
Erratum: A Correction to “Propagating XML Constraints to Relations”

Susan Davidson, Wenfei Fan, Carmem Hara

Abstract
This erratum reports a bug in [2], and provides a fix without
negative impact on the main results of [2] (the propagation
algorithms and their complexity bounds).

1. The Bug
Background. The objective of [2] is to provide a technique
for normalizing the design of relational storage of XML data.
For XML shredding, i.e., transformations from XML data to
relations, it aims to derive a normalized relational schema,
in bcnf or 3nf, for storing XML data. The idea is based
on XML key propagation: given a set Σ of XML keys and
an XML shredding mapping (transformation) σ from XML
data to relations of a schema R, it first computes a min-
imum cover F of relational functional dependencies (FDs)
propagated from Σ, and then normalizes R by leveraging
the FDs of F . Here an FD ψ ∈ F is propagated from Σ,
denoted by Σ |=σ ψ, if for any XML tree T that satisfies Σ,
its relational encoding σ(T) satisfies ψ.

In addition to proposing this normalized XML shredding
approach, [2] shows that the propagation analysis is unde-
cidable for XML constraints including both keys and foreign
keys, and for XML shredding that is “relationally complete”.
It then focuses on a class of XML shredding mappings and
a subclass Katt of XML keys studied in [1]. In this setting,
it provides a PTIME algorithm for computing a minimum
cover of relational FDs propagated from XML keys.

XML keys of Katt are of the form ϕ = (Q, (Q′, S)), where
Q,Q′ are XPath expressions defined in terms of the child and
descendant-or-self axes, and S is a set of XML attributes
that are required to exist. In an XML tree T , let n[[Q]]
denote the set of nodes reached via an XPath expression Q
from a node n; in particular, when n is the root r of T , we
simply write n[[Q]] as [[Q]]. Then T satisfies ϕ, denoted by
T |= ϕ, if for any node v ∈ [[Q]], (Q′, S) is a key for the
subtree rooted at v, i.e., for any two nodes u1, u2 in v[[Q′]],
if u1 and u2 agree on their attributes in S (for any @l ∈ S,
u1.@l = u2.@l), then u1 and u2 must be the same node.

An XML shredding mapping of [2] is defined in terms
of XPath with the child and descendant-or-self axes, and
a list of variables [x1, . . . , xm]. It consists of rules of the
form: Rule(R) = {l1 : value(x1), . . . , lk : value(xk)}, where
xi ← xj/Pi, j < i, x1 = r, and Pi is an XPath expression
with child axes, and with descendant-or-self axes if i = 1.
Given an XML tree T , it populates an instance of R by
extracting data from T via Pi’s, and assigning the data as
the value of field li, top-down from the root of T .

The propagation algorithm of [2] makes use of the impli-
cation analysis of XML keys, to determine whether a set Σ
of XML keys entails another XML key ϕ, denoted by Σ |= ϕ.
To this end [2] capitalizes on the inference system of XML
keys developed in [1], tailored for the subclass Katt of keys.

The Mistake. As pointed out by [4], the inference system
proposed for XML keys of [1] is neither sound nor complete.
The counterexample given in [4] consists of XML keys of a
“special” form (Q, (Q′, S)), where S contains the empty path
ǫ. As a specific form of the more general system of [1], the
inference system Iatt for the subclass Katt is also incomplete,
although it is sound. That is, for any set Σ of XML keys and
a single key ϕ, if ϕ can be proved from Σ via Iatt rules, then
Σ |= ϕ; however, when ϕ is of a special form (ǫ, (Q′, ∅)), it is
possible that ϕ cannot be deduced from Σ via Iatt although
Σ |= ϕ, as illustrated by the example below.

Example 1.1: Consider the set of XML keys Σ =
{(a, (//b, ∅))}, and a single XML key ϕ = (ǫ, (a/b/b, ∅)).
Then for any XML tree T that satisfies Σ, T also satisfies
ϕ. The reason is simple: Σ assures that there exists at most
one b-node in any subtree rooted at an a-node in T . As a
result T trivially satisfies ϕ since there exist no nodes in T
reached by following path a/b/b, i.e., |[[a/b/b]]| = 0. How-
ever, ϕ cannot be proved from Σ using Iatt.

Now consider a transformation σ = (Rule(R)), where
Rule(R) = {̄l: value(x)}, and x ← r/a/b/b. Given an XML
tree T that satisfies Σ, the relation σ(T) shredded from T
satisfies the FD ∅ → l. Indeed, from the discussion above it
follows that there exists no node in T reached by following
path a/b/b, which is used to populate field l in R. Thus, l
is given the special constant null. Since Iatt fails to derive
ϕ from Σ, the propagation algorithms also fail to conclude
that ∅ → l is propagated from Σ via σ. 2

The Impact. As will be formally shown in Section 2, for
any set Σ of XML keys, the only XML keys that may not
be derived from Σ using Iatt are of the form (ǫ, (Q′, ∅)) such
that for any XML tree T , if T |= Σ, then no nodes can be
reached from the root r of T via path Q′, i.e., |[[Q′]]| = 0.
The keys of the form (ǫ, (Q′, S)) are referred to as absolute
keys [1, 2]. We say that Σ prevents path Q′ if |[[Q′]]| =
0 in any XML tree that satisfies Σ. Then keys that Iatt

fails to derive are absolute keys defined with a path that is
prevented by Σ. Such keys are “nonexistence” constraints
as they concern paths that cannot exist. In contrast, the
XML keys that [1, 2] focus on are “value-based”, which are
what people commonly use in practice.

