss”, kt1〉, . . . ,
〈tn, title, string, “Titlen”, ktn〉 }

We are now ready to define VOEM keys. Let o1 =
〈i1, label, type, value, k〉 be an object, where k =

(i2, {sub1, . . . subn}). The key specifies that the value of

the set of pairs {(labelOf(sub1), valueOf(sub1)), . . .,
(labelOf(subn), valueOf(subn))} uniquely identifies o1
among the objects in i2[[path(i2, i1)]]. Informally, the values

of the subobjects uniquely identify o1 among those reached

by following the same path as o1 in the subgraph rooted at

the object with oid i2. As an example, the key in the object

book1 = 〈b1, book, set, {i1, t1, a1}, (bookR, {i1})〉 determines

that {(identifier, 1)} uniquely identifies object book1 among

the set of book objects in the subgraph rooted at bookR.

That is, there are no two book objects that agree on their

identifier attribute.

The adoption of VOEM as the interface between the re-

lational and key-value pairs models requires that both the

database and the datastore be associated with mappings for

converting its underlying data to VOEM objects and back to

its original format.

2) Relational to VOEM: The transformation of relational

data to VOEM objects is a straightforward process. The four

basic concepts of the relational model are: relation, tuple,

attribute, and key. The first three concepts are related by

a compositional hierarchy, in which a relation is a set of

tuples, which in turn is a set of attributes with atomic values.

This hierarchy can be directly represented by VOEM objects,

with keys defined for tuple objects, in the context of relation

objects. An example of this mapping is given in Figure 2.

Here, a new object, with oid bookR is created for representing

the entire books relation. It consists of a label books, of type

set and has a set of oids as its value, each of them associated

with a tuple in the relation. Since in the relational model every

relation has a primary key, the VOEM key defined for each

tuple object is defined in the context of the relation object, and

having all attributes that compose the primary key as VOEM

key components. In the example of Figure 2b the key for the

first book object is defined as kb1 = (bookR, {i1}). That

is, in the context of relation object bookR, a book tuple is

identified by its subobject i1, that corresponds to the primary

key attribute identifier of the original relation.

Relation books

identifier title author

1 Voss Patrick
2 La notte Domenica
3 Vendaval Pilar

.
n T itlen Authorn

(a) A relational table

〈bookR, books, set, {b1, b2, . . . , bn}, kR〉
〈b1, book, set, {i1, t1, a1}, kb1〉

〈i1, identifier, integer , 1, ki1〉
〈t1, title, string , ‘‘Voss ’’, kt1〉
〈a1, author, string, ‘‘ Patrick ’’, ka1〉

〈b2, book, set, {i2, t2, a2}, kb2〉
. . .

〈bn, book, set, {in, tn, an}, kbn〉
〈in, identifier, integer , n, kin〉
. . .

(b) The object structure of books

i1 t1
a
1 i2 a

2
t2

b1 b2 bn

book
R

"Patrick"1 "Voss" 2 "La notte" "Domenica"

. . .

books

book book

title identifier title author
authoridentifier

book

(c) The VOEM data graph

Fig. 2. Mapping relational data to a VOEM object structure.

3) VOEM to key-value pairs: A mapping from VOEM to

key-value pairs is defined to satisfy one main condition: each

pair must have a unique distinct key in order to avoid key-

space collision. To distinguish the notion of a key in key-

value pairs from VOEM keys, we use storage key and storage

value to denote the components of a datastore pair. Given

that VOEM objects have a distinct oid, the simplest way for

mapping VOEM objects to key-value pairs, is by assigning the

oid to the storage key, and the remaining fields to the storage

value. Since oids do not carry any semantics, this approach

does not allow data clustering. In order to explore key range-

partitioning of the underlying datastore, storage keys should be

defined based on VOEM keys. Based on our running example,

an expression for extracting book authors as key-value pairs

can be given as follows.

m = {/book/author/ ◦ valueOf($k), valueOf($a))|

〈 $b, book, _, _, (bookR, {$k}) 〉 in [[/books/book]],

〈 $a, author, _, _, _) 〉 in valueOf($b)}

Here, we use identifiers preceded with $ to denote vari-

ables, “◦” as an operator for string concatenation and “_”

as placeholders for data that are not significant for the

mapping. This mapping specifies an iteration over book

objects in [[/books/book]]. From each object in this set, the

oid is extracted and assigned to variable $b, while its key

subobject is assigned to variable $k. The value of b, given

by its set of subobjects is then considered to obtain the

one with label author. The oid of this object is then

assigned to variable $a. The storage key is constructed by

concatenating path /book/author/ with the value of the $k
object (the identifier attribute), and the storage value

consists of the value of the author object identified by

$a. The result of this mapping on the VOEM objects of

Figure 2b is the set of pairs {(/book/author/1, “Patrick′′), . . .

