
Propagating XML Constraints to Relations

Susan Davidson�
U. of Pennsylvania

Wenfei Fany
Bell Labs

Carmem Hara
U. Federal do Parana, Brazil

Jing Qin
Temple U.

Abstract

We present a technique for refining the design of rela-
tional storage for XML data based onXML key propaga-
tion. Three algorithms are presented: one checks whether
a given functional dependency is propagated from XML keys
via a predefined view; the others compute a minimum cover
for all functional dependencies on a universal relation given
XML keys. Experimental results show that these algorithms
are efficient in practice. We also investigate the complex-
ity of propagating other XML constraints to relations, and
the effect of increasing the power of the transformation lan-
guage. Computing XML key propagation is a first step to-
ward establishing a connection between XML data and its
relational representation at the semantic level.

1 Introduction

Over the past five years, XML has become enormously
popular as a data exchange format. A common paradigm
is for a data provider to export its data using XML; on the
other end, the data consumer imports some or all of the
XML data and stores it using database technology. Since
the XML data being transmitted is often large in size and
fairly regular in structure, the database technology used is
frequently relational.

A problem with XML is that it is only syntax and does
not carry the semantics of the data. To address this problem,
a number of constraint specifications have recently been
proposed for XML which include a notion of keys; such
proposals have also found their way into XML-Data [18]
and XML Schema [28]. A natural question to ask, there-
fore, is how information about constraints can be used to
determine when an existing consumer database design is
incompatible with the data being imported, or to generate
de-novo a good consumer database. We illustrate the prob-
lem below.

Example 1.1: Suppose that the XML data (represented
as a tree) in Fig. 1 is being exchanged and that the ini-
tial design of the consumer database has a single ta-
ble Chapter with fields bookTitle, chapterNum�Research supported by NSF DBI-9975206.yResearch supported in part by NSF Career Award IIS-0093168.Cur-
rently on leave from Temple University.

bookTitle chapterNum chapterName
XML 1 Introduction
XML 10 Conclusion
XML 1 Getting Acquainted

(a) Chapter: the initial design

isbn chapterNum chapterName
123 1 Introduction
123 10 Conclusion
234 1 Getting Acquainted

(b) Chapter: a refined design

Figure 2. Sample relational instances

and chapterName (written Chapter(bookTitle,
chapterNum, chapterName)). The table is popu-
lated from the XML data as follows: For eachbook el-
ement, the value of thetitle subelement is extracted.
A tuple is then created in theChapter relation for
eachchapter subelement containing thetitle value
for bookTitle, the number value forchapterNum,
and thename value for chapterName (see Fig. 2(a)
for the resulting relational instance.) The key of the
Chapter table has been specified asbookTitle and
chapterNum. While importing this XML data, vi-
olations of the key are detected because two different
books have the same title (“XML”) and disagree on the
name of chapter one (“Introduction” versus “Getting Ac-
quainted”). After digging through the documentation ac-
companying the XML data, the database designers decide to
change the schema toChapter(isbn, chapterNum,
chapterName) with a key ofisbn andchapterNum
(populated in the obvious way from the XML data). The
resulting relational instance is shown in Fig. 2(b). While
importing the XML data, no violations of the key con-
straint are detected. However, the designers are not sure
whether they were lucky with this particular XML data set,
or whether such violations will never occur.

It turns out that given the following keys on the XML
data, the designers of the consumer database could prove
that the key ofChapter in their modified design is correct:

1. isbn uniquely identifies abook element.
2. Within eachbook, number is a key forchapter,

i.e.,number is a key forchapter relative tobook.
3. Each book has a uniquetitle, and within each

1



@isbn @isbn

@number @number@number

@number

@number
2

Eauthor 5Etitle 4 Echapter 6

Ename 16

E 1book

SXML 11

Introduction 17S

Ebook 19

Etitle 21

E 0r

A

E S

SGetting
Acquainted

Tim
Bray

S

E

E

18Conclusion

E

34

E

E
EE

A

   123
3 20

   234
A

13A

    1

15Aname

  10

24AXML

    1

14 2312

chapter 7

35

name

S

33name

S

32
2928 E

name

S
30

chapter
22

section

A

name 25

26 1

31section
27

Fundamentals
Attributes

Figure 1. Tree representation of XML data

book, eachchapter has a uniquename.