As a result, FDs that the propagation algorithms of [2]
fail to detect, due to the incompleteness of Iatt, are of the
form ∅ → l (and others that can be derived from them using
Armstrong Axioms), where l is a field in a relation for storing
XML data, such that the value of the l field is guaranteed to
be the special constant null in the entire relation.

It should be remarked that FDs of this form are not
needed in the normalization of relations for storing XML
data, which is the main focus of [2].

A Fix to the bug. Since such FDs have no impact on
the normalization analysis of relations for XML shredding,

(Q, (Q′, ∅)), Q1 ⊆ Q′, Q1/Q2 ⊆ Q′, ǫ 6∈ Q2

(ǫ, (Q/Q1/Q2//, S)), where S is any set of attributes
(double-path)

(Q, (Q′/@l, ∅)), Q1 ⊆ Q′, Q1/Q2 ⊆ Q′,
(Q/Q1, (ǫ, {@l})), (Q/Q1/Q2, (ǫ, {@l})), ǫ 6∈ Q2

(ǫ, (Q/Q1/Q2//, S)), where S is any set of attributes
(double-attribute)

(Q, (Q′/@l, ∅)), Q1 ⊆ Q′,
Q1/Q2 ⊆ Q′, (Q/Q1, (ǫ, {@l})), ǫ 6∈ Q2

(ǫ, (Q/Q1/Q2/@l, ∅))
(attribute-on-a-path)

Figure 1: Additional Inference rules for XML key implication

one may simply ignore FDs of this form and nonexistence
keys. Nevertheless, in the next section we present additional
rules for inference analysis of XML keys of [2], such that
the extended system is sound and complete for XML keys
of Katt including nonexistence keys. We also provide an
algorithm for determining implication of XML keys of Katt,
and thus shows that the implication problem remains to be
in PTIME. In fact, the complexity bound for the implication
analysis is precisely the same as its counterpart given in [2].

Based on this, the algorithms for the propagation analy-
sis of [2] can be simply modified to adopt a preprocessing
phase as follows. For each Rule(R) = {l1 : value(x1), . . . , lk :
value(xk)}, and each i ∈ [1, k], first find the path expression
ρi from the root to xi, and then test whether the given set Σ
of XML keys prevents ρi. If so, then li contains the special
constant null in the entire relation, and thus it is useless and
ignored. This can be done in PTIME, by invoking function
prevent of the algorithm for XML key implication analysis,
given in Figure 4. After this preprocessing, the propagation
algorithms of [2] can be used to derive FDs propagated from
Σ, without considering those useless li fields, in PTIME as
shown in [2].

2. Corrections to XML Key Inference
Below we first provide additional inference rules to make
Iatt sound and complete for XML keys Katt of [2], including
those nonexistence keys. We then present a modification of
the algorithm of [2] for determining XML key implication,
and show that the implication analysis is in PTIME.

To make this erratum self-contained, we include part of
the proofs and algorithms already presented in [2].

2.1 Axiomatization

We give three inference rules, shown in Figure 1, for de-
riving nonexistence keys. We refer to the set consisting of
these three rules and the inference rules given in [2] also as
Iatt.

The new rules are illustrated as follows.

• double-path: given any node n in [[Q]], if there exists a
single node reached by following Q′ from n, and n1 is in
n[[Q1]] for some Q1 ⊆ Q

′, then there can exist no node
n2 in n[[Q1/Q2]] if Q1/Q2 ⊆ Q′. Otherwise, n2 would
also be an element of n[[Q′]]. Since such a node does
not exist in any subtree rooted at a node in [[Q]], there
exist no nodes reached by following path Q/Q1/Q2

from the root. Thus, any path following Q2 is also
guaranteed not to exist, and any set of attributes is a
key for these nodes.

• double-attribute: given any node n in [[Q]], if every
node n1 in n[[Q1]] is required to have an attribute @l,

every node n2 in n[[Q1/Q2]] is also required to have an
attribute @l, but in the subtree rooted at n there can
exist at most one @l attribute, then such n2 does not
exist in the tree. Since n2 is guaranteed not to exist,
any path following Q2 is also guaranteed not to exist,
and they can be keyed by any set of attributes S.

• attribute-on-a-path: given any node n in [[Q]] and n1

in n[[Q1]], if n1 is required to have an attribute @l, but
in the subtree rooted at n there can exist at most one
@l attribute, then there can exist no nodes reached via
path Q/Q1/Q2/@l, when Q2 is not ǫ or “//”.

As remarked earlier, these additional inference rules are
for deriving nonexistence keys, i.e., keys defined with paths
that are prevented by a given set of XML keys. As nonex-
istence of a path P is not expressible in the keys languages
of [1, 2], we can only “approximate” it by |[[P]]| ≤ 1.

