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Abstract—Smart Cities is a world-wide initiative leading to
better exploit the resources in a city in order to offer higher
level services to people. In this context, urban computing is
a process of acquisition, integration, and analysis of big and
heterogeneous data generated by a diversity of sources in urban
spaces, such as sensors, traffic devices, vehicles, buildings, and
humans, to tackle the major issues that cities face, e.g. air pollu-
tion, increased energy consumption and traffic congestion. The
majority of these information can be represented as graphs,
such as the transportation network, in which places (nodes)
are connected by some form of public transportation (edges). A
vision of the “city of the future”, or even the city of the present,
rests on the integration of science and technology through
information systems. This vision requires a re-thinking of the
relationships between technology, government, city managers,
business, academia and the research community. This position
paper presents our views towards developing techniques for
querying and evolving graph-modeled datasets based on user-
defined constraints. Our focus is to show how these techniques
can be applied to effectively retrieve urban data and have
automated mechanisms that guarantee data consistency.

Keywords-Graph Databases; Query Languages; Constraints;
Multi-Objective Optimization; Urban Computing.

I. INTRODUCTION

According to [1], it is expected that 70% of the world’s
population will reside in cities in less than 40 years, bringing
new concerns about the sustainability of the infrastructures
caused by this massive growth: cities consume 75% of
the energy resources and are the cause of 80% of the
carbon footprint. With the advent of smart technologies, the
population, urban transportation systems, and other elements
in the urban environment produce a lot of useful data. Such
data can be used to shed light on a number of factors,
including user trends and traffic patterns. Integrating mul-
tiple heterogeneous data sources into robust and dependable
systems to assist people and empower communities involves
operating with complex elements that are networked at
multiple scales and enabled by various technologies. Such
elements often generate massive amounts of dynamic and
static data with different levels of abstraction and quality, at
multiple temporal and spatial scales, and at real time rates.

Dealing with such characteristics, while respecting domain
restrictions and mathematics concerns, raises scientific, tech-
nological and engineering challenges.

Urban computing proposes the integration of data ac-
quired from a variety of traditional data sources as well as
from sensors and other devices, in order to produce knowl-
edge that provide guidance to find solutions to problems
in big cities such as pollution, energy consumption, and
human mobility. Mobility challenges have already gained
attention of the Brazilian Computer Society ([2]) and has
also been the subject of several actions of the European
Commission ([3]). One of the challenges is the great amount
of data from different domains made available. Turning
data into knowledge calls for tools capable of dealing with
collections of datasets potentially distributed across multiple
servers. Traditional database management tools have not
been designed to support these new tasks. Indeed, nowadays,
data is often associated to the problem of volume (referring
to the big quantity of data); variety (due to its heterogeneity);
velocity (referring to the continuous production rate) and
veracity (due to the uncertainty of the data). Besides, data
items are usually interrelated and provided with specific
semantics. The exploration of such data in decision-making
and integration scenarios raises new research challenges.
A graph-based data model is appropriate for representing
most of datasets involved in urban computing, from traffic
information and points of interest, to more conventional data,
such as population information and statistics. As an example,
Figure 1 shows the bus stops and lines in the city of Curitiba,
Brazil, and the City Center in detail. It shows the graph-
oriented type of the data and its complexity, considering only
a single means of transport. The development of efficient
tools for querying and evolving data graphs under different
kinds of constraints is essential in this context. Examples
of user-defined constraints in this context include routes
with a limit on carbon footprint, or that are accessible for
wheelchair users ([4]).

Lessons we learn from actions around big data contributed
to the emergence of what is now called data science (i.e.,



Figure 1: Bus stops and lines in Curitiba (city area of 430 km2; 1.8 million inhabitants) and its Center.

the extraction of knowledge from data through expertise
in disciplines within the fields of mathematics, statistics,
and computer science) ([5]). With the evolution towards
the cloud with “unlimited” access to resources (computing,
storage, memory) it is possible to exploit big data in per-
sistent media (cache, main memory or disk). Dispatching
processes, producing and delivering results imply having
efficient and well-adapted data management infrastructures.
These services are not completely available in existing
systems. Thus, it is important to revisit and provide services
that cope with big data and semantic characteristics. The
key challenge is to hide the complexity for harvesting,
storing, curating, accessing and analyzing big data but also
to provide interfaces for tuning these functions according to
urban computing requirements.

