
XML Data Fusion

Frantchesco Cecchin1, Cristina Dutra de Aguiar Ciferri2, and
Carmem Satie Hara1

1 Federal University of Paraná – Curitiba, PR – Brazil
{frantchesco, carmem}@inf.ufpr.br

2 University of São Paulo – São Carlos, SP – Brazil
cdac@icmc.usp.br

Abstract. Ensuring high quality data when collecting and integrating
information from heterogeneous sources into a data warehouse is a chal-
lenging problem. In this paper, we propose a model for XML data fu-
sion, which allows the integrator to define data cleaning rules for solving
value conflicts that may have been detected during the integration pro-
cess. These rules resemble decisions that are made by users when data
are manually curated and, once defined, conflicts detected in subsequent
integration processes that are within the context of existing rules can be
automatically solved without user intervention. We also introduce a no-
tion of fusion policy validation that prevents conflicting resolution rules
to be defined. To validate our proposal, we developed XFusion, a rule-
based cleaning tool that stores curated data in a integrated repository.

1 Introduction

Nowadays companies of all sizes and from different segments maintain a repos-
itory of data imported from a number of sources. The integration of imported
data in a single repository provides a unified view of the available information,
and also constitutes the basis for applying data analysis techniques, such as data
mining and multidimensional analysis. In fact, data warehousing has emerged as
an area in recognition of the value and role of information, providing integrated
and high quality information targeted at decision support.

Imported data are often inconsistent. Thus, for achieving full integration,
data usually goes through an iteration of integration and cleaning processes.
Here, integration refers to the problem of identifying overlapping data in different
sources. This problem has been the subject of extensive research on relational
[9], entity-relationship [11], and XML [16] data models. Cleaning refers to the
process of solving attribute value conflicts. The problem arises when two or
more sources contain information on the same entity or attribute, but disagree
on their values. A number of approaches have been proposed in the literature for
addressing this problem, including data profiling, data mining, constraint-based,
and ontology-based techniques [13, 19, 9, 17]. Recently, the process of combining
multiple records representing the same real-world object into a single, consistent,
and clean representation has been denoted as data fusion [3].

The majority of existing systems for data fusion considers data structured
on relational format. Nevertheless, given that XML has become the standard
for data exchange on the Web, it is natural to also consider this format for the
integration process. In addition to the fact that currently most data sources
provide their data in XML, features that make this format suitable for data
exchange are also desirable for data cleaning. One of these features is its hi-
erarchical structure, which naturally represents relationships between entities.
Furthermore, as more organizations view the Web as an integral part of their
communication and business, the importance of integrating XML data in data
warehousing environments is becoming increasingly high [7].

Data cleaning usually requires some manual user intervention, even though
this is an error-prone and time-consuming process. In this paper we propose a
data fusion model for minimizing the amount of user mediation for data cleaning
in integration processes. The model is based on establishing a policy, composed of
a set of rules, which resemble decisions that are usually made by users when data
are manually curated. Once the policy is defined, conflicts detected in subsequent
integration processes that are within its context can be automatically solved
without user intervention.

The data integration scenario we consider is depicted in Figure 1. The input
for an integration tool is a set a data sources S1, . . . , Sn. This tool is responsible
for identifying corresponding entities among sources, and also for detecting value
conflicts. The user defines a set of rules for solving these conflicts, which are
stored in a policy base. Rules are then applied by a cleaning tool. “Discarded”
data values are stored in a resolution log, and a clean, consistent view of the
data is provided to the user by the data repository.

Data Repository

S1

S2

Sn

.
.
.

Integration
Process

User Decisions

Policy
 Base

Cleaning
Process

Resolution
Log

Fig. 1. Integration process with policy-based conflict resolutions for data cleaning.

