Propagating XML Constraints to Relations

Susan Davidson Wenfei Fan Carmem Hara Jing Qin
U. of Pennsylvania Bell Labs U. Federal do Parana, Brazil Temple U.
Abstract bookTitle | chapterNum| chapterName
XML 1 Introduction
We present a technique for refining the design of rela- XML 10 Conclusion
tional storage for XML data based o¥ML key propaga- XML 1 Getting Acquainted
tion. Three algorithms are presented: one checks whether (a) Chapter: the initial design
a given functional dependency is propagated from XML keys
via a predefined view; the others compute a minimum cover isbn | chapterNum| chapterName
for all functional dependencies on a universal relationegiv 123 1 Introduction
XML keys. Experimental results show that these algorithms 123 10 Conclusion
are efficient in practice. We also investigate the complex- 234 1 Getting Acquainted

ity of propagating other XML constraints to relations, and
the effect of increasing the power of the transformation lan
guage. Computing XML key propagation is a first step to-
ward establishing a connection between XML data and its and chapt er Name (written Chapt er (bookTi t | e,
relational representation at the semantic level. chapt er Num chapt er Nane)). The table is popu-
lated from the XML data as follows: For eatiook el-
ement, the value of thei t| e subelement is extracted.
A tuple is then created in th€hapt er relation for

Over the past five years, XML has become enormously eachchapt er subelement containing thei t | e value
popular as a data exchange format. A common paradigmfor bookTi t | e, the nunber value forchapt er Num
is for a data provider to export its data using XML; on the and thename value for chapt er Name (see Fig. 2(a)
other end, the data consumer imports some or all of thefor the resulting relational instance.) The key of the
XML data and stores it using database technology. SinceChapt er table has been specified asokTi t | e and
the XML data being transmitted is often large in size and chapt er Num While importing this XML data, vi-
fairly regular in structure, the database technology used i olations of the key are detected because two different
frequently relational. books have the same title (“XML”) and disagree on the

A problem with XML is that it is only syntax and does name of chapter one (“Introduction” versus “Getting Ac-
not carry the semantics of the data. To address this problemquainted”). After digging through the documentation ac-
a number of constraint specifications have recently beencompanying the XML data, the database designers decide to
proposed for XML which include a notion of keys; such change the schnema@apt er (i sbn, chapt er Num
proposals have also found their way into XML-Data [18] chapt er Name) with a key ofi sbn andchapt er Num
and XML Schema [28]. A natural question to ask, there- (populated in the obvious way from the XML data). The
fore, is how information about constraints can be used toresulting relational instance is shown in Fig. 2(b). While
determine when an existing consumer database design ismporting the XML data, no violations of the key con-
incompatible with the data being imported, or to generate straint are detected. However, the designers are not sure
de-novo a good consumer database. We illustrate the probwhether they were lucky with this particular XML data set,
lem below. or whether such violations will never occur.

It turns out that given the following keys on the XML
data, the designers of the consumer database could prove
thatthe key oChapt er in their modified design is correct:

(b) Chapter: a refined design
Figure 2. Sample relational instances

1 Introduction

Example 1.1: Suppose that the XML data (represented
as a tree) in Fig. 1 is being exchanged and that the ini-
tial design of the consumer database has a single ta
ble Chapt er with fields bookTi t| e, chapt er Num 1. i sbn uniquely identifies ook element.

2. Within eachbook, nunber is a key forchapt er,
*Research supported by NSF DBI-9975206.

tResearch supported in part by NSF Career Award 11S-0093C68- .e.,number is a key fO.rChE_lpt er rEIatlve_ to.bOOk'
rently on leave from Temple University. 3. Each book has a uniguei t| e, and within each

r@o

1

4 authov@ 5 chapte@ 6

name
@numb@ 13 naml
Introductio

B ray

chapte@ 7

@numbe@ 15nam
Conclusio

@lsbn@ 3 titlel @isbn @ 20

234

tltle

@numbe@ 24 naml 25

@numbe
26

1°1A) 28™"CE) 20

30
Fundamental

Getting
Acquainted

Figure 1. Tree representation of XML data

book, eachchapt er has a uniquaane.

That is, if these XML keys hold on the data being im-
ported, thenisbn, chapterNum — chapterName iS a

chapterNane), and Author(isbn, author).
Note thati sbn — aut hor is not mapped from the keys
since abook may have severaut hor s. O

functional dependency (FD) that is guaranteed to hold on Contributions. In this paper, we propose a framework for

the Chapt er relation generated (in other words,sbn,
chapt er Nunj is a key of the relation). We refer to the FD
as one that ipropagatedrom these XML keys.

In general, given a transformation to a predefined rela-

tional schema and a sEtof XML keys, one wants to know
whether or not an FD is propagated frdnvia the trans-
formation. Let us refer to this problem XL key prop-
agation The ability to compute XML key propagation is

important in checking the consistency of a predefined rela-

tional schema for storing XML data. a

On the other hand, suppose that the relational database

designed from scratch or can be re-designed to fit the con-
straints (and thus preserve the semantics) of the data being

imported. A common approach to designing a relational
database is to start with a rough schema and refine it into
normal form (such as BCNF or 3NF [1]) using FDs. In our

scenario, we assume that the designer specifies the rough

schema by a mapping from the XML document. The FDs
over that rough schema must then be inferred from the key
of the XML document using the mapping. However, it is
impractical to compute the sét of all the FDs propagated
since F' is exponentially large in the number of attributes.
We would therefore like to find eninimum covefl] of F,
that is, a subsef,, of F' that is equivalent t& (i.e., all
the FDs of F' can be derived fron#,,, using Armstrong’s
Axioms) and is non-redundant (i.e., none of the FD#’in
can be derived from other FDs if,,).

Example 1.2: Returning to our example, suppose that the
database designers decide to start from scratch andlinitial
propose a schema dthapt er (i sbn, booktitle,

aut hor, chapterNum chapterNane), with the
obvious mapping from the data in Fig. 1. From the three
keys given earlier, the following minimum cover for
Chapt er can be derived: l)sbn — bookTitl e,and
2)i sbn, chapt er Num — chapt er Nane. Taking ad-
vantage of these FDs, the following BCNF decomposition
of the initial design would be producedook(i shn,
bookTitle), Chapt er (i sbn, chapter Num

improving consumer relational database design. Our ap-
proach is based on inferring functional dependencies from
XML keys through a given mapping (transformation) of
XML data to relations. The class of XML keys considered
includes those commonly found in practice, and is a subset
of those in XML Schema [27]. More specifically, we make
the following contributions:

¢ A polynomial time algorithm for checking whether an
FD on a predefined relational database is propagated
from a set of XML keys via a transformation.

is e A polynomial-time algorithm that, given a universal

relation specified by a transformation rule and a set of

XML keys, finds a minimum cover for all the func-

tional dependencies mapped from XML keys.

Undecidability results that show the difficulty of XML

constraint propagation.

e Experimental results which show that the algorithms
are efficient in practice.

SNote that the polynomial-time algorithm for finding a mini-
mal cover from a set of XML keys is rather surprising, since
it is known that a related problem in the relational context —
finding a minimum cover for functional dependences-
beddedn a subset of a relation schema — is inherently ex-
ponential [16].