That is, if these XML keys hold on the data being im-
ported, thenisbn; hapterNum ! hapterName is a
functional dependency (FD) that is guaranteed to hold on
theChapter relation generated (in other words, (isbn,
chapterNum) is a key of the relation). We refer to the FD
as one that ispropagatedfrom these XML keys.

In general, given a transformation to a predefined rela-
tional schema and a set� of XML keys, one wants to know
whether or not an FD is propagated from� via the trans-
formation. Let us refer to this problem asXML key prop-
agation. The ability to compute XML key propagation is
important in checking the consistency of a predefined rela-
tional schema for storing XML data. 2

On the other hand, suppose that the relational database is
designed from scratch or can be re-designed to fit the con-
straints (and thus preserve the semantics) of the data being
imported. A common approach to designing a relational
database is to start with a rough schema and refine it into a
normal form (such as BCNF or 3NF [1]) using FDs. In our
scenario, we assume that the designer specifies the rough
schema by a mapping from the XML document. The FDs
over that rough schema must then be inferred from the keys
of the XML document using the mapping. However, it is
impractical to compute the setF of all the FDs propagated
sinceF is exponentially large in the number of attributes.
We would therefore like to find aminimum cover[1] of F ,
that is, a subsetFm of F that is equivalent toF (i.e., all
the FDs ofF can be derived fromFm using Armstrong’s
Axioms) and is non-redundant (i.e., none of the FDs inFm
can be derived from other FDs inFm).

Example 1.2: Returning to our example, suppose that the
database designers decide to start from scratch and initially
propose a schema ofChapter(isbn, booktitle,
author, chapterNum, chapterName), with the
obvious mapping from the data in Fig. 1. From the three
keys given earlier, the following minimum cover for
Chapter can be derived: 1)isbn ! bookTitle, and
2)isbn,chapterNum ! chapterName. Taking ad-
vantage of these FDs, the following BCNF decomposition
of the initial design would be produced:Book(isbn,
bookTitle), Chapter(isbn, chapterNum,

chapterName), and Author(isbn, author).
Note thatisbn ! author is not mapped from the keys
since abook may have severalauthors. 2
Contributions. In this paper, we propose a framework for
improving consumer relational database design. Our ap-
proach is based on inferring functional dependencies from
XML keys through a given mapping (transformation) of
XML data to relations. The class of XML keys considered
includes those commonly found in practice, and is a subset
of those in XML Schema [27]. More specifically, we make
the following contributions:� A polynomial time algorithm for checking whether an

FD on a predefined relational database is propagated
from a set of XML keys via a transformation.� A polynomial-time algorithm that, given a universal
relation specified by a transformation rule and a set of
XML keys, finds a minimum cover for all the func-
tional dependencies mapped from XML keys.� Undecidability results that show the difficulty of XML
constraint propagation.� Experimental results which show that the algorithms
are efficient in practice.

Note that the polynomial-time algorithm for finding a mini-
mal cover from a set of XML keys is rather surprising, since
it is known that a related problem in the relational context –
finding a minimum cover for functional dependenciesem-
beddedin a subset of a relation schema – is inherently ex-
ponential [16].

The undecidability results give practical motivation for
the restrictions adopted in this paper. In particular, one
result shows that it is impossible to effectively propagate
all forms of XML constraints supported by XML Schema,
which include keys and foreign keys, even when the trans-
formations are trivial. This motivates our restriction of con-
straints to a simple form of XML keys. Another undecid-
ability result shows that when the transformation language
is too rich, XML constraint propagation is also not fea-
sible, even when only keys are considered. Since XML
to relational transformations are subsumed by XML to
XML transformations expressible in query languages such
as XQuery [8], this negative result applies to most popular
XML query languages.

2



Related Work. In [14, 13], a chase/backchase method
is presented which can be used for determining constraint
propagation in a semistructured data model when views are
expressed in CRPQ (conjunctive regular path queries) and
dependencies are DERPDs (disjunctive embedded regular
path dependencies). However, the method does not com-
pute a minimum cover for propagated FDs; it is also too
general to be efficient for checking propagation of XML
keys. The CPI algorithm of [19] is orthogonal to our work
and derives constraints from DTDs. Our work also paral-
lels that of [2], which investigates propagation of type con-
straints through queries.

The problem of finding a cover for FDs embedded in a
subset of a relational schema has been studied in [16] and
shown to be inherently exponential. It is worth mentioning
that the problem of computing embedded FDs cannot be
reduced to ours since the XML key language cannot capture
relational FDs, and vice versa.