Example 1. Consider two data sources providing data on products as depicted
in Figure 2. Data from source S1 are extracted to populate a data repository,
depicted in Figure 3(a), as follows. Each item element is mapped to a product,
along with its subelements manufacturer, model, and color. The item’s price
is mapped to a child of the product’s quotation, which stores price values from
different stores. For S2, the value for manufacturer is extracted from company’s
name, and values for the remaining subelements are given by subelements of
category/product. We assume that product elements in the repository are
identified by their manufacturer and model. Since both S1 and S2 provide data

store

name item

“Fast”

manufacturer model color price

item

“HP” “dv6000” “black” “2980”

1

1.1

1.1.1

1.2

1.2.2 1.2.51.2.3 1.2.4

1.2.1.51.2.2.1 1.2.3.1 1.2.4.1

1.3

@serial
“007”

1.2.1

(a) XML tree from S1

company

name

“HP” product

model color country

category

“dv6000” “white” “USA”

2

2.1 2.2

2.2.2.1

2.1.1

2.2.2.2 2.2.2.3

2.2.2.1.1 2.2.2.2.1 2.2.2.3.1

product

2.2.32.2.2

@type
“notebook”

2.2.1

(b) XML tree from S2

Fig. 2. Samples of XML tree representation.

repository

product

manufacturer model color quotation

product

“HP” “dv6000”

“black”

product

Source_1 Source_2

“white”

(a) Conflicting element.

repository

product

manufacturer model color quotation

product

“HP” “dv6000”

product

“white”

2.2.2.2.12.2.2.1.1
1.2.3.11.2.2.1

2.1.1

(b) Conflict solved.

Fig. 3. Data repository tree with temporary inconsistency [15] and after cleaning.

on products that coincide on the values of these elements, they are merged in
the repository. Nevertheless, they disagree on the value of the product’s color.
Following the integration model proposed in [15], value conflicts are explicitly
represented as depicted in Figure 3(a), along with their provenance, i.e. the
sources that provided the conflicting data.

A cleaning strategy for solving the conflict may determine that whenever a
data item provided from S2 disagrees with any other source, we should choose
S2’s value over the others, since S2 contains data provided by the product manu-
facturer while other sources are resellers. As a result of applying this strategy, the
data repository keeps a single consistent value for all product’s subelements, as
shown in Figure 3(b). In our model, a rule expressing a cleaning strategy is stored
in the policy base, while the discarded value of product’s color (‘‘black’’) is
kept in the resolution log, which helps us consider the value in future conflict
resolution processes. As an example, suppose that data from a new source S3 is
imported into the repository, and that S3 also provides the value ‘‘black’’ for
the same product. If the strategy for solving the conflict is modified for choosing
the value provided by the majority of the sources, we would be unable to deter-
mine that the value for color in the repository should be changed to ‘‘black’’
if we did not keep S2’s value in the resolution log. Rules for solving value con-
flicts can be defined on different contexts of an XML tree. They may involve a
single element or a set of subtrees. The ability to define contexts on subtrees may
generate inconsistencies among conflict resolution rules. As an example, suppose
that the rule for choosing S2 over other data sources is to be applied on all sub-

trees for which the product’s manufacturer is HP, and a second rule for choosing
the value provided by the majority of the sources is defined on all subtrees for
which the product’s model is dv6000. Since both rules apply to the product in
our running example, we need a notion of policy validation for avoiding such
inconsistencies and for deterministically determine which rule should be applied
for solving a given one.

Contributions. In this paper we make the following contributions.

– We propose a model for XML data fusion based on a set of rules for solving
value conflicts in data integration processes. Cleaning rules resemble deci-
sions commonly made by users for handling value conflicts, and minimize
manual intervention for data curation.

– We define a fusion policy validation on a set of conflict resolution rules. Our
fusion policy validation prevents inconsistent rules to be defined on the same
element of the repository.

– We present a tool, called XFusion, that has been developed based on our
model. It supports both XML data integration and cleaning processes.

Organization. The rest of the paper is organized as follows. Section 2
presents preliminary definitions used as the basis for our proposal, while Sec-
tion 3 introduces our model for XML data fusion. Fusion policy validation is the
subject of Section 4, and Section 5 presents the XFusion tool. Section 6 discusses
related work and Section 7 concludes the paper.