Theorem 2.1: The extended inference system Iatt is sound
and complete for determining implication of Katt keys. 2

Proof: Consider any set Σ ∪ {ϕ} of keys in Katt, where ϕ =
(Q, (Q′, {@A1, . . . ,@Ak})). The soundness of Iatt can be
verified by induction on the lengths of Iatt-proofs. The proof
of completeness relies on the notion of abstract trees. An
abstract tree is an extension of an XML tree by allowing “//”
as a node label, which is treated as an ordinary tag. Observe
that in an abstract tree T , the sequence of labels on a path
is a path expression that possibly contains occurrences of
“//”. Let ρ be the sequence of labels in the path from
node a to b in T , and P be any path expression. We say
that T |= P (a, b) if ρ ⊆ P . Given this, the definitions
of node sets and satisfaction of constraints in Katt can be
easily generalized for abstract trees. Abstract trees have the
following property (see [1] for a proof):

Lemma 2.2: If there is an abstract tree T such that T |= Σ
and T |= ¬ϕ, then there is an XML tree G such that G |= Σ
and G |= ¬ϕ. 2

Given the notion of abstract trees, we have to show that
if Σ |= ϕ then Σ ⊢Iatt

ϕ. The completeness proof con-
sists of two parts. The first part focuses on deriving nonex-
istence keys. Note that if Σ prevents path Q/Q′ (where
ϕ = (Q, (Q′, S)) then ϕ is trivially satisfied and Σ ⊢Iatt

ϕ.
The second part shows the completeness of Iatt when ϕ is
“value-based”, i.e., when Σ does not prevent path Q/Q′.
That is, if Σ |= ϕ based on their key values then Σ ⊢Iatt

ϕ.

Part 1. We show the first part of the proof as follows.
Suppose that Σ 6⊢Iatt

ϕ. Then we show that Σ does not
prevent path Q/Q′ by constructing an XML tree G such
that G |= Σ, and [[Q/Q′]] > 0. In other words, if Σ prevents
Q/Q′ then Σ ⊢Iatt

ϕ.

The construction of G involves the following steps: First,
we define an abstract tree T such that T contains a single
path Q/Q′. Then, T is modified in a way that the resulting
tree Tf satisfies Σ. That is, for each φ ∈ Σ, we check whether
T satisfies φ. If not, certain nodes in T are removed such
that the modified tree satisfies φ. At the end of the process,
Tf |= Σ and in Tf either: (1) |[[Q/Q′]]| = 1, and we construct
an XML tree G from Tf that satisfies Σ and |[[Q/Q′]]| = 1; or
(2) |[[Q/Q′]]| = 0. In this case, we show that our assumption
that Σ 6⊢Iatt

ϕ does not hold. That is, we show that each
removal operation corresponds to the application of certain
rules in Iatt. Therefore, if |[[Q/Q′]]| = 0 then Σ ⊢Iatt

ϕ,
which contradicts the assumption.

We start by giving the construction of an abstract tree
T . As illustrated in Figure 2(a), T consists of a single path
Q/Q′ from the root leading to a node n. For each element
v in T we add all the attributes required by Σ. That is,
v has attributes {@a | v ∈ [[Q]], (Q1, (Q

′

1, S)) ∈ Σ, Q ⊆
Q1/Q

′

1, @a ∈ S}. A distinct value is assigned to each at-
tribute created.

We next modify the abstract tree T such that T |= Σ. We
examine each φ in Σ, and if T does not satisfy φ, we remove
certain nodes from T such that the modified tree satisfies φ.

repeat until no further change in T
if there exist key φ = (Qφ, (Q′

φ
, ∅)) ∈ Σ, and nodes w, x, y in T

such that T |= Qφ(r, w) ∧ Q′

φ
(w, x) ∧ Q′

φ
(w, y) ∧ x 6= y,

where x is closer to the root than y
then

if Q′

φ
= P/@l and @l is enforced by Σ to exist for parent(y)

then remove subtree rooted at the parent of y
else remove subtree rooted at y

Observe that keys in Σ with a non-empty set of key paths
may not cause any removals since in the construction of T
all attributes have been given distinct values. Thus, the
process only considers keys with an empty set of key paths.

The process terminates since T is finite and thus removals
can be performed only finitely many times. Note that Tf ,
the tree obtained upon termination of the process, satisfies
Σ. If [[Q/Q′]] = 1 in Tf , then the process did not remove
any nodes, and we can construct an XML tree G from Tf by
replacing each occurrence of // by a distinct node label that
does not occur anywhere in Σ. Clearly, G |= Σ, since there
are no attributes in G that agree on their values. Thus, Σ
does not prevent path Q/Q′, as desired.