Approaches for using a relational database to store XML
data include [21, 24, 25, 5]. However, our framework and
algorithms are the first results on mapping XML constraints
through relational views. The transformation language de-
veloped in this paper is also similar to that of Stored [12]
and aspects of the new release of Oracle (9i) [22].
Organization. The next section describes the class of XML
keys considered and our transformation language. Section 3
states the constraint propagation problem and establishes
the undecidability results. Sections 4 and 5 present algo-
rithms for computing XML key propagation and minimum
cover. Experimental results are given in Section 6, followed
by our conclusions in Section 7. Complete details are given
in the full version of the paper [11].

2 XML Keys and Transformations
XML keys. To define a key we specify three things: 1) the
contextin which the key must hold; 2) atargetset on which
we are defining a key; and 3) thevalueswhich distinguish
each element of the target set. For example, the second key
specification of Example 1.1 has a context ofbook, a tar-
get set ofchapter, and a single key value,@number.
Specifying the context node and target set involve path ex-
pressions.

The path language we adopt is a common fragment of
regular expressions [17] and XPath [10]:Q ::= � j l j Q=Q j ==
where� is the empty path,l is a node label, “/” denotes
concatenation of two path expressions (child in XPath), and
“//” meansdescendant-or-selfin XPath. To avoid confusion
we writeP==Q for the concatenation ofP , == andQ. A
path� is a sequence of labelsl1= : : : =ln. A path expressionQ defines a set of paths, while “==” can match any path. We
use� 2 Q to denote that� is in the set of paths defined byQ. For example,book=author=name 2 ==name.

Following the syntax of [6]1 we write an XML key as:K : (C; (T; fP1; : : : ; Ppg))
whereK is the name of the key, path expressionsC andT are the context and target path expressions respectively,
andP1; :::; Pp are the key paths. For the purposes of this
paper, we restrict the key paths to be simple attributes�A1; :::;�Ap, and denote this class of keys asKa. A key
is said to beabsoluteif the context pathC is the empty path�, andrelativeotherwise.

Example 2.1: Using this syntax, the sample constraints
from Section 1 and others can be written as follows:� KS1 : (�; (==book; f�isbng)): within the context of

the entire document (� denotes the root) a book ele-
ment is identified by its�isbn attribute. The book
node can occur anywhere in the tree.� KS2 : (==book; (hapter; f�numberg)): within the
context of any subtree rooted at a book node, a chapter
is identified by its�number attribute. The chapter
node must be immediately under the book node.� KS3 : (==book; (title; fg)): each book has at most
one title; similarly,� KS4 : (==book=hapter; (name; fg)) for the name of
a chapter, and� KS5 : (==book=hapter=setion; (name; fg)) for
section name.� KS6 : (==book=hapter; (setion; f�numberg)):
within the context of a chapter of a book, each section
is identified by its @number attribute.� KS7 : (==book; (author=ontat; fg)): a book can
have multiple authors, but at most one has contact in-
formation (the contact author). 2

To define the meaning of an XML key, we use the following
notation: in an XML document (tree),n[[P ℄℄ denotes the set
of node identifiers that can be reached by following path
expressionP from the node with identifiern. [[P ℄℄ is an
abbreviation forr[[P ℄℄, wherer is the root node of the tree.

Example 2.2: In Fig. 1, [[book℄℄ = f1; 19g, 1[[hapter℄℄ =f6; 7g and[[==�number℄℄ = f13; 15; 24; 28; 32g. 2
Definition 2.1: An XML tree T satisfiesan XML key' : (C; (T; f�A1; : : : ;�Apg)), denotedT j= ', iff for
anyn in [[C℄℄ and anyn1; n2 in n[[T ℄℄, (1) n1 andn2 each
has a unique attribute�Ai for all i 2 [1; p℄, and (2)
if val(n1:�Ai) = val(n2:�Ai) for all i 2 [1; p℄ thenn1 = n2, whereval(n0:�Ai) denotes the text value associ-
ated with the attribute�Ai of n0. 2
Example 2.3: The XML tree of Fig. 1 satisfies our
sample constraints. For example,KS1 is satisfied since[[==book℄℄ = f1; 19g andval(1:�isbn) 6= val(19:�isbn).
One can checkKS2 by verifying the absolute key

1We adopt this syntax for keys because it is more concise than that of
XML Schema.