2 Preliminary Definitions

Before describing our fusion model, we present a definition of XML trees, the
integration model considered in this paper, and strategies for data fusion previ-
ously proposed in the literature.

2.1 XML Trees and Integration Model

An XML document is typically modeled as a node-labeled tree T , in which the
set of nodes V can be of one of three types: element, attribute and text nodes.
For each node n in T we define the following functions: (1) lab(n) assigns a label
to n if n is an element or attribute node, and a distinct label L if n is a text
node; (2) val(n) assigns a string to attribute and text nodes, and is undefined
for element nodes; (3) ele(n) and att(n) define the edge relation of T : if n is an
element then ele(n) is a list of elements and text nodes in V and att(n) is a set
of attributes in V ; if n is an attribute or a text node then ele(n) and att(n) are
undefined; (4) id(n) assigns a unique identifier to n, which represents the path
from the root r of the tree to n. We assume that each XML tree has a distinct
identifier S which denotes its source, and that id(r) = S. That is, the root’s
node identifier coincides with the XML tree source identity.

Examples of XML trees are given in Figures 2(a) and 2(b), where each node
n is represented with its identifier (id(n)), a label (lab(n)) if it is an element

or attribute node, and a value (val(n)) if it is an attribute or text node. The
encoding adopted by the identifier function id is called Dewey Order [5], which
provides a global node ordering. Since in our model each data source has a
distinct source identifier, which coincides with the root identifier, in Figure 2(a),
id(r) = 1 and in Figure 2(b), id(r) = 2.

In this paper, we adopt the model proposed in [15] for identifying correspond-
ing entities among data sources, and for explicitly representing value conflicts.
This model assumes that the data repository has a fixed schema, and a set of
XML keys [4] for identifying elements in a document. The repository is popu-
lated with data imported from data sources through a transformation language
that maps source data to the repository schema. Whenever two source elements
are mapped to an entity in the repository that coincide on their key values, they
are merged. The repository stores provenance information on every imported
data item, and explicitly represents value conflicts detected after the merging.

Example 2. Consider again XML data sources depicted in Figures 2(a) and 2(b),
and the XML tree resulting from merging them given in Figure 3(a). Following
the syntax proposed in [4], the XML keys that determine how elements are
merged in the repository can be defined as follows.

– k1 : (ε, (product, {manufacturer,model})): in the context of the entire doc-
ument (ε denotes the root), a product is identified by its manufacturer and
model number;

– k2 : (product, (color, {})): within the context of any subtree rooted at a
product node, there exists at most one color element; that is, it is identified
by an empty set of values.

Observe that in the repository, manufacturer is populated with nodes reached
by path /item/manufacturer in S1, and nodes reached by path /name in S2.
Similarly, element model is populated with nodes reached by path /item/model
in S1 and path /category/product/model in S2. Given that values of nodes
reached by both paths in sources S1 and S2 coincide, they are be merged in the
repository according to k1. The resulting tree is depicted in Figure 3(a).

In the repository, leaf nodes are annotated with provenance information.
These annotations are important not only to determine the origin of data, but
they also allow the portion of source XML tree used to populate the data repos-
itory to be reconstructed [15].

XML keys involve path expressions. An algorithm for deciding path contain-
ment for the fragment of XPath involved in defining keys is presented in [4],
while [12] and [6] investigate the problem for larger fragments of XPath. It has
been shown that for some of these fragments containment can be checked in
PTIME. The problem of determining intersection of XPath expressions has also
been investigated in the context of query optimization [8].

2.2 Strategies for Data Fusion

There are a number of strategies proposed in the literature for solving value
conflicts. We adopt a subset of strategies proposed in [2], described as follows.

Trust Your Friends. This strategy is based on a reliability criterion. The
user assigns a confidence rate for each source, and a value conflict is solved by
choosing the one provided by the source with the highest confidence rate.

Meet In The Middle. This is a strategy to mediate the conflict by generating
a new value that is a compromise among all conflicting values, e.g., an average
of all conflicting numeric values.

Cry With The Wolves. This strategy is defined for choosing the value reported
by the majority of data sources.