The purpose of this position paper is to present our views
and efforts towards developing techniques for querying and
evolving data graphs, and their application in urban com-
puting. Consistency is the main theme of our investigations.
In an upper level, we aim at setting the basis on how to
ensure data consistency either in the answers of a querying
process or as the result of data and constraint evolution. We
consider constraints as a way of personalizing user’s context
and emphasize the importance of mechanisms ensuring valid
answers independently of distributed sources consistency.
At a lower level, we focus on the performance of an
interrogation process in a distributed environment.

This paper is organized as follows: Section II motivates
the need for new languages capable of dealing with the
challenges of querying graph data. Section III presents the
challenges of dealing with data constraints, in order to keep
a consistent view of the graph database. Section IV shows
optimization techniques that may help in processing urban
data, in order to obtain reliable information as well as to
incorporate user constraints into queries. Section V briefly
presents the conclusions of this position paper.

II. QUERY LANGUAGE FOR GRAPHS

Graph database systems are becoming popular, mainly
because of their ability to represent data of heterogeneous
nature.

The Resource Description Framework (RDF) ([6]), a
graph-based data model adopted as a general method for
the Semantic Web for data publishing and sharing, is now
a standard format for data interchange on the Web. Some
of the principles of the Semantic Web are also desirable in
the urban context. Unique identity for entities facilitates data
integration, and linked data promotes knowledge discovery.
RDF defines a graph as a set of triples 〈subject, predicate,
object〉, where the predicate is seen as an edge linking the
subject node to the object node. The de-facto standard for
querying RDF data is SPARQL ([7]), a declarative query
language that uses regular expressions to define paths over
the queried graph.

Other languages for processing graph data are Grem-
lin ([8]) and Cypher ([9]). Gremlin is a query language
aimed at graph traversal (in contrast to graph pattern match-
ing), that provides primitives to define and compose paths
over the data graph. The Cypher language is inspired by SQL
and uses a “pictorially inspired” textual representation ([10])
of patterns, in order to query property graphs (a data model
that extends RDF-like graphs by adding valued attributes to
nodes and edges).

In order to query graph data, these languages offer ways
of defining path expressions that represent graph patterns,
to be matched by the data. The most used way of defining
these path expressions is by means of regular expressions.

While regular expressions are a well known formalism
that allows for efficient implementations, their computational
power does not answer to all the needs for queries. Examples
of this are the "same generation queries" in [11] or the more
general sub-graph matching queries in [12]. An important
aspect for the maturation of SPARQL is the introduction of



Query on a transportation database

Connexion(Xfrom, Xto, Xtime, Xcfp) ← Transp(Xfrom, Xto, Xmeans, Xtime, Xcfp).
Connexion(Xfrom, Xto, Xtime, Xcfp) ← Transp(Xfrom, Z, Zmeans, Ztime, Zcfp),

Connexion(Z,Xto, Ytime, Ycfp),
Xtime = Ztime + Ytime, Xcfp = Zcfp + Ycfp.

Q(Xfrom, Xto, atotalAvTime, aAvcfp) ← agg(Connexion(Xfrom, Xto, Xtime, Xcfp), Xfrom, Xto,
atotalAvTime = AV G(Xtime), aAvcfp = AV G(Xcfp)).

Constraints defining a context (C)

c1 Transp(Xfrom, Xto, Xmeans, Xtime, Xcfp) → Type(Xmeans, Rail).
c2 Transp(Xfrom, Xto, Xmeans, Xtime, Xcfp), (Xcfp > 200) → ⊥.

Table I: Example of a query and a user’s context on a transportation database.

graph analysis functions ([13]).
In this context, defining a query language that is declar-

ative and powerful enough to obtain not only the usual
information expected from a semantic graph database, but
also information built from the analysis of the graph (e.g.
page rank or mininal path) is still a challenge to be met.
High-performance graph processing engines have been clas-
sified into low- and high-level engines ([14]); the former
requiring the user to write imperative code, the latter intro-
ducing declarative query languages, most of them inspired
on datalog ([11]). Datalog, a well known recursive query
language, appears as a solution to improve the declarative
power and the elegance of writing recursive queries.