The undecidability results give practical motivation for
the restrictions adopted in this paper. In particular, one
result shows that it is impossible to effectively propagate
all forms of XML constraints supported by XML Schema,
which include keys and foreign keys, even when the trans-
formations are trivial. This motivates our restriction ohe
straints to a simple form of XML keys. Another undecid-
ability result shows that when the transformation language
is too rich, XML constraint propagation is also not fea-
sible, even when only keys are considered. Since XML
to relational transformations are subsumed by XML to
XML transformations expressible in query languages such
as XQuery [8], this negative result applies to most popular
XML query languages.

a e

Related Work. In [14, 13], a chase/backchase method Following the syntax of [6] we write an XML key as:

is presented which can be used for determining constraint K: (C,(T,{P,...,P}))

propagation in a semistructured data model when views arevhere K is the name of the key, path expressi@nsand
expressed in CRPQ (conjunctive regular path queries) andl’ are the context and target path expressions respectively,
dependencies are DERPDs (disjunctive embedded reguland P, ..., P, are the key paths. For the purposes of this
path dependencies). However, the method does not compaper, we restrict the key paths to be simple attributes
pute a minimum cover for propagated FDs; it is also too @Ay, ..., @A,, and denote this class of keys/ds. A key
general to be efficient for checking propagation of XML is said to beabsolutef the context pattC’ is the empty path
keys. The CPI algorithm of [19] is orthogonal to our work €, andrelativeotherwise.

and derives constraints from DTDs. Our work also paral- Example 2.1: Using this syntax, the sample constraints
lels that of [2], which investigates propagation of typecon from Section 1 and others can be written as follows:

straints through queries. . o
. : o KSi : (€ (//book,{@isbn})): within the context of
The problem of finding a cover for FDs embedded in a the entire document (denotes the root) a book ele-

e e ol mentis dented by s atiue. The book
y exp ' 9 node can occur anywhere in the tree.

that the problem of computing embedded FDs cannot be) o
reduced to ours since the XML key language cannot capture ® %52 (/[book, (chapter, {@number})): within the
context of any subtree rooted at a book node, a chapter

relational FDs, and vice versa. o o : .
. . is identified by its@Qnumber attribute. The chapter
Approaches for using a relational database to store XML ! .
node must be immediately under the book node.

data include [21, 24, 25, 5]. However, our framework and .

algorithms are the first results on mapping XML constraints ~ ® 555 ° (//book, (title,{})): each book has at most
through relational views. The transformation language de- ~ ©n€ title; similarly,
veloped in this paper is also similar to that of Stored [12] ® K54 : (//book/chapter, (name, {})) for the name of
and aspects of the new release of Oracle (9i) [22]. a chapter, and

Organization. The next section describes the class of XML~ ® K55 : (//book/chapter/section, (name, {})) for
keys considered and our transformation language. Section3 ~ S€ction name.

states the constraint propagation problem and establishes ® KSes : (//book/chapter, (section, {@number})):

the undecidability results. Sections 4 and 5 present algo- Within the context of a chapter of a book, each section
rithms for computing XML key propagation and minimum is identified by its @umber attribute.

cover. Experimental results are given in Section 6, folldwe e KS7 : (//book, (author/contact,{})): a book can

by our conclusions in Section 7. Complete details are given have multiple authors, but at most one has contact in-
in the full version of the paper [11]. formation (the contact author). O

. To define the meaning of an XML key, we use the following
2 XML Keys and Transformations notation: in an XML document (tree)[P] denotes the set
XML keys. To define a key we specify three things: 1) the of node identifiers that can be reached by following path
contextin which the key must hold; 2) targetset on which expressionP from the node with identifien. [P] is an

we are defining a key; and 3) tvalueswhich distinguish abbreviation for-[P], wherer is the root node of the tree.
eachlglement of the target set. For example, the second keExampIe 2.2:In Fig. 1, [book] = {1,19}, 1[chapter] =
specification of Example 1.1 'has a contexbafok, a tar- (6,7} and[//Qnumber] = {13, 15,24, 28, 32}. O

get set ofchapt er, and a single key valug@ghunber . . o

Specifying the context node and target set involve path ex-Definition 2.1 An XML tree T' satisfiesan XML key
pressions. v (C, (T, {@A;,...,QA,})), denotedl’” = ¢, iff for

The path language we adopt is a common fragment of@1Y 7 in [C'] and anyny,n» in n[T7, (1) n1 andn each
regular expressions [17] and XPath [10]: has a unique attribut@A; for all i € '[l,p], and (2)
Q = ¢ | 1L | QQ | J if val(n1.QA4;) = wval(ny,.@A;) for all i € [1,p] then

]) n; = nq, Whereval(n'.@QA;) denotes the text value associ-
wheree is the empty path{ is a node label, /" denotes 4iaq with the attribut®A; of /. 0O

concatenation of two path expressiooki(d in XPath), and _] o

“II" meansdescendant-or-self XPath. To avoid confusion ~ Example 2.3: The XML tree of Fig. 1 satisfies our
we write P//Q for the concatenation aP, // andQ. A sample constraints. For examplk,S; is satisfied since
pathp is a sequence of labels/ . .. /1,,. A path expression [//book] = {1,19} andval(1.Qisbn) # val(19.Qisbn).
(defines a set of paths, whilg” can match any path. Wwe ~ Oné can checkKS, by verifying the absolute key

usep € Qto denote thap is in the set of paths defined by 1We adopt this syntax for keys because it is more concise thatrof
Q. For examplebook /author /name € [/name. XML Schema.

. Xr X

r %//,/ r Vo
(¢, (chapter, {@number})) in the context of each of the l i
subtree rooted at 1 and the one rooted at 19; similarly for 1 '
K Sst0 K S. O l X b‘l"" e
Vo yoi
This definition of keys has several salient features: First, Xl book Xa z1 chapter Zs
keys can be scoped within the context of the entire doc- S = N A
L @isbn title author X4 @number section
ument (anabsolute kel or within the context of a sub- Y N
document (aelative key. Second, the specification of keys X2 name contact @number name
is orthogonal to the typing specification for the document %3 207 N Sg
(e.g. DTD or XML Schema). The type of documents _
(a) Rule(book) (b) Rule(section)

will therefore be ignored throughout this paper. Combining
keys with schema information, as is done in XML Schema, Figure 3. Table trees
adds complexity to the inference problem. As demonstrated
by [3], it is NP-hard even to check whether XML Schema
keys are satisfiable, i.e., whether there exist any XML doc-)
ument which satisfies those keys. In contrast, the keys stug-Ru! €(section)
ied here are always satisfiable [7].

yp < x,/1book, y; « y,/@isbn, y. + y,/chapter,

Y2 < y./@number,yz + y./name;

={ inChapt: valuet;), number:
valuegz), name: valuefs)},

z. < x./lbook/chapterz; «+ z.//@number,

Transformation Language. The transformation language 2y + z.Jsection, z, + z,/@number,z; « z,/name.

forms a core of many common transformations found

throughout the literature, in particular those of [25]. Table trees Throughout the remainder of the paper, we

Definition 2.2: A transformations from XML data to will use an abstract representation of a table rule called a

relations of schem® = (Ry,...,R,) is specified as table tree The idea is that by treating//” as a special
(Rule(Ry),...,Rule(R,)), where eachRul e(R;), re- node label, each table rule can be represented as a node-
ferred to as théable rulefor R;, is defined with: labeled tree. For example, Fig. 3 depicts the table trees for

Rule(book) andRule(section) in Example 2.4. In a table

tree T'r representindrul e(R), each variable iRul e(R)

corresponds to a unique node, and each node corresponds

to at most one variable.