(/book/author/n, “Author′′n)}. Similar mappings can be defined

for generating pairs for title and identifier attributes.

Observe that this mapping strategy results in a complete

fragmentation of the relation, in which each “cell” of the table

is individually stored in a key-value pair.

Note that if the datastore places data in order, according

to storage key values, author key-value pairs generated

according to mapping m given above, are likely to be stored

in the same or close storage servers. This is because they

all agree on their storage key prefix. On the other hand,

pairs representing attributes that compose a tuple are likely

not to be stored together. This is because storage keys like

/book/author/1 and /book/title/1 are not closely located in

a lexicographic order. Thus, this mapping defines a “column-

based” (or vertical) distribution of data. In order to define a

“tuple-based” distribution on the same “cell”-based fragmen-

tation, the storage key should be built by concatenating path

/book/ with the value of the identifier attribute, followed

by path /author. In this case, keys /book/1/author and

/book/1/title are in lexicographic order. Thus, these storage

keys define a “tuple-based” (or horizontal) distribution of data.

This shows that mappings through VOEM allow us to define

not only different levels of granularity for data fragmentation,

but also different ways of clustering fragments on storage

servers when the underlying storage keeps data in order.

III. PHOENIX: A RELATIONAL CLOUD DATASTORE

We have developed a system, called Phoenix, based on the

proposed architecture. In Phoenix, the logical layer consists

of MySQL RDBMS [17], while Scalaris [14] acts as the

cloud storage layer. Scalaris [14] is a transactional distributed

key-value store. It runs on a virtual network, composed of

a structured overlay network with logarithmic routing per-

formance that is used to store and retrieve key/value pairs

distributed among a set of nodes. The decision to use Scalaris

is due to its features that closely match those defined in

Section II-A. Scalaris ensures content locality by placing data

in lexicographic order, based on storage keys. Transactions

with strong consistency are provided by the Paxos consensus

protocol. The consensus protocol is also used to implement

transactions over multiple keys and to ensure that all replicas

of a key are updated consistently. Besides, availability is

achieved by symmetric replication [14].

For the logical layer, MySQL has been chosen because of

its pluggable storage engine architecture. The storage engine

is the underlying component of a RDBMS, responsible for

defining how data structured as relations are physically stored,

and also for exporting a relational view of stored data. MySQL

architecture defines services that the storage engine must

provide such that new engines can be developed and integrated

with other components of the system in a modular fashion.

Thus, the development of Phoenix involves building a storage

engine for MySQL based on Scalaris.

Conceptually, a storage engine should provide four basic

functions: create, read, update and delete one tuple at a time.

Thus, the development of Phoenix’s storage engine involves

both data mapping and operations transformations. Data map-

ping is provided by transforming data to an intermediate

representation (VOEM objects), as proposed in Section II-B.

Operations have been implemented entirely on top of the

standard interface of a datastore. Thus, it can theoretically

run on top of any datastore that exports the standard put-get

programming interface (API). The primitive access path meth-

ods implemented by the storage engine are key (primary and

unique) lookups, ordered storage key index scans (optionally

with a range predicate) and full table scans. A key lookup is

the most efficient method. Due to the way data is distributed,

it is possible to determined exactly where the data is located.

The remaining methods rely on the order preserving placement

of values provided by Scalaris.

IV. EXPERIMENTAL STUDY

We have conducted an experimental study for determining

the feasibility of Phoenix. The first experiment analyzes the

overhead of layering MySQL on top of Scalaris, and also the

scalability of the system. That is, using a synthetic workload,

we measure the cost incurred by the relational layer on the

datastore, and also the impact of adding new servers to the

system. In order to validate the system with a workload that

emulates an online transaction processing (OLTP) application,

experiments with SysBench benchmark [18] have also been

conducted. First, we consider a workload containing both read

and write operations. Then, a read-only workload has been

used for determining the effect of content locality on the

system’s performance.