Now assume that |[[Q/Q′]]| = 0 in Tf . Then we show that
Σ ⊢Iatt

ϕ, which leads to a contradiction. Observe that
the only possible children of n ∈ [[Q/Q′]] are its required
attributes. Since the removal of a required attribute always
includes its parent, a single removal operation in the pro-
cess is sufficient for removing n. Let us denote by T the
tree obtained after executing a removal operation. We show
that each possible removal corresponds to the application of
certain rules of Iatt, and thus if |[[Q/Q′]]| = 0 then Σ ⊢Iatt

ϕ.
We first consider the removal when Q′

φ is not of the form
P/@l, as illustrate in Figure 2(b). Observe that since there
exist two distinct nodes x, y in [[Qφ/Q

′

φ]] then in T there exist
paths Qc, Qt, Q

′

t, Qr such that Q/Q′ = Qc/Qt/Q
′

t/Qr, Qc ⊆
Qφ, Qt ⊆ Q′

φ, and Qt/Q
′

t ⊆ Q′

φ. Observe that since x 6= y,
Q′

t 6= ǫ. Thus, by double-path we obtain (Qc/Qt/Q
′

t//, S)
from φ, and by target-containment, (Qc/Qt/Q

′

t/Qr, S); that
is, (Q/Q′, S). By target-to-context, Σ |= (Q, (Q′, S)).

Now let us consider the case when φ = (Qφ, (Q
′′

φ/@l, ∅)).
Let Q/Q′ = Qc/Qt/Q

′

t/Qr, where Qc ⊆ Qφ, Qt/@l ⊆

Q′′

φ/@l, and Qt/Q
′

t/@l ⊆ Q′′

φ/@l. Observe that by con-
struction, every attribute in T are those required to exist.
That is, for every attribute node v, if v ∈ [[P/@a]] then
Σ |= (P, (ǫ, {@a})) by epsilon, superkey, and the two con-
tainment rules. Thus, Σ |= (Qc/Qt, (ǫ, {@l})). The only ex-
ception is the existence of a possibly not required attribute
@a when ϕ is of the form (Q, (Q′/@a, S)). We distinguish
between the following two cases:

(1) @l is required to exist for nodes in [[Qc/Qt/Q
′

t]],
as illustrated in Figure 2(c): in this case, Σ |=
(Qc/Qt/Q

′

t, (ǫ, {@l})) and, by double-attribute, we can de-
rive (Qc/Qt/Q

′

t//, S). By target-containment, we obtain
(Qc/Qt/Q

′

t/Qr, S); that is, (Q/Q′, S), and by target-to-
context, Σ |= (Q, (Q′, S)).

(2) @l is not required to exist for nodes in [[Qc/Qt/Q
′

t]],
as illustrated in Figure 2(d): in this case, since
Qt/Q

′

t/@l ⊆ Q′′

φ/@l, by attribute-on-a-path we obtain
(Q/Qc/Qt/Q

′

t/@l, ∅); that is, (Q/Q′, ∅). Thus, by target-
to-context, Σ |= (Q, (Q′, ∅)).

This shows that, given key ϕ = (Q, (Q′, S)), if Σ prevents
path Q/Q′ then Σ ⊢Iatt

ϕ.

Part 2. The proof of the second part has mostly already
been given in [2]. We include it to make the proof self-
contained. Suppose that Σ does not prevent Q/Q′ and
Σ 6⊢Iatt

ϕ. We show that Σ 6|= ϕ by constructing an XML
tree G such that G |= Σ but G 6|= ϕ. In other words, if
Σ |= ϕ then Σ ⊢Iatt

ϕ. The construction of G involves the
following steps: First, we define an abstract tree T such that
T 6|= ϕ. Then, T is modified in a way that the resulting tree
Tf satisfies Σ. That is, for each φ ∈ Σ, we check whether
T satisfies φ. If not, certain nodes in T are merged such
that the modified tree satisfies φ. At the end of the pro-
cess, Tf |= Σ and either: (1) Tf 6|= ϕ, and by Lemma 2.2,
we can construct an XML tree G from Tf that satisfies Σ
but not ϕ; or (2) Tf |= ϕ. In this case, we show that our
assumption that Σ 6⊢Iatt

ϕ does not hold. That is, we show
that each step of the merging operations corresponds to the
application of certain rules in Iatt. Therefore, if Tf |= ϕ
then Σ ⊢Iatt

ϕ, which contradicts the assumption.
We start by giving the construction of an abstract tree T

that does not satisfy ϕ. As shown in Figure 3(a), T consists
of a single path Q from the root leading to a node n, which
has two distinct Q′ paths leading to nodes n1 and n2. Next,
for each element v in T we add all the attributes required by
Σ. That is, v has attributes {@a | v ∈ [[Q]], (Q1, (Q

′

1, S)) ∈
Σ, Q ⊆ Q1/Q

′

1, @a ∈ S}. A distinct value is assigned to
each attribute created if v 6∈ n[[Q′/@Ai]], i ∈ [1, k]. In con-
trast, for each i ∈ [1, k], let val(n1.@Ai) = val(n2.@Ai). Let
xi denote the @Ai attribute of n1, and yi the @Ai attribute
of n2. Then val(xi) = val(yi).

Note that if Q′ = ǫ, then n = n1 = n2, and therefore T |=
ϕ if and only if for all @Ai, i ∈ [1, k], @Ai exists for n. Then,
we would have had Σ ⊢Iatt

ϕ by the epsilon and superkey
rules in Iatt, a contradiction to our initial assumption that
Σ 6⊢Iatt

ϕ. Thus in the rest of the proof we assume that
Q′ 6= ǫ. It is easy to see that in this case, T |= ¬ϕ.