Semantics. Given an XML treeT’, eachRule(R;) maps

)) T to an instancd; of R;. More specifically, given a vari-
* aset of variable mapping rules of the fonm— y/P, able specification: < y/P, = ranges ovey[P]; x, is al-

wherez,y € X; andP is a path expression. ways interpreted as the roet A field rulel : value(x)

In addition, each variable € X; is connectedo the root populates the field with values in{value(z) | = €

r; that is,z is specified with eithex «— z,./P inthe rule, y[P]}, where functionvalue returns a string represent-

orz < y/P andy is connected to the roet moreover, for ing the pre-order traversal of the subtree rooted.at et

anyz < y/P, 1) P is a simple path (i.e. without //) unless att(R;) = {l,...,l;} and each variable be specified

y is z,., and 2) no field rule is defined &s value(y) when with z < z'/P,. Then the instancé; is generated by

e a setX; of variables, in whichg,. is a distinguished
variable, referred to as theot variable

e asetoffield rulegl : value(x) | I € att(R;)}, where
x is a distinct variable inX;, andatt(R;) denotes the
set of attributes in the schema of relatiBe

there exists a variable specified withe + y/P. a I; = {(ly : value(my), ..., I : value(z)) | & =7, T €

Example 2.4:Expanding on Example 1.1, consider the fol- #'[P], = € Xi}.

lowing schemaR (with keys underlined): Example 2.5:Rule(section) is interpreted as:
book(isbn title, author, contact),
chapter(inBook, numbename), {(inChap : value(z1), number : value(zz),
section(inChapt, numbgname). name : value(z23)) | zc € r[//book/chapter]

21 € z[@number], zs € z[section],

A transformationr from the XML data of Fig. 1 tdR could
zo € zs[@Qnumber], z3 € zs[name]}.

be specified as:

o = (Rul e(book),Rul e(chapter)Rul e(section)) Referring to the XML tred” in Fig. 1,value(6) returns
Rul e(book) ={ isbn: valueg;), title: valueg:,), (@number:1, name: (S: Introduction)The interpretation
author: valuets), contact: valuef,)}, of the rule for section (Example 2.4) ov&€rgenerates fol-
Ty < x,1bo0K, 1 < x,/@isbn, x5 + xpltitle, lowing instance:
xq — wplauthor, 3 < z./name, z, «+ x,/contact; section| inChapt| number| name
Rul e(chapter) ={ inBook: valuef;;), number: 1 1 Fundamentals
valuef-), name: valuefs)}, ‘ 1 ‘ 2 ‘ Attributes O

Several subtleties are worth mentioning. First, since
XML data is semistructured it is possible that for— y/ P,
y[P] is empty. In this casealue(x) is defined to bewl | .
Second, ify[P] has multiple elements, then to generate the
relation, an implicit Cartesian product is computed so that
all nodes iny[P] are covered in the relation.

3 Problem Statement and Limitations

Key propagation. The question okey propagatiorasks if
given a transformationm from XML data to relations of a
fixed schema&R and an XML treeT" satisfying a set: of
XML keys, whethew (1') satisfies an FI (on a schemd
in R). We writeX =, R : ¢ if the implication holds for all
XML trees satisfyingz, and refer tap as an FDpropagated
from X. With respect to a transformation specification lan-
guage, thekey propagation problers to determine, given
anyo expressed in the language, any XML kéysand an
FD ¢, whether or no& =, R : ¢. Note that we do not
require the XML data to conform to any type specification.
A subtle issue arises fromul | values ino(T'), the re-
lations generated from an XML tréé via o. In particular,
there may exisR tuples ino(T") with FD X — Y such that
their X or Y fields contaimul | . The presence aiul |
complicates FD checking since comparisonsof | with
any value do not evaluate to a Boolean value [23]. A brutal
solution is to restrict the semantics of the transformation
so that a tuple is not included if it hasnal | field. Since
XML is semistructured, this could exclude a large number
of “incomplete” tuples fromv (7). We therefore adopt the
following semantics of FDso(T') satisfies FDX — Y,
denoted by (T') = X — Y, iff (1) for any tuplet in R,
if 7x(t) containsnul | then so doesry (t); and (2) for
tuplest,, t» in R, if neithert; nort, containsnul | and
wx(t1) = wx (t2), thenwy (1) = 7wy (t2). The motivation
behind the first condition is that an FD is possibly treated

as a key when normalizing the relational schema, and an

“incomplete key”X cannot determine compleiéfields.
Another issue we should address is the simplicity of the

transformation language, which can only express projactio

(), Cartesian productq) and a limited form of set union

(U). One might be tempted to develop a richer language

which can express all relational algebra operators: projec
tion, selection ¢), Cartesian product, set union and differ-

ence (). Although these operators can be generalized to

XML trees, the following negative result holds:

Theorem 3.1: The key propagation problem from XML to
relational data is undecidable when the transformation-lan
guage can express all relational algebra operators. O

ST Xr

. Xb

X1 Xa

-
@isbn > -
AN chapter tile 3~ author
h s X2
@number name~._ . na\me COCta
v Zs Y2 N AREAN
AN section <~ : .
T em o 22 X3 x4
@nurmber Aame

Figure 4. Rule(U)
Minimum cover. The problem ofinding a minimum cover
is to compute, given a universal relati@h and a set of
XML keys, a minimum covef, for the setF'+ of all FDs
on U propagated front. Guided byF,,, one can then
decomposdJ into a normal form as illustrated by Exam-
ple 1.2. This is analogous to techniques for designing rela-
tional databases [1]. In our context, a universal relaton i
simply the collection of all the fields of interest, along hwit
a table rule that defines these fields.

Example 3.1: Recall the schemR and the transformation
given in Example 2.4. A universal relatidd here is the
collection of all the fields oR, defined as follows:

U = (booklsbn, bookTitle, bookAuthor, authContact,

chapNum, chapName, secNum, secName),

Rule(U) = {booklsbn: valuef;), bookTitle: valueg-),

bookAuthor: valuets), authContact; valuey(),
chapNum: valuef;), chapName: valugg),
secNum: valuef;), secName: value()},
xp < x,.//book, z1 + zp/@isbn, x> < zyltitle,
x, — zplauthor, z3 <+ z,/name, x4 + x,/contact,
y. < xplchapter,y; < yJ@number,y, < y./name,
zs < yclsection, z; < z,/@number,z; « z,/name
The table tree okule(U) is depicted in Fig. 4.
¢From the set of XML keys of Example 2.1 the following
minimum cover for the FDs ofJ can be computed:
booklsbn— bookTitle,
booklsbn— authContact,
booklsbn, chapNum» chapName,
booklsbn, chapNum, secNum secName.