These experiments were executed on a set of two to six

servers interconnected through a departmental LAN. Each

server has one dual core processor at 2.40GHz, with 2 GB

of RAM and a 100Mbps Ethernet card. Servers have no hard

disks, so data items are stored in memory. Not only data, but

process instances of MySQL, Scalaris and other tools are also

distributed among the servers. The communication between

the storage engine and Scalaris is based on remote procedure

calls (RPC) encoded in JSON (similar to XML-RPC) over

HTTP, while communication among Scalaris nodes uses a

native message passing layer. Scalaris is configured with a

replication factor of two; that is, the system keeps two replicas

of each data item stored.

A. Synthetic Workload

The goal of this experiment is to determine the overhead of

accessing the datastore through a RDBMS. That is, we deter-

mine the additional cost incurred by retrieving data stored on

a datastore using a high-level query language, as proposed by

Phoenix. To this end, we have defined a simple transaction for

incrementing a numeric attribute on a single tuple: UPDATE

table SET counter = counter + 1 WHERE id =

key. Here, table is a relation defined with attributes, id and

counter, where id is a primary key. Two types of clients

that execute 3000 iterations of this transaction have been

developed. The first, denoted as Scalaris client, accesses data

directly through a sequence of put-get operations packed in a

Scalaris transaction. The other, called Phoenix client, invokes

Phoenix to execute the SQL statement. When retrieving data

directly from Scalaris, the (key, value) pair consists of the

values of attributes (id, counter).

The experiment was executed with two servers, each of

them running a set of client applications, a MySQL server, and

hosting a Scalaris node, as depicted in Figure 3. The number

of clients deployed ranges from 16 to 128 in increments of

16. They are evenly distributed between the servers. That is,

with 80 concurrent clients, there are 40 clients running on

each server. Phoenix clients communicate with the MySQL

server running on the same server, while Scalaris clients

communicate directly with the DHT. In order to shield the

experiment results from the number of possible conflicts

among transactions, we have populated the relation (and the

datastore) as follows. Each client is assigned a randomly

generated unique identifier (GUID), and for each client a tuple

(or key-value pair) is created using the GUID as its key.

Then, each client executes a transaction for incrementing the

counter associated with its corresponding tuple, thus avoiding

any conflicts. Although in a real application conflicts among

transactions are likely to occur, this setting allows us to

precisely determine the effect of layering the RDBMS on the

datastore.

In each run of the experiment either Scalaris clients or

Phoenix clients were deployed on each server. Two metrics

were collected: rate of transactions per second (TPS), and

transaction response time (TRT) in seconds. By varying the

number of clients, TPS provides a measurement on the work-

load the system is able to process, while TRT determines the

impact of the workload on the system response time.

Client
Scalaris

Client
Scalaris

Client
Scalaris

Client
Scalaris

. . .

. . .

DHT

...

MySQL

Scalaris
node

Client Client

Phoenix

Server n

... Phoenix

MySQL

Scalaris
node

Client Client

Phoenix

Server 1

... ...

Phoenix Phoenix Phoenix

Fig. 3. Experiment with synthetic workload.

The results of this experiment are presented in Table I. The

first column contains the number of clients being executed

concurrently, while the following columns present the average

TPS and TRT of Phoenix and Scalaris clients. For the TRT, it

can be observed that for any number of clients, the difference

between the two settings is almost constant. That is, there

is an overhead of around 3×10−3 seconds to run an update

through Phoenix than executing it directly on Scalaris. We

can conclude that the TRT is determined by the datastore, and

the cost of Phoenix is minimum, given that the difference is

practically negligible. However, Phoenix may cause a decrease

on TPS of almost 18% in the worst case, and 9% in average,

as shown in the last column. The impact of increasing the

number of clients on TPS is around 50% when it grows from

16 to 32 and then to 48, as can observed from the three first

lines of the table. From this point forward the degradation

reaches lower levels.

TABLE I
EXPERIMENT WITH TWO SERVERS.