We next modify T such that T |= Σ. We examine each φ in
Σ, and if the abstract tree does not satisfy φ, then we merge
certain nodes in the tree such that the modified tree satisfies
φ. More specifically, let φ = (Qφ, (Q

′

φ, {@A
′

1, . . . ,@A
′

m})).
We modify T as follows.

Q

n’

φ

φ
φ

φ

φ

φ

Qc

Qt

w

x
Qt’

Q

n

Qr
y

x’

y’

@l

@l

φ

φ

φ

w Q

y
Qr

Qt’

Qc

Qt

x

n

Qc

Qt

w

x

Q

x’ @l

n=y
@l

y’

Qt’

r

Q’

n

(a)

Q

Q’
Q’

Q’

Q

Q’

r

Q’

(c)

Q’

Q

Q’

r

Q’

(b)

r

Q’

(d)

Figure 2: Abstract trees constructed in the proof of Theorem 2.1 - Part 1

φ

φ φ

φ

φ

φ

φ

φ

φ

φ

φ

φ

φ

φ

φ

φ

n

Q w

n

Q
Qc

Rp

Qt

w

n

Q

Rp

Qt

Qc

n’

Qt

n

w

Rp

Q

Qc

Qt

n

w

Q

Qc

n’
Rp

w Q
Qt

n

n

w

Qt

Q

Qcn

w

Qt

Q

Qc
w

n

Q
Qt

Q’

Q

x1
@A1

xk
@Ak @A1 @Ak

y1 yk

Q

@A1 @Ak
y1 ykx1

@A1
xk

@Ak

Q’

Q

Q’

x1
@A1

xk
@Ak @A1 @Ak

y1 yk

Q

@A1 @Ak
y1 ykx1

@A1
xk

@Ak

Q’

Q

Q’

x1
@A1

xk
@Ak

Q

Q’

Q

Q’

x1
@A1

xk
@Ak

Q

Q’

r

n1 n2

Q’ Q’

r

n1 n2

x = y
Q’

r

Q’

n2

x = y
@l

n1

n1 n2

x = y

r

Q’

r

Q’

n2n1

x = y
@l

r

n1 = n2

Q’

x = y

n1 = n2

r

Q’

x = y x1 xk
@A1 @Ak@l

n1 = n2

r

Q’

x = y
n1 = n2

r

Q’

x = y x1 xk
@Ak@A1@l

(a) (c)(b)

(d)

(g) (i)

(e) (f)

(h)

Figure 3: Abstract trees constructed in the proof of Theorem 2.1 - Part 2

repeat until no further change in T

if there exist key φ ∈ Σ, node x with children x′

1
, . . . , x′

m,
node y with children y′

1
, . . . , y′

m, and node w in T such that
T |= Qφ(r, w) ∧ Q′

φ
(w, x) ∧ Q′

φ
(w, y) ∧

@A′

1
(x, x′

1
) ∧ . . . ∧ @A′

m(x, x′
m)∧

@A′

1
(y, y′

1
) ∧ . . . ∧ @A′

m(y, y′
m) ∧

val(x′

1
) = val(y′

1
) ∧ . . .∧ val(x′

m) = val(y′
m) ∧ x 6= y

then merge x, y and their ancestors in T as follows:

Case 1: if x, y are above n1, n2 in T , that is,
if Qx is the sequence of labels from the root to x and
Qx = P or Qx = P/@l for some proper prefix P of Q/Q′

then merge nodes based on the position of w
as shown in Figure 3 (b), (c), (d) and (e)

Case 2: otherwise, merge nodes as shown in
Figure 3 (f), (g), (h) and (i);

By the construction of T , val(x′

i) = val(y′i) if and only
if they correspond to attributes of n1 and n2, respectively.
The process terminates since T is finite and thus merging
can be performed only finitely many times. Note that Tf ,
the tree obtained upon termination of the merging process,
satisfies Σ. We now examine whether or not Tf |= ϕ.

If Tf 6|= ϕ then by Lemma 2.2, there is an XML tree G
such that G |= Σ and G 6|= ϕ, as desired. Note that Tf 6|= ϕ
if either n1 6= n2 or there exists an attribute @Ai (i ∈ [1, k])
missing for n1 (and n2).

Now assume that Tf |= ϕ. We show that Σ ⊢Iatt
ϕ, which

leads to a contradiction. Denote by T the tree obtained after
executing z merging operations. We show by induction on
z that each merging step corresponds to the application of

rules of Iatt, and thus if T |= ϕ then Σ ⊢Iatt
ϕ.

For the base case, z = 0, the statement holds since the
initial tree does not satisfy ϕ. Assume the statement for z.
We show that it also holds for z + 1.

First, consider the merging in Case 1 as shown in Figure 3
(b), (c), (d) and (e). Since distinct values are assigned to
attributes @a not in ϕ, Case 1 can only happen if m = 0,
that is, the set of key attributes in the key φ considered is
empty. We consider the following cases.

(1) Node w is on the path Q, i.e., it is above n in T . Then
there exist path expressions Qt, Rp such that Q′ = Qt/Rp,
and either (i) x, y ∈ n[[Qt]] as illustrated in Figure 3(b),
or (ii) x, y ∈ n[[Qt/@l]] as shown in Figure 3(c). In this
case, however, from φ, the key (Q, (Qt, ∅)) can be proved,
by using target-to-context , the two containment rules (i.e.,
context-path-containment, and target-path-containment), su-
perkey , and uniqueness.