Roll The Dice. This strategy randomly chooses one value among the conflict-
ing ones.

Pass It On. This is a non-resolving strategy. Although in most cases the user
wants a single value for each data item, for some items she may want to keep
all the conflicting values in the repository. When this is the case, this choice can
explicitly be made applying the Pass It On strategy.

In [2] these strategies are integrated to the relational model by developing
functions that can be used within SQL sentences to solve inconsistencies from the
resulting data set. Next section presents our model, which extends this strategy-
based conflict resolution approach for XML.

3 XML Fusion Model

Our model for solving conflicts detected during the integration process is based
on the definition of a fusion policy, which consists of a set of data conflict reso-
lution rules, defined as follows.

Definition 1. A conflict resolution rule is a pair 〈σ,Σ〉, where
(1) σ is a path expression representing the context covered by the rule;
(2) Σ is a non empty list of strategies for handling instance-level conflicts

on nodes reached by following the context path σ.

The context of a rule is defined by a path expression σ and therefore it may
cover not only a single element or attribute node, but a set of nodes reached
by following σ. Furthermore, a rule may define a list of strategies for solving a
conflict. Thus, if the first strategy is not able to single out a value for a given
data item, the following strategies are considered one by one until either the end
of the list is reached or the conflict is solved. If the conflict is solved, we say that
the rule effectively solves the value conflict.

Example 3. Consider the value conflict between a product’s color depicted in
Figure 3(a). Suppose the following rule has already been defined in the fusion pol-
icy: 〈/product[manufacturer = “HP”]/color, [Trust Your Friends,Cry With
the Wolves]〉. It determines that whenever there is a value conflict on element
color of product, and the manufacturer of product is ‘‘HP’’, then the strat-
egy Trust Your Friends should be applied, followed by Cry With the Wolves.
Assuming that the confidence rate of S2 is higher than S1, strategy Trust Your
Friends is applied and the value ‘‘white’’ from S2 is chosen to be stored in
the repository, as shown in Figure 3(b).

Observe that some strategies for solving conflicts may depend on the prove-
nance of the data, as exemplified in the previous example by strategy Trust Your
Friends. Data provenance should also be kept for discarded values. In our model
this information is kept in a resolution log, which is defined as follows.

Definition 2. A resolution log is a set of records, where each record refers to
a data value v that has been discarded during the cleaning process. Given that v
has been populated from an element e of a data source S, the record that refers
to v contains the following attributes: (1) key values of the element or attribute
with value v in the repository; (2) the discarded value v; (3) id(e) in the original
source S; (4) the path from the root to e in the source S; (5) the strategy s ∈ Σ
applied for solving the conflict.

We need to keep the keys for the element for which a value has been dis-
carded in order to retrieve all the discarded values for the same data item in
the repository. This may be necessary for automatically reapplying a conflict
resolution rule in future cleaning processes. Both the identity and the original
path of the element which provides v are stored in the log for keeping prove-
nance information. By storing the strategy executed to solve the conflict, we
can trace back why value v has been discarded.

Example 4. Consider again the value conflict depicted in Figure 3(a) and the
conflict resolution rule in Example 3. The record for S1’s discarded value
‘‘black’’ stored in the resolution log contains the following data:
(key: /product[manufacturer=‘‘HP’’ and model=‘‘dv6000’’]/color,
value: ‘‘black’’, id: 1.2.4.1, path: /item/color, strategy: Trust
Your Friends). Recall that from the value of id it is also possible to get the
source identification, given that the first number of the sequence corresponds to
the root element, which coincides with the source identifier.

To illustrate how the log is used in future fusion processes, consider that
source S3, as defined in Example 1, has been integrated into the repository, and
that it has the same confidence rate as S2. Given that both sources S2 and S3

have the same confidence rate, and that S3 provides the value ‘‘black’’ for
color, strategy Trust Your Friends is not able to solve the conflict. Then, the
next strategy, Cry With The Wolves is applied. In this case, ‘‘black’’ is chosen
to be stored in the repository, since this strategy chooses the value reported by
the majority of the sources. Our model is only able to make such a decision
because the log maintains S1’s discarded value for color.