Guided by these FDs, we can decompbbkito BCNF:
book(booklsbnbookTitle, authContact),
author(booklsbn, bookAuthpr
chapter(booklisbn, chapNymhapName),
section(booklisbn, chapNum, secNusecName) O

Although in the relational context algorithms have been
developed for computing a minimum cover for a set of

The undecidablity is established by reduction from the FDs [4, 16, 20], they cannot be used in our context since the
equivalence problem for relational algebra queries (sép [1 FDs must be computed from the XML ke¥svia the trans-
for a proof); the latter is a well-known undecidable prob- formationo, instead of being provided as input for those
lem [1]. In contrast, for our transformation language there relational algorithms. Furthermore, relational FDs aré no
is a polynomial time algorithm in the size &fando. capable of expressing XML keys and vice versa.

Propagation of other XML constraints. XML Schema
supports keys and foreign keys. Although it is tempting to
develop algorithms to compute the propagation of both keys
and foreign keys, we have the following negative result:

Theorem 3.2: The propagation problem for XML keys and
foreign keys is undecidable for any transformation lan-
guage that can express identity mapping. |

The “identity” mapping is one in which the XML rep-

Implication of XML keys . One aspect of key propagation
is to determine whether an XML key must hold provided
that a seE of XML keys holds, denoted b¥, |= ¢. In other
words, X = ¢ iff for any XML tree T', T satisfiesp as long
asT satisfies all the keys i&. An algorithm for implica-
tion analysisj npl i cati on, can be found in [11]. The
algorithm takes as input a sEtandy of XML keys of K,
andreturns r ue iff ¥ |= . Itis based on a set afference
rulesthat, along the same lines as the Armstrong’s Axioms

resentation of relations is mapped to the same relations (infor implication of FDs in relational databases, allows ame t
our language this corresponds to a small class of transforderive key implication systematically. One example of the

mations defined with paths of length The undecidability
result is established by reduction from implication of re-
lational keys and foreign keys, which is undecidable [15]
(see [11] for a reduction). Because of this we restrict our
attention to the propagation of XML keys.

4 Checking Key Propagation

Checking key propagation is nontrivial for a number of
reasons: First, XML data is semistructured in nature, which
complicates the analysis of key propagation by the pres-
ence of null values. Second, XML keys which are not in
Y but are consequencesXfmay yield FDs on a relational
view. Thus key propagation involves XML key implica-
tion. Third, XML data is hierarchically structured and thus
XML keys are relative in their general form — they hold on
a sub-document. However, its relational view collapses the
hierarchical structures into a flat table and thus FDs are “ab
solute” — they hold on the entire relational view. Thus one

needs to derive a unique identification of a sub-document

from a set of relative keys.

Before presenting our polynomial-time algo-
rithm for checking XML key propagation (Algo-
rithm propagati on), we first discuss the notion of
a “keyed” node and the implication of XML keys.

Transitive set of XML keys. To uniquely identify a node
within the entire document we need a set of XML keys iden-
tifying unique contexts up to the root. To formalize this, we
use the following notion [7]: @1, (@}, S1)) immediately
precedeg()-, (@5, S2)) if Q2 = Q1/Q]. Theprecedese-
lation is the transitive closure of the immediately precede
relation. A set®. of keys istransitiveif for any relative key
(@Q1,(Q%,51)) in X there is an absolute key, (@5, S2))

in ¥ which precedes(;, (@}, S1)). We say that a node
is keyedif there exists a transitive set of keys to uniquely
identify the node.

Example 4.1: The set{ KS;, K S»} is transitive since any
chapter in the document can be identified by providing
@ sbn of a book and@hunber of a chapter. Thus every
chapter node is keyed. In contra$fy S»} is nottransitive
since with it alone there is no way to uniquely identify a
book in the document, which is necessary before identify-
ing a chapter of that book. a

rules istarget-to-contextif (Q, (Q1/Q2, S)) is a key then
S0 is(Q/Q1, (Q2, S)). Intuitively, the rule states that §
can uniquely identify a se¥ of nodes in the entire treE,
then it can also identify nodes @f in any subtree of/’;
observe that for any nodes € [Q] andrn’ € n[Q1], the
subtree rooted at’ is a subtree of the one rootedrat An-
other example of a trivial rule igpsilon: for any pathQ, it
is true that(@, (¢, {})). Intuitively, it states that any subtree
has a unique root node. Algorithimrpl i cat i on deter-
mines whether or nat | ¢ in O(|Z|? |¢|?) time, where
|X| and|y| are the sizes af andep.

Table tree. Algorithm pr opagat i on uses the tree rep-
resentation of a transformation to bridge the gap between
XML keys and the FDp to be checked. Without loss of gen-
erality, assume that is of the formY” — [with [€ att(R)
andY C att(R), and that for the relatiol®?, Rule(R) is
{l; : value(z;) | i € [1,m]} along with a setX of vari-
ables and mappings « y/P for eachz € X. In the
table treel’r representinule(R), any variabler in X
has a unique node corresponding to it, referred to agthe
node. In particular, the,.-node is the root of . Observe
that for anyz,y € X, if the z-node is a descendant of the
y-node inTg, then there is a unique path i from the
y-node toz-node, which is a path expression. We denote
the path byP(y, z), which exists only if there are variables
Z1,...,¢E in X such thatey = y, ;, = « and for each

i €[1,k—1],z441 < x;/P; isamapping irRule(R). We
usedescendants(y) to denote the set of all the variables
that are descendants gf we defineancestors(y) simi-
larly. In particular, ifz is specified withe < y/P then the
variabley is called theparentof x, denoted byarent(x).
Referring to Fig. 3 (b), for example;. is the parent o¥Z..,
andP(z,, Z.) is | [book | chapter.

Algorithm . The intuiton behind Algo-
rithm propagation is as follows. Given an FD

¢ =Y — lonR, assume thdtis specified withvalue(z),
and that the table tree representigle(R) is Tr. Then

Y E, ¢ iff (1) either ¢ is trivial, that is,l € Y, or there
exists an ancestaurget of x in Tr such thattarget is
keyed with fields ofY” and moreoverg is uniqueunder
target; that is, there is a set of transitive keys that uniquely
identifies target with only those attributes which define

Algorithm pr opagati on

Input: XML keys 2, FD¢ =Y — [l overR,

andRule(R) in transformations, in which! : value(z).

Output:trueiff ¥ =, R : ¢.

ancestor[z]:= nil;

W= X,

whilew # z, do

w:=parent(w);
ancestor[zx]:=w :: ancestor[z];

Ycheck=Y — {i};

ifleY

thenkey Found := true;

elsekeyFound := false;

10. context:=z,;

11. whileancestor[z] # nil do

12. target := head(ancestor[z]);

13. S$:={Qa |l €Y, I' : value(y) € Rule(R),
y < target/Qa is a variable mapping

if notkey Found

then ifi mpl i cati on(X, (P(xz,,context),

(P(context, target), S)))
thencontext:= target;
ifi mpl i cation(X, (P(z,,target),
(P(target,z),{ 1))

thenkeyFound :=tr ue;

if existP(x,, target), S)

thenL:={l' | I' €Y, ' : value(y) € Rule(R),
y < target/Qa is a variable mapping

21. Ycheck= Ycheck— L;

22. ancestor|x]:= tail(ancestor(z]);

23. returnkey Found and (Ycheck= { });

©CoN Tk wWDE

14.
15.