(2) Node w is on the path Q′, i.e., it is below n but above
n1, n2 in T . Then there exist path expressions Qc, Qt, Rp

such that Q/Qc ⊆ Qφ, Q′ = Qc/Qt/Rp, w ∈ n[[Qc]] and ei-
ther (i) x, y ∈ n[[Qc/Qt]] as illustrated in Figure 3(d), or (ii)
x, y ∈ n[[Qc/Qt/@l]] as illustrated in Figure 3 (e). This can
only happen when some descendants x′, y′ of n on path Q′

and above x, y were merged in a previous step by the process.
More precisely, there are path expressions Qt1, Qt2 such that
Qt = Qt1/Qt2, x

′, y′ ∈ n[[Qc/Qt1]] and x′, y′ were previously
merged. Thus by the induction hypothesis, we have that
(Q, (Qc/Qt1, ∅)) is provable from Σ by using Iatt. Further-
more, from φ one can prove (Q/Qc, (Qt1/Qt2, ∅)), by using
the two containment rules, and uniqueness. Thus by target-
to-context and context-to-target we have (Q, (Qc/Qt1/Qt2,
∅)), i.e., (Q, (Qc/Qt, ∅)).

We next consider the merging in Case 2 as shown in Fig-
ure 3 (f), (g), (h) and (i). By the definition of abstract
trees, Case 2 can only happen if either Q/Q′ ⊆ Qφ/Q

′

φ or
Q/Q′/@l ⊆ Qφ/Q

′

φ and moreover, for all j ∈ [1, m], there is
s ∈ [1, k] such that @As = @A′

j . There are two cases.

(1) Node w is on the path Q, i.e., it is above n in T . Then
there exists path expression Qt such that either (i) Qt/Q

′ ⊆
Q′

φ, and x = y = n1 = n2 as depicted in Figure 3(f), or
(ii) Qt/Q

′/@l ⊆ Q′

φ as shown in Figure 3(g). In both cases
ϕ can be proved from φ by using target-to-context , the two
containment rules, superkey and uniqueness. Thus Σ ⊢Iatt

ϕ.

(2) Node w is on the path Q′, i.e., it is below n but above
n1, n2 in T . Then there exist path expressions Qc, Qt such
that Q/Qc ⊆ Qφ, Q′ = Qc/Qt, w ∈ n[[Qc]], and either (i)
x = y = n1 = n2 as illustrated in Figure 3(h), or (ii) n1 = n2

and x, y in n1[[@l]] as illustrated in Figure 3(i). This can
only happen when some descendants x′, y′ of n on path Q′

above n1, n2 were merged in a previous step by the process.
More precisely, there are path expressions Qt1, Qt2 such that
Qt = Qt1/Qt2, x

′, y′ ∈ n[[Qc/Qt1]] and x′, y′ were previously
merged. Thus, by the induction hypothesis, (Q, (Qc/Qt1,
∅)) is provable from Σ by using Iatt. From φ one can verify
(Q/Qc, (Qt1/Qt2, {@A1, . . . , @Ak})) by using the two con-
tainment rules, superkey , and uniqueness. Thus by context-
to-target and target-to-context we have (Q, (Qc/Qt1/Qt2,
{@A1, . . . , @Ak})), i.e., (Q, (Q′, {@A1, . . . , @Ak})) = ϕ.
Thus again Σ ⊢Iatt

ϕ, contradicting our assumption.
This shows that Iatt is complete for implication analysis

of XML keys in Katt, the class of keys studied in [2]. 2

2.2 Algorithm

Theorem 2.3: Given a set Σ ∪ {ϕ} of XML keys of Katt,
whether Σ |= ϕ can be decided in O(|Σ|2 |ϕ|2) time, where
|Σ|, |ϕ| are the sizes of Σ and ϕ, respectively. 2

We prove the theorem by providing an algorithm, re-
ferred to as implication, that decides whether Σ |= ϕ in
O(|Σ|2 |ϕ|2) time. The algorithm is an extension of the
implication-checking algorithm given in [2], by including
derivations of nonexistence keys. Indeed, except the part
that involves function prevent, the algorithm is almost iden-
tical to its counterpart given in [2].

Algorithm implication, shown in Figure 4, is based on
the inference rules of Iatt. In a nutshell, given a set Σ of Katt

keys and a single Katt key ϕ = (Q, (Q′, S)), the algorithm
first extends Σ by including keys of the form (Q1, (Q

′

1, ∅))
derivable from Σ based on the uniqueness rule (Lines 1 to 2).
Then it checks whether ϕ is derivable from Σ by a nonex-
istence key imposed by Σ, by invoking function prevent

(Line 3). If this is not the case, that is, Σ does not pre-
vent path Q/Q′, then the algorithm checks whether or not
ϕ can be obtained from Σ by “value-based” inference rules.
It rewrites ϕ to a “normal form” (Lines 5 to 6), and it then
checks whether or not Σ ⊢Iatt