Clients
Phoenix Scalaris

Dif. TPS
TPS TRT TPS TRT %

16 16184 2.479×10−4 17725 2.271×10−4 -8.69

32 7608 5.258×10−4 8357 4.804×10−4 -8.97

48 4900 8.171×10−4 4951 8.097×10−4 -1.02

64 3340 1.198×10−3 4069 9.872×10−4 -17.90

80 2608 1.534×10−3 2876 1.392×10−3 -9.31

96 2134 1.877×10−3 2202 1.820×10−3 -3.08

112 1750 2.287×10−3 1916 2.090×10−3 -8.63

128 1460 2.743×10−3 1461 2.738×10−3 -0.06

In order to determine the impact of increasing the number of

servers in the system, and thus horizontal scalability, we have

run the experiment in the same setting, but with four servers.

Table II shows the results. It can be observed that the average

response time remains practically unchanged. For the TPS, on

the other hand, the addition of 2 servers almost quadrupled the

performance of the system. Since keys are evenly distributed

among the nodes, the addition of nodes causes an expansion in

the overall system capacity, but does not change the scenario

for processing each individual transaction. This shows that the

system is horizontally scalable.

TABLE II
EXPERIMENT WITH FOUR SERVERS.

Clients
Phoenix Scalaris

Dif. TPS
TPS TRT TPS TRT %

16 76029 2.167×10−4 78290 2.108×10−4 -2.89

32 37904 4.237×10−4 36659 4.417×10−4 3.40

48 21836 7.397×10−4 22808 7.019×10−4 -4.26

64 15114 1.061×10−3 16358 9.823×10−4 -7.60

80 12158 1.319×10−3 12785 1.253×10−3 -4.90

96 10180 1.577×10−3 10771 1.489×10−3 -5.48

112 8194 1.957×10−3 8764 1.835×10−3 -6.51

128 6860 2.339×10−3 7192 2.227×10−3 -4.61

B. SysBench benchmark

SysBench is a benchmark for assessing the performance

of OLTP workloads. Clients are implemented using threads

and communicate with a MySQL server using sockets. In the

advanced transactional mode of SysBench, used in this exper-

iment, each transaction request is composed of 21 operations,

with the last one being a commit. Among transactions, 66%

are read operations, while 23% write or remove tuples. All

operations are on a relation with 100 thousand tuples and four

attributes. The complete list of transactions, as well as the

table schema can be found in [18].

We have run the experiment on four servers, but the setting

is slightly different from the one shown in Figure 3. One

Scalaris node has been deployed in each server, but only one

of them has a MySQL server and Phoenix clients running

Sysbench. Tests were executed varying the number of clients

that access the database, from 1 to 128, with increments of

16. Table III shows the values collected when running the

experiment for 300 seconds. In order to obtain stable results,

the first transaction execution for each round was discarded.

Despite the short period for each measurement, samplings on

intervals up to 20 minutes showed no significant differences.

The first and second columns of the table contains the

number of concurrent Phoenix clients, and the number of

transactions per second (TPS), respectively. The remaining

columns are measurements of transaction response times

(TRT): the minimum, maximum, average, and 95th percentile

of execution times in milliseconds.

TABLE III
SYSBENCH ON OLTP ADVANCED TRANSACTIONAL MODE.

Clients TPS Min. Avg. Max. 95th

1 213.06 3.22 4.69 52.57 9.96
2 380.50 3.85 5.25 51.14 6.13
4 537.56 4.87 7.43 71.31 9.34
8 600.25 3.75 13.32 1817.00 17.88

16 595.47 10.42 26.86 306.18 37.97
32 560.34 20.68 57.09 1830.21 79.54
64 506.88 4.15 126.24 1960.06 159.19

128 76.09 446.70 1681.76 11633.69 1935.99

The results show that for up to 4 concurrent clients there is

an increase on TPS, and TRTs remain practically stable. For 8

clients, TPS is still higher, but compared to the previous round,

with 4 clients, the maximum TRT is around 25 times higher

and the 95th percentile doubles. From this point forward,

by adding 16 clients, we can observe that there is a slight

decrease on TPS, and both the average and 95th percentile

response times almost double. However, with 128 clients

there is a significant degradation on the system performance:

transactions take 1.9 seconds on average to be executed, and

can reach up to 11 seconds. We believe that this is due to

the computational power of the servers. With two processing

cores, the server reaches its limit at 64 clients, and with

additional ones, competition for resources may lead to CPU

overhead and transaction conflicts, which impacts the system

performance. This experiment shows that on this setting,

Phoenix can be effective for supporting OLTP applications

with up to 64 simultaneous clients. However, for applications

in which the response time is very restrictive, the number of

clients may not exceed 8.