Given the definitions of conflict resolution rules and repository log, we are
now ready to define our fusion model.

Definition 3. A data fusion model D is a 5-tuple 〈R, T ,K,P,L〉, where:
(1) R is a set of pairs (S, rank), where S is an XML data source, and rank

its confidence rate; the value of rank is greater for sources with higher reliability;
(2) T is the data repository tree with a set of nodes V such that each leaf

node v ∈ V is annotated with a set of pairs (idn, p), where idn is the identifier

of a node n in a source XML tree TS used to populate v, and p is the path in TS

from its root to n;
(3) K is the set of XML keys defined on T . Every element node in T can be

uniquely identified according to keys in K;
(4) P is a set of conflict resolution rules that define strategies for solving

data conflicts;
(5) L is the resolution log for storing data discarded during a fusion process.

An example of a data repository tree is given by the XML tree depicted in
Figure 3(b). Observe that leaf nodes have been annotated with node identifiers
from Source 1 and Source 2. Paths traversed from the root have been omitted
for simplicity.

4 Fusion Policy Validation

Recall that conflict resolution rules are defined on contexts described as path
expressions. Since a path expression σ denotes a set of nodes in a XML tree
reached by following σ, there may exist nodes that are covered by more than
one rule. In order to deterministically single out a rule for solving a value conflict,
we introduce a notion of policy validity.

In the following definition, we denote as Nodes(r) the set of nodes covered
by a rule r. That is, given a rule r = (σ,Σ) and an XML tree T , Nodes(r) is
the set of nodes in T reached by following σ in T .

Definition 4. Given two rules r1 and r2, we say that r1 is valid with respect
to r2 if they satisfy one of the following conditions:

(1) Nodes(r1) ⊂ Nodes(r2) or
(2) Nodes(r1) ⊃ Nodes(r2) or
(3) Nodes(r1) ∩Nodes(r2) = ∅.

Intuitively, rules can be related either by specialization (Case 1) or generaliza-
tion (Case 2), or not related at all (Case 3). Following the traditional definition
of class hierarchy, Cases 1 and 2 allow rules to be defined on different levels of
a tree hierarchy. That is, there may exist a general rule for solving value con-
flicts, but it may be overridden by rules defined for treating specific cases, that
are restrict to subsets of nodes covered by the general rule, and are used in the
cleaning process instead of the general rule.

Rules with intersecting coverage that are not related by specialization / gen-
eralization are not allowed. This is because there is no deterministic way of
deciding which rule should be applied for solving conflicts on nodes covered by
both rules. For determining the validity of a fusion policy, each conflict resolution
rule should be valid with respect to all others. Checking validity involves check-
ing both path expressions containment and intersection. Some previous work on
these subjects are presented in Section 2. The model we propose in this paper
is orthogonal to the path language adopted. The following definition establishes
an order for applying conflicting resolution rules in a fusion policy.

Definition 5. Let v be an element or attribute with conflicting values, and P a
fusion policy, consisted of a set of rules that are valid with respect to each other.
Rule rv ∈ P is applied for solving the value conflict on v if:

(1) v ∈ Nodes(rv) and rv effectively solves the value conflict;
(2) there exists no rule ri ∈ P that satisfies condition (1), such that Nodes(ri) ⊂

Nodes(rv) .

Example 5. Consider the data repository depicted in Figure 4, and four conflict
resolution rules, defined as follows:
ra = (/product[manufacturer = “HP” and model = “tx1220”]/color,Σa)
rb = (/product[manufacturer = “HP”]/color,Σb)
rc = (/product/quotation[store = “Fast”]/price,Σc)
rd = (/product[manufacturer = “Sony”]/quotation/price,Σd)

repository

product

manufacturer model color quotation

product

“HP” “tx1220” “black” store price

manufacturer model color quotation

product

“HP" “dv6000” “white” store price

“Fast” “1,250”“Fast” “3,249”

a bb

c c

Fig. 4. Example of conflict between resolution rules.