Consider, for instance, the means of transport in a city like
Paris. A user wants to know the average price and carbon
footprint for a journey from home to work. The query on
the top of Table I is written in a datalog-like query language
we are proposing ([15]).

The transportation network is a graph where each node has
the name of a specific place where a user can find a means of
transport (a Metro station, a bus stop, a Batobus stop, a Velib
station, etc). Relation Transp stores this networks. Notice
that besides attributes indicating an edge (Xto, Xfrom) of
the transportation graph, the relation stores information
about the means of transport (Xmeans – bus, underground,
boat, bike, etc), the estimated travel time (Xtime) and carbon
footprint (Xcfp) for the graph’s edge. The network is thus a
multi-graph; also seen as a superposition of different graphs
(one for each means of transport). Queries on such a graph
can vary from a simple ’Is there a bus from Alesia to
Montparnasse?’ to graph analysis such as the minimal path
to go from Gare d’Austerlitz to Saint-Lazare. The query
Q in Table I is built from three rules. The first two rules
compute all possible connexions between two given nodes.
The last rule is an aggregation query that computes the
desired answer from results in Connexion.

The elegant and declarative form of expressing recursive
queries have recently re-emerged the interest around Datalog
for a wide spectrum of knowledge-based applications includ-

ing distributed programming ([14], [16], [17]). However, as
graph analysis becomes very important, it is necessary to ex-
tend Datalog ([18], [19]) to allow new types of queries, such
as those involving recursive aggregation and convergence
testing. For instance, the last part of query Q in Table I
takes relation Connexion and compute the average travel
time and average carbon foot print of very two points in the
city as follows. It groups Connexion lines that coincide in
their origin and destination (group-by function on attributes
Xto and Xfrom) and for each group computes the average
(AV G) over their attributes Xtime and Xcfp.

Declarative powerful query languages are possible only
with improvements on the lower level, responsible for imple-
menting queries on distributed data. Many existing tools can
only deal with conjunctive queries or queries slightly more
powerful (i.e., large number of restrictions are imposed,
e.g. queries with just one sub-query, regular queries, among
others). We consider these problems as possible extensions
of our work in [20]. Solutions and limits of the well-known
MapReduce programming model have been discussed (for
instance, in [21], [22]).

We are working on the definition of a declarative lan-
guage (similar to the language proposed in [15]) to support
conjunctive context-free queries ([23]). The run-time support
for this language is being designed in the form of a query
engine that uses an adapted LL(1) algorithm ([24]) in order
to look for non-regular paths in the graph database.

We believe that the challenge in proposing new query
processing is not only in the association of declarative
power and efficient implementation, but also in ensuring data
quality. Indeed, in modern scenarios, constraint verification
is generally neglected due to their cost; the lack of data
quality (Veracity) and the rapidity of data changes (Velocity)
being difficult obstacles to overcome. But constraints are the
expression of the desired answer quality or of a fixed (or
personalised) context. They settle the validity requirements
a user is looking for. Adapting query languages to interact
with constraint checkers is the new challenge for those,



as us, worried about data quality preservation. In Table I,
constraints C = {c1, c2} illustrate a context personalization.
Our user is only interested in means of transport using
railways (c1). Moreover, he wants paths composed only by
edges associated to a carbon footprint less then 200g of
CO2 (Table I, denial constraint c2). Our proposal is to filter
answers, rendering to the user only those answers respecting
his constraints.

III. CONSTRAINTS AND UPDATES

The maintenance of data consistency is an essential
problem in databases. Consistency maintenance is a fun-
damental challenge and the dichotomy of database and
ontology constraints deserves attention. The so-called onto-
logical constraints ([25]) correspond to inference rules. As
an example, consider a constraint stating that all subscribers
of the Autolib service1 must have a driving licence. In a
traditional database approach, an instance I containing a
single fact Subscribe(Bob,Autolib) is not consistent be-
cause the constraint requires the existence of a second fact
inCategory(Bob, LicensedDriver). On the other hand, I is
consistent when constraints are seen as inference rules be-
cause the second is an implicit fact that can be derived from
I with the rule. We distinguish constraints from inference
rules, envisaging systems that consider both types, although
not necessarily on the same level ([15]).