C. SysBench benchmark with Fragmentation

Analyzing SysBench, we observed that the number of range

queries in the workload is greater than that of equality queries.

Thus, a strategy of horizontally fragmenting the relation, such

that range queries only need to access a few nodes may have

an impact on the system’s performance. In order to test this

conjecture we have set an experiment in which range queries

access 1 to 3 fragments stored on different Scalaris nodes,

and determine the impact of this distribution on the number

of transactions per second the system can execute.

The experiment setting is similar to the one described in

Section IV-B but with 6 Scalaris nodes and only one of

them executing a MySQL server and Sysbench clients. We

have used a 3000 tuples relation such that every range query

returns 200 tuples as its result. By maintaining a constant

result size, the cost of the communication in the system is

mainly based on the network latency, given that the volume of

data transmitted among nodes remains almost unchanged. The

relation is horizontally split in different number of fragments,

such that in each run the system needs to access 1 to 3

different fragments to retrieve the 200 tuples in the result.

We considered three scenarios. In the first, the relation is

partitioned in 12 fragments of 250 lines, with each Scalaris

node storing 2 fragments. In the second scenario, each node

host 3 fragments of 167 lines each. The third consists of 24

fragments of 125 lines, with a distribution of 4 fragments in

each node.

Table IV shows the results of this experiment, with the

number of Phoenix clients running Sysbench on read-only

mode varying from 2 to 10. The second, third, and fifth

columns show the number of transactions per second (TPS) in

each round, while the fourth and sixth columns show the rate

decrease on TPS, compared to the round with 12 fragments.

TABLE IV
FRAGMENTATION EXPERIMENT.

Clients
TPS

Fragments:12 Fragments:16 % Fragments:24 %
2 421.37 415.86 -1.30 402.10 -4.57
4 606.89 589.91 -2.80 579.55 -4.51
6 699.98 666.12 -4.84 657.40 -6.08
8 715.86 669.63 -6.46 658.29 -8.04
10 696.39 652.72 -6.27 643.62 -7.58

Corroborating the results in the previous experience, the

peak TPS of the system is with 8 concurrent clients in all

three scenarios, which also shows the maximum impact of data

distribution on the system performance. This impact ranges

from 1.3% to 6.46% when a second fragment is accessed

and from 4.57% to 8.04% when three fragments are needed.

Given that the volume transmitted data in all three scenarios is

almost the same, these results show that the cost of the number

of messages exchanged among the nodes is not negligible.

This highlights an important trade-off. Ideally, we would like

to minimize both the volume of data transmitted and the

amount of messages exchanged. By increasing the size of

a fragment, the number of messages may decrease, but the

volume of (unwanted) data may increase. Some datastores

provide a functionality for “packing” a set of requests for the

same node into a single message for minimizing the cost of

message passing. This functionality evidences the importance

of maintaining data locality, as proposed by Phoenix. If the set

of data requested by a query is maintained in the same or close

nodes, this may reduce the number of messages, which may

increase the system performance, as shown by this experiment.

V. RELATED WORK

Architectures based on P2P principles have been widely

applied to enhance the underlying mechanisms of storage plat-

forms in the cloud, producing a lot of research in distributed

systems with special focus on highly scalable and fault tolerant

data storage. These systems have been categorized in three

classes, according to their data model [19]: Key-value stores,

which support a model based on values and an index for data

retrieval (as Scalaris [14]); Document stores, with a model that

defines a key on a set of attribute-value pairs (as Dynamo [5],

the storage system of SimpleDB [4]); and Extensible record

stores, which follow a column-oriented model (as Cassandra

[9] and BigTable [7], the underlying datastore of the App

Engine [6]).