3



(�; (hapter; f�numberg)) in the context of each of the
subtree rooted at 1 and the one rooted at 19; similarly forKS3 toKS7. 2

This definition of keys has several salient features: First,
keys can be scoped within the context of the entire doc-
ument (anabsolute key), or within the context of a sub-
document (arelative key). Second, the specification of keys
is orthogonal to the typing specification for the document
(e.g. DTD or XML Schema). The type of documents
will therefore be ignored throughout this paper. Combining
keys with schema information, as is done in XML Schema,
adds complexity to the inference problem. As demonstrated
by [3], it is NP-hard even to check whether XML Schema
keys are satisfiable, i.e., whether there exist any XML doc-
ument which satisfies those keys. In contrast, the keys stud-
ied here are always satisfiable [7].

Transformation Language. The transformation language
forms a core of many common transformations found
throughout the literature, in particular those of [25].

Definition 2.2: A transformation� from XML data to
relations of schemaR = (R1; : : : ; Rn) is specified as(Rule(R1); : : : ; Rule(Rn)), where eachRule(Ri), re-
ferred to as thetable rulefor Ri, is defined with:� a setXi of variables, in whichxr is a distinguished

variable, referred to as theroot variable;� a set of field rulesfl : value(x) j l 2 att(Ri)g, wherex is a distinct variable inXi, andatt(Ri) denotes the
set of attributes in the schema of relationRi;� a set of variable mapping rules of the formx  y=P ,
wherex; y 2 Xi andP is a path expression.

In addition, each variablex 2 Xi is connectedto the rootr; that is,x is specified with eitherx  xr=P in the rule,
or x y=P andy is connected to the rootr; moreover, for
anyx  y=P , 1)P is a simple path (i.e. without //) unlessy is xr, and 2) no field rule is defined asl : value(y) when
there exists a variablex specified withx y=P . 2
Example 2.4:Expanding on Example 1.1, consider the fol-
lowing schemaR (with keys underlined):

book(isbn, title, author, contact),
chapter(inBook, number, name),
section(inChapt, number, name).

A transformation� from the XML data of Fig. 1 toR could
be specified as:� = (Rule(book),Rule(chapter),Rule(section))
Rule(book) =f isbn: value(x1), title: value(x2),

author: value(x3), contact: value(x4)g,xb  xr//book, x1  xb/@isbn, x2  xb/title,xa  xb/author,x3  xa/name,x4  xa/contact;
Rule(chapter) =f inBook: value(y1), number:

value(y2), name: value(y3)g,

r

book

chapter

section

name

Xr
r

book

Xr

//

@number

@number

Zc

Zs

Z3

Z1

Z2

//

title@isbn author

name contact

X1

Xb

Xa

X4

X2

X3

(b) Rule(section)(a) Rule(book)

Figure 3. Table treesyb  xr//book, y1  yb/@isbn, y  yb/chapter,y2  y/@number,y3  y/name;
Rule(section) =f inChapt: value(z1), number:

value(z2), name: value(z3)g,z  xr//book/chapter,z1  z/@number,zs  z/section,z2  zs/@number,z3  zs/name. 2
Table trees. Throughout the remainder of the paper, we
will use an abstract representation of a table rule called a
table tree. The idea is that by treating “==” as a special
node label, each table rule can be represented as a node-
labeled tree. For example, Fig. 3 depicts the table trees forRule(book) andRule(setion) in Example 2.4. In a table
treeTR representingRule(R), each variable inRule(R)
corresponds to a unique node, and each node corresponds
to at most one variable.
Semantics. Given an XML treeT , eachRule(Ri) mapsT to an instanceIi of Ri. More specifically, given a vari-
able specificationx  y=P , x ranges overy[[P ℄℄; xr is al-
ways interpreted as the rootr. A field rule l : value(x)
populates thel field with values infvalue(x) j x 2y[[P ℄℄g, where functionvalue returns a string represent-
ing the pre-order traversal of the subtree rooted atx. Letatt(Ri) = fl1; : : : ; lkg and each variablex be specified
with x  x0=Px. Then the instanceIi is generated byIi = f(l1 : value(x1); : : : ; lk : value(xk)) j xr = r; x 2x0[[Px℄℄; x 2 Xig.
Example 2.5:Rule(setion) is interpreted as:f(inChap : value(z1); number : value(z2);name : value(z3)) j z 2 r[[==book=hapter℄℄z1 2 z[[�number℄℄; zs 2 z[[setion℄℄;z2 2 zs[[�number℄℄; z3 2 zs[[name℄℄g:

Referring to the XML treeT in Fig. 1,value(6) returns
(@number:1, name: (S: Introduction)). The interpretation
of the rule for section (Example 2.4) overT generates fol-
lowing instance:

section inChapt number name
1 1 Fundamentals
1 2 Attributes 2

4



Several subtleties are worth mentioning. First, since
XML data is semistructured it is possible that forx y=P ,y[[P ℄℄ is empty. In this casevalue(x) is defined to benull.
Second, ify[[P ℄℄ has multiple elements, then to generate the
relation, an implicit Cartesian product is computed so that
all nodes iny[[P ℄℄ are covered in the relation.

3 Problem Statement and Limitations
Key propagation. The question ofkey propagationasks if
given a transformation� from XML data to relations of a
fixed schemaR and an XML treeT satisfying a set� of
XML keys, whether�(T ) satisfies an FD' (on a schemaR
in R). We write� j=� R : ' if the implication holds for all
XML trees satisfying�, and refer to' as an FDpropagated
from�. With respect to a transformation specification lan-
guage, thekey propagation problemis to determine, given
any� expressed in the language, any XML keys� and an
FD ', whether or not� j=� R : '. Note that we do not
require the XML data to conform to any type specification.

A subtle issue arises fromnull values in�(T ), the re-
lations generated from an XML treeT via �. In particular,
there may existR tuples in�(T ) with FDX ! Y such that
theirX or Y fields containnull. The presence ofnull
complicates FD checking since comparisons ofnull with
any value do not evaluate to a Boolean value [23]. A brutal
solution is to restrict the semantics of the transformation�
so that a tuple is not included if it has anull field. Since
XML is semistructured, this could exclude a large number
of “incomplete” tuples from�(T ). We therefore adopt the
following semantics of FDs:�(T ) satisfies FDX ! Y ,
denoted by�(T ) j= X ! Y , iff (1) for any tuplet in R,
if �X(t) containsnull then so does�Y (t); and (2) for
tuplest1; t2 in R, if neither t1 nor t2 containsnull and�X(t1) = �X (t2), then�Y (t1) = �Y (t2). The motivation
behind the first condition is that an FD is possibly treated
as a key when normalizing the relational schema, and an
“incomplete key”X cannot determine completeY fields.

Another issue we should address is the simplicity of the
transformation language, which can only express projection
(�), Cartesian product (�) and a limited form of set union
([). One might be tempted to develop a richer language
which can express all relational algebra operators: projec-
tion, selection (�), Cartesian product, set union and differ-
ence (�). Although these operators can be generalized to
XML trees, the following negative result holds:

Theorem 3.1: The key propagation problem from XML to
relational data is undecidable when the transformation lan-
guage can express all relational algebra operators. 2

The undecidablity is established by reduction from the
equivalence problem for relational algebra queries (see [11]
for a proof); the latter is a well-known undecidable prob-
lem [1]. In contrast, for our transformation language there
is a polynomial time algorithm in the size of� and�.

r
Xr

book

Y1

section

name

chapter

name

Xa

Y2

X2

X4

//

Xb
Yc

X1

@isbn

@number

@number

title author

name contact

X3

Zs
Z1

Z2

Figure 4. Rule(U)
Minimum cover . The problem offinding a minimum cover
is to compute, given a universal relationU and a set� of
XML keys, a minimum coverFm for the setF+ of all FDs
on U propagated from�. Guided byFm, one can then
decomposeU into a normal form as illustrated by Exam-
ple 1.2. This is analogous to techniques for designing rela-
tional databases [1]. In our context, a universal relation is
simply the collection of all the fields of interest, along with
a table rule that defines these fields.

Example 3.1: Recall the schemaR and the transformation
given in Example 2.4. A universal relationU here is the
collection of all the fields ofR, defined as follows:
U = (bookIsbn, bookTitle, bookAuthor, authContact,

chapNum, chapName, secNum, secName),Rule(U) = fbookIsbn: value(x1), bookTitle: value(x2),
bookAuthor: value(x3), authContact: value(x4),
chapNum: value(y1), chapName: value(y2),
secNum: value(z1), secName: value(z2)g,xb  xr //book, x1  xb/@isbn, x2  xb/title,xa  xb/author,x3  xa/name,x4  xa/contact,y xb/chapter,y1  y/@number,y2  y/name,zs  y/section,z1 zs/@number,z2  zs/name

The table tree ofRule(U) is depicted in Fig. 4.
¿From the set of XML keys of Example 2.1 the following

minimum cover for the FDs onU can be computed:
bookIsbn! bookTitle,
bookIsbn! authContact,
bookIsbn, chapNum! chapName,
bookIsbn, chapNum, secNum! secName.