16.
17.

18.

19.
20.

function exi st (Q, S)

Input: Q: path expressionS: a set of attributes.
Output:true iff for all [€ S andn € [Q], n.Ql exists.
1. X:=5;
for each keyp = (Q1, (Q1, S1)) in X do

ifQ C Q1/Q1

thenX = X — Si;

2
3.
4
5 returnX ={});

Figure 5. XML key propagation algorithm

fields of Y, andX = (P(z,, target), (P(target,z),{ }));
(2) every field ofY is defined with an attribute of some
ancestor ofr that is required to exist. The first condition
asserts that for anig tuplest; andt., if they agree on their
Y fields and do not containul | , then they agree on their
[fields. The second condition excludes the possibility that
in someR tuplet, thel field is defined while some of their
Y fields arenul | .

Putting everything together, Algorithpr opagat i on
is shown in Fig. 5. The algorithm first computes the list
of all the ancestors of (Lines 1 to 5); it then traverses
the table-tree€l’r top-down along the ancestor path from
the rootz, to x (Lines 11 to 22), and for each ancestor

target in this path, checks ifarget is keyed (Lines 15).
The central part of the algorithm is to check whether there
is a set of transitive keys fotarget. To do so, it uses
variable context to keep track of the closest ancestor for
which a key has been found, and collects the attributes of
target that populate fields iy in a setS. Thustarget is
keyed iff ¥ |= (P(x,, context), (P(context, target), S)),
i.e., S is a key oftarget relative to its closest ancestor with
a key. XML key implication is checked by invoking Al-
gorithmi npl i cat i on mentioned above. If it holds, the
algorithm movegontext down totarget (Line 16; the cor-
rectness of this step is ensured by thmet-to-contextule
given above); then, it sets the Boolean flag Found to

t rue if z is unique undetarget (Line 17). To ensure that
all the fields ofY” are defined with attributes of ancestors of
x that are required to exist, it uses a variabtdeckwith an
initial value of Y — {l}) and removes fronvcheckhe field
names that correspond to the $ebf attributes (Lines 19
to 21). The algorithm returrisr ue iff keyFoundistrue
and Ycheckbecomes empty, i.e., the two conditions given
above are satisfied.

Example 4.2: To illustrate the algorithm, recall the trans-
formationo of Example 2.4 and the sét of XML keys
of Example 2.1. Consider F@isbn — contact over re-
lation book defined byRul e(book), which is depicted in
Fig. 3 (a). Note that the fieldont act in the FD is spec-
ified with variablez,. GivenX, o and the FD, the algo-
rithm computes the ancestorsof, which consists ofz,.,
xp andx,. Then, it first checks if,. is keyed by inspecting
Y = (¢, {}). Since this holds by thepsilonrule given
above, the algorithm then checks whethgis keyed by in-
specting® = (//book, {Qisbn}). Since this is also true,
the algorithm proceeds to check whethgris unique un-
derzy, i.e., whethe® |= (//book, (author [contact, {})).
This is also the case. In addition, the fieélgbn in the FD is
defined in terms of an attribute of that is required to exist.
That is, by the semantics of key§//book, {@Qisbn}) re-
quires evenpook element to have a@isbn attribute. Thus
the algorithm concludes that the FD is derived fr@hvia
o and returns r ue.

Next, let us consideRul e(section) of Example 2.4,
represented by the table tree of Fig. 3 (b), andddbe
an FD: inChapt,number — name over relationsection.
After succesfully verifying thatz, is keyed, the algo-
rithm checks whether its next ancestor is keyed, i.e.,
whetherYX = (//book/chapter, {@Qnumber}). This
fails. Thus it attempts to verify another key relative to
the root: ¥ |= (//book/chapter /section, {@Qnumber}),
which fails again. At this point the algorithm concludesttha
the FD cannot be derived fromand returng al se. O

The complexity of the algorithm i©(m?n?), wherem
andn are the sizes of XML key& and table tred'y, re-

spectively (see [11] for details as well as for a proof of cor-
rectness of the algorithm).

5 Computing Minimum Cover

In this section we present two algorithms for finding
a minimum cover for FDs propagated from XML keys.
The first algorithm is a direct generalization of Algo-
rithm pr opagat i on of Fig. 5, and always takes exponen-
tial time. We use this naive algorithm to illustrate the dif-
ficulties in connection with finding a minimum cover. The
second algorithm takes polynomial time in the size of input,
by reducing the number of FDs generated in the following
way: a new FD is inserted in the resulting set only if it can-

not be implied from the FDs already generated, using the

inference rules for FDs. To the best of our knowledge, this
is the first effective algorithm for finding a minimum cover
for FDs propagated from XML keys.

A Naive Algorithm. Algorithm pr opagat i on given in
the last section allows us to check XML key propagation.
Thus a naive algorithm for finding a minimum cover is to
generate each possible FD &) check whether or not it is

in F*, the set of all the FDs mapped from the XML keys,
using Algorithmpr opagat i on, and then eliminate both
extraneous attributes and redundant FDs frbrh using
standard relational database techniques; this yields & min
mum coverF,, for F+. The algorithm, Algorithmai ve,
can be found in [11]. It takes exponential time in the size
of U for any input since it computes all possible FDsGn

It should be mentioned that the function invoked by the al-
gorithm for eliminating redundancy, Function ni ni ze
given below [4], takes quadratic time in the size of its input
FDs, since FD implication can be checked in linear time us-
ing the Armstrong’s Axioms; but when invokedirai ve,

the set of input FDs is exponentially large.

function mi ni m ze (F)
Input: F: a set of FDs.
Output: A non-redundant cover df'.
1. foreachY — [) € F do /* eliminate extra attributes *
for eachl’ € Y do
ifFEX-{'}) —1
thenY:=Y — {I'};
G=F; /* eliminate redundant FDs *
for eachp in F do
if (G~ {¢}) F ¢
thenG:=G — {¢};
returnG;

ONOGO WD

9.

Obviously, Algorithmnai ve is too expensive to be
practical. The problem is that it needs to compiite,
which is exponential in the size & even with trivial FDs

propagated FDs. The algorithm take&n®n®) time, where
m andn are the sizes of XML key&, and the transforma-
tion o, respectively. The algorithm works as follows. Recall
that the transformatioRule(U) can be depicted as a table
treeT', in which each variable in the setX of Rule(U)

is represented by a unique node, referred to ag:thede.
The algorithm traverseg top-down starting from the root
of T', z,, and generates a sét of FDs that is a cover of
F*, i.e., a superset of},. More specifically, at each-
node encountered, it expandsby including certain FDs
propagated fronX. It then removes redundant FDs fram
to produce a minimum covdt,,, .

The obvious question is what new FDs are added at each
z-node. As in Algorithnpr opagat i on, at eache-node a
new FDY — [is included intoF' only if (1) z is keyed with
a set of attributes that define the fieldsin(2) the field! is
defined by the value of a nodeandy is unique undet.