Rules ra and rb are defined on color elements, while rc and rd are defined on
price. Observe that ra is a specialization of rb, since Nodes(ra) ⊂ Nodes(rb),
and they are valid with respect to each other. On the other hand, rc is not valid
with respect to rd since it is not true that for all possible XML trees Nodes(rc)∩
Nodes(rd) = ∅, although in the tree depicted in Figure 4 this condition holds.

5 XFusion

In order to validate the proposed XML fusion model and fusion policy validation,
we have developed the XFusion tool. The tool integrates several data sources into
a data repository, and presents to the user the detected value conflicts along with
a set of available strategies for solving them.

Two screenshots of XFusion’s interface are presented in Figure 5. Screenshot
A is the main screen of the tool. It shows in the Data Repository panel the
data repository in a tree format, and in the Integrated Sources panel the source’s
names that have been considered in the integration process. In this panel, the
DBA represents the source of data items that have not been imported from
external sources, but locally produced. The tool assigns a distinct color for each
of the integrated sources, so that value conflicts are shown along with “colored”
representation of sources that provided them (little squares that precede each
value). Furthermore, screenshot A contains buttons to perform actions over the

A

B

Fig. 5. XFusion screenshots: A – Main screen; B – Resolution screen.

data repository, such as add new source (), resolve conflicting values (),
and navigate through conflicts (). To add a new data source, the user
must provide a mapping that determines how source data are extracted and then
inserted into the repository. She also defines the confidence rate to be assigned
to the new source.

Data fusion is the main functionality of the tool based on the model proposed
in this paper. When the user selects an existing conflict and clicks on the resolve
button, the screen depicted in screenshot B of Figure 5 is shown. Observe that
the user has three main options for solving a conflict: choose one among the
conflicting values, manually insert a new value, or apply some of the available
strategies, which are described in Section 2.2. Strategies are chosen by clicking
on direction buttons in the middle of the screen, determining the order in which
they should be considered.

Below the strategies boxes, the Context of the rule is presented. This path
is originally set to uniquely identify the conflicting element or attribute, accord-
ing to the XML keys defined on the repository. Nevertheless, the user can edit
the path for applying the list of strategies on different contexts. In the current
implementation, we only consider simple XPath expressions (without wildcards)
with simple predicates involving elements, attributes and string values. When
the user edits the context of the rule, our tool validates the rule with respect
to all existing ones according to the policy validation described in Section 4.
Finally, when she clicks on Clean button, the new rule is inserted into the pol-
icy base and its execution propagates the chosen value to the repository, and
the discarded ones to the resolution log. XFusion allows the user to define rules

incrementally. That is, in the first iteration a single strategy may be defined on
a context path and applied. The user can then check whether the strategy has
been effective for solving all conflicts within the rule’s context. If not, she may
decide to extend the rule by defining additional strategies to be applied.

XFusion has been implemented in Java, using the Swing graphical package.
For manipulating XML documents we used JDOM. The data repository is stored
on eXist-db [10], a native XML database system. XFusion implements the XML
integration model proposed in [15] combined with our fusion model, showing the
feasibility of our approach.

6 Related Work

Data integration and cleaning have been studied extensively by the database
community [1, 3]. Most of previous works consider data on relational format, but
recently it has been stressed the need for investigating the problem of solving
conflicts on semi-structured data. XClean [19] is a system that allows declarative
and modular specification of a cleaning process. As oppose to our approach
which adopts strategies, XClean is based on operators. Systems like Potter’s
Wheel [18] and Fusionplex [14] are also strategy-based systems, but they allow
the definition of a single cleaning strategy. To the best of our knowledge, our
fusion model is the first to define a general framework for applying strategy-
based techniques for solving value conflicts that maintains discarded data values
in a log repository. This approach allows strategies to be applied in subsequent
integration processes, and also keeps provenance information for tracing back
cleaning processes. Our model also builds on previous works for determining
XPath expressions containment [12, 6] and intersection [8] in order to determine
fusion policy validity.