Guided by these FDs, we can decomposeU into BCNF:
book(bookIsbn, bookTitle, authContact),
author(bookIsbn, bookAuthor),
chapter(bookIsbn, chapNum, chapName),
section(bookIsbn, chapNum, secNum, secName) 2

Although in the relational context algorithms have been
developed for computing a minimum cover for a set of
FDs [4, 16, 20], they cannot be used in our context since the
FDs must be computed from the XML keys� via the trans-
formation�, instead of being provided as input for those
relational algorithms. Furthermore, relational FDs are not
capable of expressing XML keys and vice versa.

5



Propagation of other XML constraints. XML Schema
supports keys and foreign keys. Although it is tempting to
develop algorithms to compute the propagation of both keys
and foreign keys, we have the following negative result:

Theorem 3.2: The propagation problem for XML keys and
foreign keys is undecidable for any transformation lan-
guage that can express identity mapping. 2

The “identity” mapping is one in which the XML rep-
resentation of relations is mapped to the same relations (in
our language this corresponds to a small class of transfor-
mations defined with paths of length3). The undecidability
result is established by reduction from implication of re-
lational keys and foreign keys, which is undecidable [15]
(see [11] for a reduction). Because of this we restrict our
attention to the propagation of XML keys.

4 Checking Key Propagation
Checking key propagation is nontrivial for a number of

reasons: First, XML data is semistructured in nature, which
complicates the analysis of key propagation by the pres-
ence of null values. Second, XML keys which are not in� but are consequences of� may yield FDs on a relational
view. Thus key propagation involves XML key implica-
tion. Third, XML data is hierarchically structured and thus
XML keys are relative in their general form – they hold on
a sub-document. However, its relational view collapses the
hierarchical structures into a flat table and thus FDs are “ab-
solute” – they hold on the entire relational view. Thus one
needs to derive a unique identification of a sub-document
from a set of relative keys.

Before presenting our polynomial-time algo-
rithm for checking XML key propagation (Algo-
rithm propagation), we first discuss the notion of
a “keyed” node and the implication of XML keys.

Transitive set of XML keys. To uniquely identify a node
within the entire document we need a set of XML keys iden-
tifying unique contexts up to the root. To formalize this, we
use the following notion [7]: (Q1; (Q01; S1)) immediately
precedes(Q2; (Q02; S2)) if Q2 = Q1=Q01. Theprecedesre-
lation is the transitive closure of the immediately precedes
relation. A set� of keys istransitiveif for any relative key
(Q1; (Q01; S1)) in � there is an absolute key (�; (Q02; S2))
in � which precedes (Q1; (Q01; S1)). We say that a node
is keyedif there exists a transitive set of keys to uniquely
identify the node.

Example 4.1: The setfKS1;KS2g is transitive since any
chapter in the document can be identified by providing
@isbn of a book and@number of a chapter. Thus every
chapter node is keyed. In contrast,fKS2g is not transitive
since with it alone there is no way to uniquely identify a
book in the document, which is necessary before identify-
ing a chapter of that book. 2

Implication of XML keys . One aspect of key propagation
is to determine whether an XML key' must hold provided
that a set� of XML keys holds, denoted by� j= '. In other
words,� j= ' iff for any XML treeT , T satisfies' as long
asT satisfies all the keys in�. An algorithm for implica-
tion analysis,implication, can be found in [11]. The
algorithm takes as input a set� and' of XML keys ofKa
and returnstrue iff � j= '. It is based on a set ofinference
rules that, along the same lines as the Armstrong’s Axioms
for implication of FDs in relational databases, allows one to
derive key implication systematically. One example of the
rules istarget-to-context:if (Q; (Q1=Q2; S)) is a key then
so is(Q=Q1; (Q2; S)). Intuitively, the rule states that ifS
can uniquely identify a setN of nodes in the entire treeT ,
then it can also identify nodes ofN in any subtree ofT ;
observe that for any nodesn 2 [[Q℄℄ andn0 2 n[[Q1℄℄, the
subtree rooted atn0 is a subtree of the one rooted atn. An-
other example of a trivial rule isepsilon: for any pathQ, it
is true that(Q; (�; fg)). Intuitively, it states that any subtree
has a unique root node. Algorithmimplication deter-
mines whether or not� j= ' in O(j�j2 j'j2) time, wherej�j andj'j are the sizes of� and'.