Example 5.1: Recall the universal relatioty defined by
the transformatiore of Example 3.1, the table tree de-
picted in Fig. 4, and the set of XML keys of Ex-
ample 2.1. An FD derived front at the z, node is
bookIsbn, chapNum, secNum — secName. The left-hand
side of the FD corresponds to a transitive set of keys for
the z; node consisted of a sectidg®number which is an
attribute ofz,, as well as a chapteé®number and a book
@isbn, which are a key ot,’s ancestoy... The right-hand
side of the FD is defined by a node unique undee,, by

K S5 in X. Thus the key for the; node actually consists
of the key of its ancestoy. as well as a key fosection
(@number) relative toy.. |

Critical to the performance of the algorithm is to min-
imize the number of FDs added at eacimode while en-
suring that no FDs irF},, are missed. This is done in two
ways: First, we reduce our search for candidate FDs to those
whose left-hand side corresponds to attributes of keys in
Second, we observe that an ancestotget of an z-node
may have several keys, but that in creating a transitive key
for 2 only one of them needs to be selected as long as the
following property is enforced: for any two transitive keys
K, and K, of the z-node, F' includesY; — [for each
l € Y> andY, — I for eachl’ € Y7, whereY7, Y; are sets
of U fields defined by; and K, respectively. Given this,

Y7 andY; are equivalent by Armstrong’s Axioms.

There is a subtlety caused by the troublesamog |
value. LetK, be a transitive key for as-node, K; be a
transitive key for an ancestgrof x, Y; andY> be the sets
of U fields defined byK; and K5, respectively, an& be
another set olU fields. Then the following is a rule for
populatingF: if (YU Z — [l)isin F and! is aU field

removed. This observation motivates us to develop an algo-defined by a descendanbf «, then > U Z — [) should

rithm that directly finds¥,,, without computingr+.
A Polynomial-Time Algorithm. We next present a more
efficient algorithm for finding a minimum cover for all the

be also be included if". The intuition behind this rule is
that a key forz is also a key for its ancestay, provided
that the existence of undery is assured. This is because

Algorithm m ni numCover

Input: XML keys %, a universal relatioJ defined
by Rule(U) along with a sefX of variables.

Output: a minimum coverF,, for all FDs onU
propagated fronx.

1. foreachzin X do

2 keys[z]:= nil; keyAnc[z]:={};

3 unique[z]:= {}; att[z]:={}; desclz]:={};

4 for eachy in descendant(z) do

5. if [:value(y)isinRule(U) then

6. desc|z]:= desc[z] U {l1};

7 ifi nplication(Z, (P(z,,z),(P(z,y),{})))

8 thenunique[z]:= unique[z] U {l};

9. if y «+— = /@I’ is a variable mapping then

10. att[z] := att[z] U {Ql'};

11. allVars:= z, :: nil; keys[z,]:={} :: nil;

12. keyAnclz,]:= {}; ancestor[z,]:=nil; F:={};

13. for eacH in unique[z,]do F:=F U { — [};

14. for eachr in children(z,) do genF Ds(z);

15. whileallVars # nil do

16. z:= head(allVars);

17. foreachR € keyAnclz] do

18. for eachY —) in F' do

19. if | € desc[z] andR is subset ol” then
20. for eachK € keys[z] do
21. F=FU{(KU(Y —R)) =1},

22. allVars:=tail(allVars),
23. Fp:=mini m ze(F); returnF,,;

proceduregenFDs (z)
Input: x: a variable inRule(U).
Output: expanded'.

1. allVars:i=z :: allVars; w:=parent(z);
2. ancestor[z]:= ancestor[w] + (w :: nil);
3. whilekeys[w] = nil dow:= parent(w);
4. keyAnc[z]:= key Anc[z] U head(keys[w]);
5. foreach@Q, (@', S))in = do
6. K:={l| @l'es,1:value(y) € Rule(U),

y < z /@' is a variable mapping
7. if S Catt[z] and |K| =|S| then
8. traverse[z]:= ancestor|[z]; key Ancestor:=f al se
9. whiletraverse[z] # nil andnot keyAncestor do
10. target:= head(traverse[z]);
11. if keys[target] # nil andi npl i cati on

(2, (P(z,,target), (P(target,x), S)))

12. thenkey Ancestor:=tr ue
13. elseraverse[z]:= tail (traverse[z]);
14. if key Ancestor then
15. K:= K U head(keys[target]);
16. keys[z]:= K :: keys|x];
17. keyAnc[z]:= key Anc[z] U head(keys[target]);
18. for eachl in unique[z] — K do
19. F=FU{K -1},

20. for eachy in children(z) dogenFDs (y);

Figure 6. Computing minimum cover

there is a unique ancestgrof z in a tree that connects to
x via the pathP(y, z). Thus, provided the existence of
undery, we haveY, — [’ for anyl’ € Y;. As a result, if
Y1UZ — [thenY, U Z — [, by the transitivity of FD
implication. The existence af undery is ensured by the
existence ot: if Y> U Z — [, then by the definition of FDs,
z must exist undey; hencey must be on the path fromto

z, i.e.,z exists. It is worth remarking that whéns not de-
fined by a descendant of the rule may not be sound since
Y> — 1’ may not hold for an’ € Y;; more specifically,
Y, consists ofnul | if z does not exist undey, while I’
may not be. As an example, consider two transitive keys at
a nodez: K, = {(Ql, {@Al}), (Ql, (Qz, {@Az}))} and
K> = {(Q1/Q2,{@QA3})}, with each attributé2 A; popu-
lating a fieldl; in U. Note that(Q,, {QA; }) is a key of the
ancestoy of x that connects ta via the pathy),. Consider
the following FDs: fi = (I1,1s) — I3, fo = I3 — 14, and
f3 = I3 — [. Although f; and f5 are indeed propagated
from K, and K, f» is not. This is because the existence
of attribute@A4; of nodey in [@,] does not guarantee the
existence of attribut@®A; of x in y[Q-]; therefore/; can
have a nomul | value even wheiis is nul | , violating
the FD. Thusf, should not be included if'. However, if
F containgl; — 1[4 for somel, defined with a descendent
of z, thenF should also includg — ;.

To keep track of the information needed to generate FDs
at eachz-node, we associate the following with each vari-
ablez in Rule(U):

e keys[z]: a list of sets ofU fields, each set mapped

from a transitive key of the-node;

e keyAnc[z]: asetof sets dU fields, each mapped from

a transitive key of an ancestor of

e desc[z]: the set of all descendants of thenode;

e unique[z]: the set of all the unique descendants of the

z-node;

e att[z]: the set of attributes of the-node;

e ancestor[z]: the list of all the ancestors af starting

from the root;
Note thatunique[z] is a subset oflesc[z], andatt[z] is a
subset ofunique[z] since any node in an XML tree has at
most one attribute labeled with a particular name.