A characteristic among these systems is an inclination to-

wards self-descriptive (semi-structured) data models. However,

most of the systems have a custom query language with

limited expressive power. In both SimpleDB and App Engine,

query operators such as joins and aggregation have to be

implemented at the application level. A similar example is

the low-level API of the Amazon S3 service [20], which

only allows put and get operations on a key-value datastore.

Our stratified architecture allows the use of a high-level SQL

language provided by standard RDBMSs at the logical level.

Thus, Phoenix provides low startup and maintenance costs

through a standard user interface.

Designed for web applications, with emphasis on the perfor-

mance of read operations, App Engine and Amazon datastores

provide limited support for general OLTP applications. This

is because most of them do not support strong consistency.

Consistency in these systems is closely related to the data

physical partition and distribution model, contradicting tra-

ditional notions of logical and physical independence. One

example of this close interconnection is that the properties of

consistency, scalability and replication are only ensured in the

context of node groups on App Engine.

Alternative architectures for OLTP systems are evaluated

in [21]. This study shows that systems, like SimpleDB, App

Engine, MySQL Cluster [22] and MS Azure [8], achieve scal-

ability through architectures based on replication, partitioning,

and caching. However, in all these systems there are scalability

limitations given that they all rely on a centralized database

server control which maintains master copies. Similar to S3

architecture, the distributed control of Phoenix allows high

scalability because the storage system and database servers

are loosely coupled. Thus, servers can access concurrently

and autonomously the shared data stored on the key-value

storage system. However, Phoenix differs from S3 by adopting

a RDBMS at the logical level while in S3 high-level operations

must be implemented on the application level.

Bridging the gap between cloud datastores and database

systems has also been the focus of other works [23], [24].

The integration of MySQL and Cassandra [9] datastore is

described in [24]. Although the system architecture is similar

to Phoenix’s, some issues for integrating datastores with

database technology such as data mapping is not considered.

The system described in [23] has similar goals, but has been

developed with a different architecture which consists of a

cluster of commodity servers running traditional RDBMSs

with a distributed transaction mechanism on top.

The idea of developing an interface on top of existing

datastores has also been adopted by AppScale [25] and Yahoo!

[26]. However, the goal of both tools differs from Phoenix

since they provide frameworks for comparing cloud datastores.

To the best of our knowledge, there are no previous work that

explore mappings between relational data and key-value pairs.

VI. CONCLUSION

Unlike traditional distributed RDBMS, our preeminent mo-

tivation for developing a new cloud based relational storage

engine is to provide a scale-out database system without

sacrificing key features found in traditional relational database

systems, such as transactions and data independence. We have

defined a general framework for data and operations mapping

between the logical and physical layers of the proposed

architecture, based on VOEM. Besides providing a general

means for data mapping, VOEM can be used to support other

data models in the logical level, such as XML.

We have argued that support for content locality is a

key functionality that should be provided by a datastore to

support the proposed architecture, as well as support for a

strong notion of consistency. We describe the development of

Phoenix, based on MySQL RDBMS and Scalaris datastore.

Our experimental study shows that Phoenix provides scala-

bility and relational functionality on top of a datastore with

very low overhead. We use SysBench, an OLTP benchmark,

for showing the feasibility of our approach, and also for

measuring the impact the number of messages exchanged

among datastore nodes may have on the system performance.

Our results show that the communication of one additional

node for retrieving data may decrease around 6% the number

of transactions per second (TRT) the system can execute. This

evidences the importance of data locality on Phoenix.

There are a number of issues we intend to investigate in the

future. One of them is to explore the database storage engine

interface with the query optimizer and index structures. Thus,

plan refinements can allow the storage engine to (potentially)

deploy parallel processes for data filtering and query evalua-

tion, eliminating the need to transmit irrelevant tuples. Other

issues that deserve further investigation include: comparison

with other systems; storage of metadata in the cloud data-

store, including access permissions, data fragmentation, key

generation and other features related to multi-tenancy; efficient

support for constraints, such as foreign keys; mechanisms for

database recovery, such as periodic checkpoints; workload

analysis for automatic generation of a data fragmentation

schema; and definition of a high-level SQL-like language to

allow user-defined fragmentation schemes.