ϕ′ (Lines 7 to 13).
The “normalization” step is to compute another key ϕ′ =

(Q/P1, (P
′

1, S)) from ϕ by pulling up a sub-path P1 of the
target path Q′ of ϕ to its context, such that (1) Q′ = P1/P

′

1,
(2) if Σ |= ϕ′ then Σ |= ϕ, and (3) P1 is the “longest”
sub-path of Q′ satisfying (1) and (2). Intuitively, we can
always derive keys that are local to subtrees given that they
hold on larger trees, but not the other way around. Thus
the normalization is to rewrite ϕ to be “as local as possi-
ble”. More specifically, the normalization is conducted by
checking each key of the form (Q2, (Q

′

2, ∅)) in Σ, finding out
whether Q′ = P1/P

′

1, P1 ⊆ Q′

2 and Q ⊆ Q2, and if so, then
rewriting ϕ to ϕ′ = (Q/P1, (P

′

1, S)) by pulling the longest
such P1 of Q′ to the context (Lines 5 to 6). Note that if
Σ |= ϕ′ then Σ |= ϕ by the context-to-target rule. Observe
that this rule is applicable only if Σ |= (Q, (P1, ∅)). Thus,
before the normalization is conducted the algorithm first ex-
tends Σ by including keys of the form (Q, (Q′, ∅)) derivable
from Σ based on the uniqueness rule (Lines 1 to 2). This is
done by invoking a function exist.

After the normalization, the algorithm checks whether
ϕ′ = (Q1, (Q

′

1, S)) is provable from Σ. Since the context-to-
target rule has already been applied, and all keys that can
be derived by the uniqueness rule are already in Σ, Σ |= ϕ′

if and only if one of the following holds:

(1) the target path Q′

1 is a single attribute label (Line 7)
and Σ |= ϕ′ by the attribute rule;

(2) the target path Q′

1 = ǫ and all attributes in S are re-
quired to exist (Line 8); in this case, Σ |= ϕ′ by the epsilon
rule. Observe that Function exist is invoked for checking
the existence of attributes in S;

(3) there exists a key φ = (Q2, (Q
′

2, S2)) in Σ such that
(a) S2 ⊆ S1, and attributes in (S1 \ S2) are required to

exist (Line 10), and moreover,
(b) Q1 of ϕ′ can be partitioned into P1/P

′

1 such that
P1 ⊆ Q2 and P ′

1/Q
′

1 ⊆ Q
′

2 (Line 11).
Here condition (a) checks whether ϕ′ can be derived from

φ by the superkey rule, and (b) checks for the applica-

bility of target-to-context, context-containment and target-
containment.

Function prevent checks whether ϕ can be derived from
Σ by applying the new inference rules for nonexistence keys.
Given ϕ = (Q, (Q′, S)), it determines whether Q/Q′ is pre-
vented by Σ as follows. First, an XML tree T is constructed
such that T contains a single path Q/Q′, and every occur-
rence of “//” is replaced by a distinct node label that does
not occur anywhere in Σ. Let r be the root, n be the leaf
node, and P (n1, n2) denote the path from node n1 to n2 in
T . Based on T , function prevent returns true if there exists
φ = (Q1, (Q2, ∅)) in Σ such that one of the following holds:

(a) Q2 is not of the form Q′

2/@a, and there exist nodes
w ∈ [[Q1]], x ∈ w[[Q2]], y ∈ w[[Q2]], such that x 6= y; in this
case φ ⊢Iatt

ϕ by double-path, target-to-context, and the two
containment rules;

(b) Q2 is of the form Q′

2/@a, and there exist nodes w ∈
[[Q1]], x ∈ w[[Q′

2]], y ∈ w[[Q′

2]], such that x is an ancestor
of y, and attribute @a is required to exist for x; in this
case φ ⊢Iatt

ϕ by attribute-on-a-path, target-to-context, and
the two containment rules if P (y, n) = @a; otherwise, if
attribute @a is required for y then φ ⊢Iatt

ϕ by double-
attribute, target-to-context, and the containment rules.

Thus the algorithm checks if each of the rules in Iatt can
be applied in proving that Σ |= ϕ.

Complexity. Algorithm implication takes O(|Σ|2 |ϕ|2)
time. Indeed, there is an O(|P1||P2|)-time algorithm [1] for
checking if a path expression P1 is contained in P2. Thus
Function exist is in O(|Σ|(|Q| + |S|)). Given this, Lines 1
to 2 of the algorithm take at most O(|Σ|2) time.

Function prevent is in O(|Σ|2|Q|2). The construction of
the XML tree takes O(|Q|) time. Given that Q1, Q

′

2 are core
XPath queries and can be evaluated in O(|T ||Q|) time [3],
Line 4 takes at most O(|φ||Q|2) time. To see this, observe
that there exist at most |Q| nodes in [[Q1]], and for each of
these nodes, w[[Q′

2]] is computed. Thus, the computation of
w, x, y takes at most O(|φ||Q|2). Since function exist takes
O(|Σ||Q|) time, the cost of Lines 3 to 6 is O(|φ||Q|2+|Σ||Q|).
Given that there exists at most |Σ| keys, the overall cost of
function prevent is O(|Σ|2 |Q|2). Given this, Line 3 of the
implication algorithm takes O(|Σ|2|ϕ|2).