Using this notation, at eacttnode, we expand the cover
F of FDs as follows: First, for eact, (Q',S)) in ¥ we
computek, the set of fields olU defined by attributes in
S. We check whethe$ is contained irutt[x] and whether
every attribute ofS defines aU field (by comparing the
cardinalities ofS and K). If it is the case then we traverse
the ancestor path af starting from the root. We find the
first ancestotarget of x that is keyed, and check whether
S is a key for thez-node relative tatarget using Algo-
rithmi npl i cati on. Ifthese conditions are metwe con-
struct a transitive keys’ for by combiningS with an ar-
bitrary transitive key for the ancestarrget of thexz-node,
which is inkeys[target]. We incremenkeys[z] by adding

this transitive key, and insekieys[target] in keyAnc|z].
Second, we expandl' by includingY” — [for eachl in
uniquelz] (excludingY’), whereY is a set ofU fields de-
fined by K'. That is, the transitive key of the-node de-
termines the unique descendantszof After the setF' is
computed by traversing all variablesin Rule(U), it is
expanded by applying transitivity on keys key Anc[z],
which includes a key af’s closest keyed ancestor. That is,
if K7 € keyAnc[z], we inspect eacl” — [in F', check-
ing if K is a subset o', i.e., whether there exists such
thatY = K; U Z. If this is the case and € desc|z],
then for eachk', in keys[z] we add(K, U Z) — [to F.
One can show that the sizes/ofys[z] andkey Ancz] are
quadratic in the size oE, unique[z] is bounded by the
size ofRule(U), and the sefX is no larger than the size
of Rule(U); thus the sef is bounded bynn?, i.e., the
size (thus the cardinality) df is at mostO(m*n?), a poly-
nomial in the input size.

Algorithm . Based on these observations, we show Algo-
rithmm ni munCover in Fig, 6. After computinglesc|z],
att[z], unique[z] and initializing keys[z], andkey Anc|z]

for each variabler in Rule(U) (Lines 1 to 10), the algo-
rithm initializes these variables for the root node (Lines
11, 12), and inserts iF' FDs of the form{) — [for
each unique field under the root (Line 13). It then in-
vokes a recursive procedugenFDs to process the chil-
dren of the root node (Line 14). ProcedgenFDs ex-
pandsF' given an inputc-node as described above, and re-
cursively processes the children of thenode. AfterF' is
computed, Algorithmm ni numCover expands it by ap-
plying the transitivity rule (Lines 15 to 22) and invokes
functionm ni m ze given in the last section to eliminate
redundant FDs fron¥’, and thus yields a minimum cover
F,, (Lines 23). The correctness of the algorithm is estab-
lished in [11].

Example 5.2: Given the transformationr of Exam-
ple 3.1 and the set of XML keys of Example 2.1, Al-
gorithm mi ni nunCover returns the FDs given in Ex-
ample 3.1, which are a minimum cover for all the FDs
propagated fronk via 0. Specifically, the algorithm tra-
verses the table tree of Fig. 4 (a) top-down starting at
the root. At nodez,, two FDs are generated: one is
bookIsbn — bookTitle, and the other i®ookIsbn —
authContact. Herekeys[z,] = [{@Qisbn}]. At nodey,,
FD bookIsbn,chapNum — chapName is included inF
andkeys[y.] is changed t¢{ Qisbn, @number}], which is
constructed by combinin@number, a key ofy,. relative

to z,, and the key inkeys[z,]. Similarly, at nodez, FD
bookIsbn, chapNum, secNum — secName iS inserted into
F. No FDs are generated at any other nodes. |

The complexity of the algorithm i€)(m®n5) time,
wherem andn are the sizes of XML key& and table

10

tree Tg, respectively (see [11] for details). Sin&eand
Rule(U) are usually small, this algorithm is efficient in
practice. The experimental results of the next section also
show that it substantially outperforms Algorithmai ve.

A final remark is that, although one can generalize
Algorithm m ni nunCover to check XML key propa-
gation instead of using Algorithmr opagat i on, there
are good reasons for not doing so. The complexity of
Algorithm mi ni munCover is much higher than that of
Algorithm propagati on (O(m8n%) vs. O(m?n?)).

In short, Algorithm pr opagati on is best used to
inspect a predefined relational schema, whereas Algo-
rithm m ni munCover helps normalize a universal rela-
tion at the early stage of relational design.

6 Experimental Study

The various algorithms presented in this paper have
been implemented, and a number of experiments per-
formed. The results of these experiments show that despite
theirO(m?n3) andO(m®n®) worst-case performance, both
Algorithms pr opagat i on and m ni munCover work
well in practice: they take merely a few seconds even
given large transformation and XML keys. For comput-
ing minimum cover, Algorithmm ni nunCover is sev-
eral orders of magnitude faster than Algorithi ve, and
for checking key propagation Algorithmpr opagat i on
significantly outperforms the generalization of Algorithm
m ni munCover. Our results also reveal that Algo-
rithm ni ni rumCover is more sensitive to the number of
XML keys than to the size of the transformation. This is
nice since in many applications the number of keys does not
change frequently, whereas a relational schema may define
tables with a variety of different arities (number of fields)
Our results also show that Algorithpr opagat i on has
a surprisingly low sensitivity to the size of the transforma
tion, and that its execution time grows linearly with theesiz
of XML keys.

To perform these experiments, we synthetically gener-
ated transformations and XML keys based on the number
of fields in a relation, the depth of a table-tree, and the num-
ber of XML keys. All experiments were conducted on
the same 1.6GHz Pentium 4 machine with 512MB mem-
ory. The operating system is Linux RedHat v7.1 and the
program was implemented in C++.

The first experiment evaluates the performance of
the two algorithms for computing minimum cover (see
Fig. 7(a)). These results tell us the following. First,
the average complexity of Algorithmi ni nunCover in
practice is much better than i&(m3n%) worst-case com-
plexity. Consider, for example, the execution time of
the algorithm fordept h = 10 andkey = 10. When the
number of fields is increased (which corresponds roughly
to increasing the size of the transformation), the execu-
tion time grows in the power of two in average instead

of in the power of six. Second, the algorithm needs less
than 35 seconds for 200 fields, and a little over 2 minutes
even for 500 fields. Since in most applications the num-
ber of fields in a relation is much less than 500, we can say
that Algorithmmi ni nunCover performs well in practice.
Third, the performance of Algorithrm ni nunCover is
much better than Algorithnrmai ve. For example, when
the number of fields is incremented by 5, the execution time
of m ni munCover at most doubles, while fanai ve it
grows almost two-hundred-fold.

We next consider checking XML key propagation. An
algorithm for doing so, Algorithnpr opagati on, was
presented in Section 4. An alternative algorithm can also
be developed by means of Algorithm ni munCover
as follows: Given a transformatiosm, a set of keysY,
and an FD¢ = Y — [, the algorithm first invokes
m ni munCover (¥,0) to compute a minimum covef,,
of all the FDs propagated; it then checks whether ormgt
implies ¢ using relational FD implication, and whether all
the fields inY” are guaranteed to have a non-null value when
lis notnul | . It returnst r ue iff these conditions are met.
In what follows, we refer to this generalized algorithm as
Gm ni munCover since the performance is roughly com-
parable to the original algorithm.