Consider now the problem of updates under the traditional
database consistency approach. A database instance is valid
or consistent w.r.t. to a set of constraints C when all
constraints in C are satisfied by the instance. Whenever
the database is updated, these constraints must be checked.
If violations are detected, either the update is refused or
compensation actions, called side-effects, must be executed
in order to guarantee their satisfaction. Usually, there are dif-
ferent sets of side-effects that repair an inconsistent database.
The choice is often based on the minimal change criteria:
obtain a consistent database that differs from the original
inconsistent one in a minimal way.

Constraints in graph databases can be described by Tuple-
Generating Dependencies (TGDs) and Denial Dependen-
cies ([11]), thus incorporating a large body of research on
the subject, that was originally developed for the relational
database model.

In this context, we are considering two challenges: deter-
minism of updates and chasing graph TGDs.

Determinism of updates. The determinism of updates
is an old problem. Should we give the choice
to the user at each step? An instance containing
the facts {User(Ann), inCategory(Ann, Student),

hasReduction (Ann, 30%)} satisfies the constraint
User(X), inCategory(X,Student) → hasReduction(X, 30%)}

1Parisien self-service electric cars. https://www.autolib.eu/en/

establishing a reduced price condition in Parisian transports.
The deletion of hasReduction(Ann, 30%) illustrates the
non-determinism of the update, since it implies the deletion
of either User(Ann) or inCategory(Ann, Student) (or
both). Although this problem has been the subject of
previous work, such as [26], [27], the same questions
appear in the context of RDF databases.

Chasing Graph TGDs. Commonly used key and foreign-key
constraints are not enough for most of RDF applications,
and thus we are impelled to consider richer constraints
such as tuple-generating (TGD) or denial dependencies as
constraints. However, the use of these richer constraints
usually renders more difficulty to develop a deterministic
update strategy.

Existential variables in TGD constraints give an impor-
tant flexibility for dealing with RDF data. For instance
Subscribe(X,Autolib) → ∃Y.hasDriverLic(X,Y ) imposes the
obligation of having a driver licence (identified by its number
Y ) to users wanting to subscribe to the Autolib service.
However, the insertion of Subscribe(Bob,Autolib) generates
as side effects the insertion of hasDrivingLic(Bob,N1) where
N1 is a null value. The choice of storing or not null values in
the database depends on the application. Notice however that
the insertion or deletion of facts with null values introduce
non-determinism in the update strategy.

On one hand, accepting null information during
updates requires dealing with complicate constraint
iterations. For instance, consider constraints declaring
free of charge means of transport during air
pollution alerts: PollutionAlert(Xsite, Xpolluant, Xlevel) →
∃Z.declareFreeTransp(Xsite, Z) and
declareFreeTransp(Xsite, Z) → Ecolabel(Z). Do all side
effects containing null variables should be stored? Solutions
for these situations are clearly related to the chase technique
([28]). Intensively studied as a theoretical tool (e.g. as
in [29], [30], [31]), the chase is now currently used in a
number of data management tasks such as data exchange,
query answering under constraints or data cleaning (some
examples in [32], [33] and a benchmark proposal in [34]).
We believe that custom versions of the chase allow
improvement in updating RDF data sets ([35]).

On the other hand, the null value as a place holder can
be helpful to stop iterations, during deletions. For exam-
ple, let {touristAttraction(Louvre), servedByStation(Louvre,
PalaisRoyal)} be the database instance satisfying the con-
straint touristAttraction(X) → ∃Y.servedByStation(X,Y ).
Deleting the fact servedByStation(Louvre, PalaisRoyal) may
just correspond to the insertion of servedByStation(Louvre,

N2) avoiding all the backward chaining of constraint rules.
Our proposal in [36] deals with this aspect.