REFERENCES

[1] L. Tang, J. Dong, Y. Zhao, and L.-J. Zhang, “Enterprise Cloud Service
Architecture,” in IEEE Cloud10: International Conference on Cloud

Computing, 2010, pp. 27–34.
[2] Armbrust, Michael and et al, “Above the clouds: A berkeley view of

cloud computing,” EECS Department, University of California, Berke-
ley, Tech. Rep. UCB/EECS-2009-28, 2009.

[3] D. J. Abadi, “Data Management in the Cloud: Limitations and Op-
portunities.” IEEE Computer Society Technical Committee on Data

Engineering, vol. 32, no. 1, pp. 3–12, 2009.
[4] Amazon, “Amazon SimpleDB,” http://aws.amazon.com/simpledb/, 2007.
[5] G. DeCandia and et al, “Dynamo: amazon’s highly available key-value

store,” SIGOPS Oper. Syst. Rev., vol. 41, no. 6, pp. 205–220, 2007.
[6] Google, “App Engine datastore,” 2008. [Online]. Available: http:

//code.google.com/appengine/docs/datastore/
[7] F. Chang and et al, “Bigtable: a distributed storage system for structured

data,” in Symposium on Operating Systems Design and Implementation.
USENIX Association, 2006, p. 15.

[8] Microsoft, “Windows Azure platform,” 2010. [Online]. Available:
http://www.microsoft.com/windowsazure/

[9] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” SIGOPS, vol. 44, no. 2, pp. 35–40, 2010.

[10] B. F. Cooper and et al, “PNUTS: Yahoo!’s hosted data serving platform,”
Proc. VLDB Endow., vol. 1, no. 2, pp. 1277–1288, 2008.

[11] S. Das, D. Agrawal, and A. E. Abbadi, “G-Store: A Scalable Data Store
for Transactional Multi key Access in the Cloud,” in ACM SOCC, 2010,
pp. 163–174.

[12] J. Rao, E. J. Shekita, and S. Tata, “Using Paxos to build a scalable,
consistent, and highly available datastore,” Proceedings of the VLDB

Endowment, vol. 4, no. 4, pp. 243–254, Jan. 2011.
[13] N. J. Harvey and et al, “Skipnet: A Scalable Overlay Network with

Practical Locality Properties,” in USENIX Symposium on Internet Tech-

nologies and Systems, 2003.
[14] T. Schütt and et al, “Scalaris: Reliable Transactional P2P Key/Value

Store,” in ACM SIGPLAN workshop on ERLANG, 2008, pp. 41–48.
[15] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom, “Object Ex-

change Across Heterogeneous Information Sources,” in IEEE Interna-

tional Conference on Data Engineering, 1995, pp. 251–260.
[16] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan, “Keys for

XML,” Computer Networks, vol. 39, no. 5, pp. 473–487, 2002.
[17] Oracle, “MySQL Server,” 2010. [Online]. Available: http://www.mysql.

com/
[18] MySQL AB, “SysBench manual,” http://sysbench.sourceforge.net/docs/

#database_mode, 2010.
[19] R. Cattell, “High Performance Scalable Data Stores,” available at http:

//cattell.net/datastores/Datastores.pdf/, Apr. 2010.
[20] M. Brantner and et al, “Building a database on S3,” in ACM SIGMOD

international conference on Management of data, 2008, pp. 251–264.
[21] D. Kossmann and et al, “An evaluation of alternative architectures for

transaction processing in the cloud,” in ACM International conference

on Management of data, 2010, pp. 579–590.
[22] M. Ronström and L. Thalmann, “MySQL Cluster Architecture Overview

- High Availability Features of MySQL Cluster,” MySQL Technical
White Paper, Tech. Rep., Apr. 2004.

[23] C. Curino and et al, “Relational Cloud: A Database-as-a-Service for the
Cloud,” in Proceedings of the 5th Biennial Conference on Innovative

Data Systems Research, 2011, pp. 235–240.
[24] D. Egger, “SQL in the Cloud,” Master’s thesis, Swiss Federal Institute

of Technology Zurich (ETH), Sep. 2009.
[25] C. Bunch and et al, “An Evaluation of Distributed Datastores Using the

AppScale Cloud Platform,” in IEEE Cloud10: International Conference

on Cloud Computing, Jul. 2010, pp. 305–312.
[26] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with YCSB,” in Proceedings of

the 1st ACM symposium on Cloud computing, 2010, pp. 143–154.