Table tree. Algorithm propagation uses the tree rep-
resentation of a transformation to bridge the gap between
XML keys and the FD� to be checked. Without loss of gen-
erality, assume that� is of the formY ! l with l 2 att(R)
andY � att(R), and that for the relationR, Rule(R) isfli : value(xi) j i 2 [1;m℄g along with a setX of vari-
ables and mappingsx  y=P for eachx 2 X . In the
table treeTR representingRule(R), any variablex in X
has a unique node corresponding to it, referred to as thex-
node. In particular, thexr-node is the root ofTR. Observe
that for anyx; y 2 X , if the x-node is a descendant of they-node inTR, then there is a unique path inTR from they-node tox-node, which is a path expression. We denote
the path byP (y; x), which exists only if there are variablesx1; : : : ; xk in X such thatx1 = y, xk = x and for eachi 2 [1; k� 1℄, xi+1  xi=Pi is a mapping inRule(R). We
usedesendants(y) to denote the set of all the variables
that are descendants ofy; we defineanestors(y) simi-
larly. In particular, ifx is specified withx  y=P then the
variabley is called theparentof x, denoted byparent(x).
Referring to Fig. 3 (b), for example,xr is the parent ofZ,
andP (xr ; Z) is ==book=hapter.
Algorithm . The intuition behind Algo-
rithm propagation is as follows. Given an FD� = Y ! l onR, assume thatl is specified withvalue(x),
and that the table tree representingRule(R) is TR. Then� j=� � iff (1) either � is trivial, that is,l 2 Y , or there
exists an ancestortarget of x in TR such thattarget is
keyed with fields ofY and moreover,x is uniqueundertarget; that is, there is a set of transitive keys that uniquely
identifies target with only those attributes which define

6



Algorithm propagation

Input: XML keys �, FD� = Y ! l overR,
andRule(R) in transformation�, in which l : value(x).
Output:true iff � j=� R : �.

1. anestor[x℄:= nil;
2. w:= x;
3. whilew 6= xr do
4. w:= parent(w);
5. anestor[x℄:= w :: anestor[x℄;
6. Ycheck:= Y � flg;
7. if l 2 Y
8. thenkeyFound := true;
9. elsekeyFound := false;
10.ontext:= xr;
11. whileanestor[x℄ 6= nil do
12. target := head(anestor[x℄);
13. S:= f�a j l0 2 Y; l0 : value(y) 2 Rule(R);y  target=�a is a variable mappingg
14. if notkeyFound
15. then ifimplication(�; (P (xr; ontext),(P (ontext; target); S)))
16. thenontext:= target;
17. if implication(�; (P (xr; target);(P (target;x); f g)))
18. thenkeyFound := true;

19. if exist(P (xr; target); S)
20. thenL:= fl0 j l0 2 Y; l0 : value(y) 2 Rule(R);y  target=�a is a variable mappingg
21. Ycheck:= Ycheck� L;
22. anestor[x℄:= tail(anestor[x℄);
23. returnkeyFound and (Ycheck= f g);
function exist (Q, S)

Input: Q: path expression;S: a set of attributes.
Output:true iff for all l 2 S andn 2 [[Q℄℄, n:�l exists.
1. X := S;
2. for each key� = (Q1; (Q01; S1)) in � do
3. if Q � Q1=Q01
4. thenX := X � S1;
5. return (X = f g);

Figure 5. XML key propagation algorithm

fields ofY , and� j= (P (xr ; target); (P (target; x); f g));
(2) every field ofY is defined with an attribute of some
ancestor ofx that is required to exist. The first condition
asserts that for anyR tuplest1 andt2, if they agree on theirY fields and do not containnull, then they agree on theirl fields. The second condition excludes the possibility that
in someR tuplet, thel field is defined while some of theirY fields arenull.