When discussing updates, questions concerning Belief
Revision ([37], [38]) usually appear; the revision viewpoint
being popular when dealing with ontologies ([39] as an

https://www.autolib.eu/en/


Rewritten query on a transportation database

Connexion(Xfrom, Xto, Xtime, Xcfp) ← Transp(Xfrom, Xto, Xmeans, Xtime, Xcfp), Type(Xmeans, Rail),
¬(Xcfp > 200)

Connexion(Xfrom, Xto, Xtime, Xcfp) ← Transp(Xfrom, Z, Zmeans, Ztime, Zcfp), Type(Zmeans, Rail)
Connexion(Z,Xto, Ytime, Ycfp), ¬(Zcfp > 200)
Xtime = Ztime + Ytime, Xcfp = Zcfp + Ycfp,

Q(Xfrom, Xto, atotalAvTime, aAvcfp) ← agg(Connexion(Xfrom, Xto, Xtime, Xcfp), Xfrom, Xto,
atotalAvTime = AV G(Xtime), aAvcfp = AV G(Xcfp))

Table II: Query of Table I rewritten to take into account the user’s context.

Figure 2: Human in the loop interaction.

example). We consider updates as changes in the world; and
not as a revision of an initially incomplete knowledge of this
world. However, when a model does not include any explicit
representation of time it might be interesting to relate update
operators to the core principles of Belief Revision. In our
opinion, principles guiding update delete (contraction) and
insert (revision) operations should match closure, success,
inclusion, consistency and vacuity.

IV. MULTI-OBJECTIVE OPTIMIZATION

We are interested in developing algorithms and techniques
for improving the quality of services in urban environ-
ments, such as mobility and traffic management. Services
of smart cities have increasing demands for better quality,
low cost and security. In particular, for urban mobility these
requirements pose challenges in the design of products and
processes that satisfy all performance goals. Multi-objective
Bio-inspired algorithms (MOBAs) ([40]) have been used in
several applications and are powerful alternatives to deal
with these problems.

MOBAs have been used for controlling LED panels in
the city of Quito ([41]) in order to guide drivers and reduce
traffic jams. Similar techniques can be used for optimizing
public transportation routes and traffic lights coordination,
in order to provide sustainable mobility.

In order to provide fast responses to the plethora of
applications and users accessing available urban information,
the data management system should be able to execute
queries on large volumes of data, often stored in distributed

servers or in the cloud. Both data constraints and MOBAs
can be considered for query optimization.

A. Query Optimization Based on Constraints

Semantic query optimization is based on query rewriting,
where the equivalence of the resulting queries is defined
based on user-defined constraints ([42]) and types ([43]).
The chase mechanism used in the optimization is the same
we have been investigating to tackle the problem of database
consistency under updates. Thus, results for chasing graph
data can also be applied for query optimization. Moreover,
query re-writing techniques can be used to incorporate user-
defined constraints into the body of the query. For instance,
Table II shows a rewritten version of the query in Table I
where constraints defining the user context are incorporated
in the query. Here, challenges include dealing with more
sophisticated constraints and overcoming the limits of query
evaluation systems for big data, as already mentioned in
Section II.

Another important aspect concerns planning the query
evaluation. The problem of choosing a plan depends on
the ability to estimate the query cost. While the problem
of estimating query processing is well known in database
management systems ([44]), the cloud computing context
makes it more difficult to address. Indeed, optimization must
not only consider basic parameters such as response time
and data transfers, but must also take into account specific
aspects, especially money to be spent with respect to the pay-
as-you-go model. The problem is even more challenging due



to the variance of the clouds (period of time, type of VM for
instance). We address this problem by exploring continuous
optimization ([45]), extending current proposal in order to
consider multi objectives.

B. Human-in-the-loop Query Optimization

Query optimization in the cloud has to take into con-
sideration several (often contradictory) objectives. That is
why multi-objective query processing has been a hot topic
recently. Recent contributions have addressed optimization
of query processing in the cloud ([46]) or parallelization
of the optimization itself ([47]). Nevertheless, to the best
of our knowledge existing solutions do not really consider
specificities of graph data and they are based on a "Skyline"
interaction model, in which the user/administrator is in
charge of making a decision visualizing a (potentially large)
research space. In addition to address graph databases, our
vision is to provide a “human in the loop” approach, as
illustrated in Figure 2, with different users (administrators,
end-users) making it possible to define some rules offline,
which will be used online to reduce the search space.

V. CONCLUSION

The development of efficient tools for querying and
evolving data graphs under different kinds of constraints
is essential for urban computing. This paper presents the
authors’ views on some challenges and research directions
in this domain.
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