Our second experiment serves two purposes: to com-
pare the effectiveness of these two algorithms for check-
ing key propagation, and to study the impact of the
depth of table-treedept h) on the performance of Algo-
rithmspr opagat i on andGni ni munCover . Fig. 7(b)
depicts the execution time of these algorithmsffoel d
= 15 andkeys = 10 with dept h varying from 2 to

15. (These parameters were chosen based on the aver-

age tree depth found in real XML data [9].) The re-
sults in Fig. 7(b) reveal the following. First, Algo-
rithm propagati on works well in practice: it takes
merely0.05 second even when the table tree is as deep as
15. Second, these algorithms are rather insensitive to the
change todept h. Third, pr opagat i on is much faster
thenGmi ni munCover for checking key propagation, as
expected. Although the actual execution times of the algo-
rithms are quite different, the ratios of increase when the
depth of the table-tree grows are similar. This is because in
both algorithms the depth determines how many times Al-
gorithmi npl i cat i on is invoked, and because the com-
plexity of Algorithmi npli cati on is a function of the
size of the XML keys, which grows when the depth of the
table tree gets larger.

Our third experiment demonstrates how the number
of XML keys (keys) influences the performance of Al-
gorithms pr opagat i on and Gm ni munCover when
checking key propagation. The results (Fig. 7(c)) show
that increasing the number of keys has a bigger impact
on AlgorithmGm ni nuntCover than onpr opagat i on,

11

seconds.

seconds

—l— naive
depth: 5
keys: 5

—— MinironmC over
depth: 5
keys: 5

—k— MinimumCover
depth: 10
keys: 10

5 10 15 20 25 30
murnber of fields

(a) Time for computing minimum cover

2 4 [3 o 12 14 15
table-tree depth
| —k— OhdinirmCorer —— Pmpagationl

(b) Effect of depth of the table tree

5 10 15 20 25 30
nureber of keys

| —de— GlIirdrmraCover —m— Pmpagation|

(c) Effect of number of keys

Figure 7. Experimental results

in which the growth of the execution time is almost lin-
ear. In fact, additional experiments tell us that f@pt h
= 10 andkeys = 50, Algorithm Gri ni nunCover runs
in under 2 minutes for 200 fields, but when increasing
the number of keys to 100, its execution time is over 4
minutes for relations with 150 fields. In contrast, Algo-
rithm pr opagat i on runs in both settings in less than 5
seconds. In addition, for 1000 fields, which is the maximum
number of fields allowed by Oracle [22], the execution time
of propagat i on is 85 seconds on average for 50 keys,
and 142 seconds for 100 keys.

A closer look at Algorithnpr opagat i on reveals that

(4]

(5]

(6]
(7]
(8]

[9]

the constant ratio of increase is based on the time needed10]

for executing calls to Algorithm npl i cati on. That is,

if the depth of the table-tree is fixed, the number of calls
is roughly the same for the whole experiment; the increase
in running time is based on the the performance of Algo-
rithm i npl i cat i on, which depends on the size of the
XML keys. The performance dfnpl i cati on also has

an impact on the Algorithn®ni ni muntCover . However,

the number of keys has a bigger influence in this algorithm

11]

[12]

[13]

because for each node in the table-tree all the keys are an-

alyzed. Also, by increasing the number of XML keys, the
number of FDs in the resulting set is likely to grow, increas-
ing the execution time for eliminating redundant FDs by
callingm ni m ze.

7 Conclusion

We have proposed a framework for refining the relational
design of XML storage based on XML key propagation.
For this purpose we have developed algorithms for checking
whether a functional dependency is propagated from XML
keys, and for finding a minimum cover for all functional
dependencies propagated from XML keys, along with com-
plexity results in connection with XML constraint propaga-
tion. Our experimental results show that these algorithms
are efficient and effective in practice. These algorithnrs ca
be generalized and incorporated into relational storagje te
nigues published in the literature (e.g. [25, 26, 22]). Our
results are also useful in optimizing queries and in under-
standing XML to XML transformations.

Topics for future work include studying the propagation
of other forms of integrity constraints, and re-investiggt
constraint propagation in the presence of types (e.g., XML
Schema).

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases Addison-Wesley, 1995.

[2] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML
with data values: Typechecking revisited. RODS 2001.

[3] M. Arenas, W. Fan, and L. Libkin. What’s hard about XML
Schema constraints? DEXA 2002.

12

14]

[15]
[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]
[24]

[25]

[26]

C. Beeri and P. A. Bernstein. Computational problems re-
lated to the design of normal form relational schemfGM
Trans. on Database Systerd$1):455—-469, 1979.

P. Bohannon, J. Freire, P. Roy, and J. Simeon. From XML
schemato relations: A cost-based approach to XML storage.
In ICDE, 2002.

P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan.
Keys for XML. In WWW’10 2001.

P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan.
Reasoning about keys for XML. IBBPL, 2001.

D. Chamberlin et al. XQuery 1.0: An XML Query Lan-
guage. W3C Working Draft, June 2001.

http://ww. w3. org/ TR/ xquery.

B. Choi. What are real DTDs like. IivebDB 2002.

J. Clark and S. DeRose. XML Path Language (XPath). W3C
Working Draft, Nov. 1999.

http://ww. w3. or g/ TR/ xpat h.

S. Davidson, W. Fan, C. Hara, and J. Qin. Propagating XML
constraints to relations. Technical Report MS-CIS-02-16,
University of Pennsylvania, 2002.

A. Deutsch, M. Fernandez, and D. Suciu. Storing semnistr
tured data with STORED. I8IGMOD’99 1999.

A. Deutsch, L. Popa, and V. Tannen. Physical data indepe
dence, constraints and optimization with universal plans.
VLDB, 1999.

A. Deutsch and V. Tannen. Querying XML with mixed and
redundant storage. Technical Report MS-CIS-02-01, Uni-
versity of Pennsylvania, 2002.

W. Fan and L. Libkin. On XML integrity constraints in the
presence of DTDsSJACM, 49(3):368—406, 2002.

G. Gottlob. Computing covers for embedded functiored d
pendencies. IIPODS 1987.

J. E. Hopcroft and J. D. Ullmanintroduction to Automata
Theory, Languages and ComputatiorAddision Wesley,
1979.

A. Layman et al. XML-Data. W3C Note, Jan. 1998.
http://ww. w3. org/ TR/ 1998/ NOTE- XM.- dat a.

D. Lee and W. W. Chu. Constraints-preseving transfor-
mation from XML document type definition to relational
schema. IrER, 2000.

D. Maier. Minimum covers in relational database modkl.

of ACM, 27(4):664—674, 1980.

I. Manolescu, D. Florescu, and D. Kossmann. Pushing XML
queries inside relational databases. Tech. Report no., 4112
INRIA, 2001.

Oracle Corporation. Oracle9i Application Developer's
Guide - XML, Release 1 (9.0,2001.

R. Ramakrishnan and J. GehrkdDatabase Management
SystemsMcGraw-Hill Higher Education, 2000.

A. Schmidt, M. L. Kersten, M. Windhouwer, and F. Waas.
Efficient relational storage and retrieval of XML documents
In WebDB (Informal Proceedingspages 47-52, 2000.

J. Shanmugasundaram et al. Relational databasesdoy-qu
ing XML documents: Limitations and opportunitiegL DB
Journal pages 302—-314, 1999.

J. Shanmugasundaram et al. A general techniques foy-que
ing XML documents using a relational database system.
SIGMOD Record30(3):20-26, 2001.

H. Thompson. Personal communication, 2002.

H. Thompson et al. XML Schema. W3C Working Dratft,

May 2001.ht t p: / / www. w3. or g/ XM./ Schena.