Line 5 takes at most O(|Q′

1| (|Q1||Q2| + |P1||Q
′

2|)) time
since there exists |Q′

1| ways of partitioning Q′

1 in P1 and
P ′

1. Therefore, for all keys in Σ, Lines 4 to 6 take at most
O(|ϕ| (|ϕ||Σ| + |ϕ||Σ|)) time, that is O(|ϕ|2|Σ|). For Line
10, since S2 and S1 consist of simple attributes, the con-
tainment of S2 in S1 can be checked in O(|S2||S1|) time,
and the computation of S1 \ S2 takes at most O(|S1||S2|)
time with a result of size at most O(|S1|). Therefore, the in-
vocation of Function exist takes O(|Σ|(|Q1|+(|Q′

1|+|S1|)))
time. Thus, Lines 10 to 11 take at most O(|S2||S1| +
|Σ|(|Q1|+ |Q

′

1|+ |S1|) + |Q1| (|P1||Q2|+ (|P ′

1|+ |Q
′

1|)|Q
′

2|))
time. Hence for all keys in Σ, Lines 9 to 12 cost at most
O((|Σ||ϕ|)+|Σ||ϕ|+|ϕ| (|ϕ||Σ|+|ϕ||Σ|)) time, which again is
in O(|Σ| |ϕ|2). Taken together, the algorithm takes at most
O(|Σ|2 +O(|Σ|2|ϕ|2)+ |Σ| |ϕ|2) time, or simply O(|Σ|2 |ϕ|2).

This tells us that the implication analysis of XML keys
of [2] remains in PTIME even if nonexistence keys are taken
into account. In fact, the bound is precisely the same as
the one given in [2]. It is possible to lower the O(|Σ|2 |ϕ|2)
bound, by extending the analysis of “witness graph” of [4],
which in turn is an extension of the abstract-tree idea given

Algorithm implication

Input: a set of XML keys Σ, and an XML key ϕ.
Output: true iff Σ |= ϕ.

1. for each key φ = (Q2, (Q′

2
/@l, ∅)) in Σ do

2. if exist(Q2/Q′

2
, {@l})

then Σ := Σ ∪ {(Q2, (Q′

2
, ∅))};

3. if ϕ = (Q, (Q′, S)) and prevent(Q/Q′) then return true;
4. for each key φ = (Q2, (Q′

2
, ∅)) in Σ do

5. if ϕ = (Q1, (Q′

1
, S1)) and Q1 ⊆ Q2, and there is (longest) P1

such that Q′

1
= P1/P ′

1
and P1 ⊆ Q′

2

6. then ϕ := (Q1/P1, (P ′

1
, S1))

7. if ϕ = (Q, (@l, ∅)) then return true

8. else if ϕ = (Q, (ǫ, S)) then return exist(Q, S);

9. for each key φ = (Q2, (Q′

2
, S2)) in Σ do

10. if ϕ = (Q1, (Q′

1
, S1)) and S2 ⊆ S1 and

exist(Q1/Q′

1
, S1 \ S2) then

11. if there are P1, P ′

1
such that Q1 = P1/P ′

1
, and

P1 ⊆ Q2 and P ′

1
/Q′

1
⊆ Q′

2

12. then return true;

13. return false;

function exist (Q, S)

Input: Q: path expression; S: a set of attributes.
Output: true iff for each l ∈ S and each n ∈ [[Q]], n.@l exists.

1. X := S;
2. for each key φ = (Q1, (Q′

1
, S1)) in Σ do

3. if Q ⊆ Q1/Q′

1

4. then X := X \ S1;
5. return (X = ∅);

function prevent (Q)

Input: Q: path expression;
Output: true iff Σ prevents path Q.

1. T := XML tree for Q/Q′ with root r and leaf n;
2. for each key (Q1, (Q2, ∅)) in Σ do
3. if Q2 is of the form Q′

2
/@a then

4. for each w, x, y in T such that
w ∈ [[Q1]], x ∈ w[[Q′

2
]], y ∈ w[[Q′

2
]],

x is an ancestor of y, and exist(P (r, x),@a) do
5. if P (y, n) = @a then return true

6. else if exist(P (r, y), {@a}) then return true

7. else if there exist nodes w, x, y in T such that
w ∈ [[Q1]], x ∈ w[[Q2]], y ∈ w[[Q2]], and x 6= y then

8. return true;
9. return false;

Figure 4: Algorithm for checking XML key implication

above. We omit this possible improvement to keep the al-
gorithm as close to its counterpart given in [2] as possible.

3. References

[1] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan.
Reasoning about keys for XML. Information Systems,
28(8):1037–1063, 2003.

[2] S. Davidson, W. Fan, and C. Hara. Propagating XML
constraints to relations. Journal of Computer and Sys-
tem Sciences (JCSS), 73(3):316–361, May 2007.

[3] G. Gottlob, C. Koch, and R. Pichler. Efficient algo-
rithms for processing xpath queries. ACM Transactions
on Database Systems, 30(2):444–491, June 2005.

[4] S. Hartmann and S. Link. Unlocking keys for XML trees.
In Proc. of Int’l Conf. on Database Theory (ICDT),
pages 104–118, 2007.