7 Conclusion

In the relational model, fusion strategies are usually defined on the context of
an attribute value. The model proposed in this paper naturally extends this
notion by allowing strategies to be defined on subtrees of an XML document.
Our notion of policy validation also extends relational fusion policies by allowing
strategies to be defined on subsets (supersets) of nodes reached by previously
defined rules, by specialization (generalization). Furthermore, we guarantee that
there are no two rules that can be applied on a data item, except for those related
by specialization/generalization. The ability to define value conflict resolution
rules on subtrees can drastically reduce the amount of user mediation on data
cleaning processes, given that conflicts detected in subsequent integration pro-
cesses that are within the context of existing rules can be automatically solved.
The repository log plays an important role in keeping the necessary data for
supporting this functionality, while also storing provenance data for tracing pur-
poses. The model has been validated by developing XFusion, a tool based on the

proposed model, which shows that it can be incorporated in a data integration
and cleaning application.

Some issues that need to be further investigated include: (1) integration of the
model to a technique for incrementally updating the data repository when new
versions of data sources become available; (2) extensions to the fusion policy,
by supporting new strategies and a declarative definition of rules application,
allowing for instance, conditional execution of strategies; (3) experimental study
for solving conflicts in real-world applications and for determining the cost of
applying our rule-based cleaning policy.

References

1. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. IEEE
Data Eng. Bull. 29(2), 4–12 (2006)

2. Bleiholder, J., Naumann, F.: Conflict handling strategies in an integrated informa-
tion system. In: Proceedings of IIWeb (2006)

3. Bleiholder, J., Naumann, F.: Data fusion. ACM Comp. Surveys 41(1), 1–41 (2008)
4. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.C.: Reasoning about keys

for XML. Information Systems 28(8), 1037 – 1063 (2003)
5. Chan, L.M., Mitchell, J.S.: Introduction to the Dewey Decimal Classification.

http://www.oclc.org/dewey/versions/ddc22print/intro.pdf (2003)
6. Genevès, P., Layäıda, N.: Deciding XPath containment with MSO. Data & Knowl-

edge Eng. 63(1), 108 – 136 (2007)
7. Golfarelli, M., Rizzi, S., Vrdoljak, B.: Data warehouse design from XML sources.

In: Proc. of DOLAP (2001)
8. Hammerschmidt, B.C., ad Volker Linnemann, M.K.: On the intersection of XPath

expressions. In: Proc of IDEAS. pp. 49 – 57 (2005)
9. Lim, E.P., Srivastava, J., Prabhakar, S., Richardson, J.: Entity identification in

database integration. Information Sciences 89(1) (1996)
10. Meier, W.: eXist-db open source native XML database. http://exist.

sourceforge.net/ (2000)
11. Menestrina, D., Benjelloun, O., Garcia-Molina, H.: Generic entity resolution with

data confidences. In: Proc. of VLDB Work. on Clean Databases (2006)
12. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of XPath. J.

of the ACM 51(1), 2 45 (2004)
13. Milano, D., Scannapieco, M., Catarci, T.: Using ontologies for XML data cleaning.

In: OTM Workshops. pp. 562–571 (2005)
14. Motro, A., Anokhin, P.: Fusionplex: resolution of data inconsistencies in the inte-

gration of heterogeneous information sources. Info. Fusion 7(2), 176–196 (2006)
15. do Nascimento, A.M., Hara, C.S.: A model for XML instance level integration. In:

Proc. of SBBD. pp. 46–60 (2008)
16. Poggi, A., Abiteboul, S.: XML data integration with identification. In: Proc. of

DBPL (2005)
17. Rahm, E., Do, H.H.: Data cleaning: Problems and current approaches. IEEE Data

Eng. Bull. 23(4), 3–13 (2000)
18. Raman, V., Hellerstein, J.M.: Potter’s wheel: An interactive data cleaning system.

In: Proc. of VLDB. pp. 381–390 (2001)
19. Weis, M., Manolescu, I.: Declarative XML data cleaning with XClean. In: Proc. of

CaiSE. pp. 96–110 (2007)