Putting everything together, Algorithmpropagation
is shown in Fig. 5. The algorithm first computes the list
of all the ancestors ofx (Lines 1 to 5); it then traverses
the table-treeTR top-down along the ancestor path from
the rootxr to x (Lines 11 to 22), and for each ancestor

target in this path, checks iftarget is keyed (Lines 15).
The central part of the algorithm is to check whether there
is a set of transitive keys fortarget. To do so, it uses
variableontext to keep track of the closest ancestor for
which a key has been found, and collects the attributes oftarget that populate fields inY in a setS. Thustarget is
keyed iff� j= (P (xr ; ontext); (P (ontext; target); S)),
i.e.,S is a key oftarget relative to its closest ancestor with
a key. XML key implication is checked by invoking Al-
gorithmimplication mentioned above. If it holds, the
algorithm movesontext down totarget (Line 16; the cor-
rectness of this step is ensured by thetarget-to-contextrule
given above); then, it sets the Boolean flagkeyFound to
true if x is unique undertarget (Line 17). To ensure that
all the fields ofY are defined with attributes of ancestors ofx that are required to exist, it uses a variableYcheck(with an
initial value ofY � flg) and removes fromYcheckthe field
names that correspond to the setS of attributes (Lines 19
to 21). The algorithm returnstrue iff keyFound is true
andYcheckbecomes empty, i.e., the two conditions given
above are satisfied.

Example 4.2: To illustrate the algorithm, recall the trans-
formation� of Example 2.4 and the set� of XML keys
of Example 2.1. Consider FD:isbn ! ontat over re-
lation book defined byRule(book), which is depicted in
Fig. 3 (a). Note that the fieldcontact in the FD is spec-
ified with variablex4. Given�, � and the FD, the algo-
rithm computes the ancestors ofx4, which consists ofxr,xb andxa. Then, it first checks ifxr is keyed by inspecting� j= (�; fg). Since this holds by theepsilonrule given
above, the algorithm then checks whetherxb is keyed by in-
specting� j= (==book; f�isbng). Since this is also true,
the algorithm proceeds to check whetherx4 is unique un-
derxb, i.e., whether� j= (==book; (author=ontat; fg)).
This is also the case. In addition, the fieldisbn in the FD is
defined in terms of an attribute ofxb that is required to exist.
That is, by the semantics of keys,(==book; f�isbng) re-
quires everybook element to have an�isbn attribute. Thus
the algorithm concludes that the FD is derived from� via� and returnstrue.

Next, let us considerRule(section) of Example 2.4,
represented by the table tree of Fig. 3 (b), and let� be
an FD:inChapt; number ! name over relationsetion.
After succesfully verifying thatxr is keyed, the algo-
rithm checks whether its next ancestor is keyed, i.e.,
whether� j= (==book=hapter; f�numberg). This
fails. Thus it attempts to verify another key relative to
the root: � j= (==book=hapter=setion; f�numberg),
which fails again. At this point the algorithm concludes that
the FD cannot be derived from� and returnsfalse. 2

The complexity of the algorithm isO(m2n3), wherem
andn are the sizes of XML keys� and table treeTR, re-

7



spectively (see [11] for details as well as for a proof of cor-
rectness of the algorithm).

5 Computing Minimum Cover
In this section we present two algorithms for finding

a minimum cover for FDs propagated from XML keys.
The first algorithm is a direct generalization of Algo-
rithmpropagation of Fig. 5, and always takes exponen-
tial time. We use this naive algorithm to illustrate the dif-
ficulties in connection with finding a minimum cover. The
second algorithm takes polynomial time in the size of input,
by reducing the number of FDs generated in the following
way: a new FD is inserted in the resulting set only if it can-
not be implied from the FDs already generated, using the
inference rules for FDs. To the best of our knowledge, this
is the first effective algorithm for finding a minimum cover
for FDs propagated from XML keys.

A Naive Algorithm. Algorithm propagation given in
the last section allows us to check XML key propagation.
Thus a naive algorithm for finding a minimum cover is to
generate each possible FD onU, check whether or not it is
in F+, the set of all the FDs mapped from the XML keys,
using Algorithmpropagation, and then eliminate both
extraneous attributes and redundant FDs fromF+ using
standard relational database techniques; this yields a mini-
mum coverFm for F+. The algorithm, Algorithmnaive,
can be found in [11]. It takes exponential time in the size
ofU for any input since it computes all possible FDs onU.
It should be mentioned that the function invoked by the al-
gorithm for eliminating redundancy, Functionminimize
given below [4], takes quadratic time in the size of its input
FDs, since FD implication can be checked in linear time us-
ing the Armstrong’s Axioms; but when invoked innaive,
the set of input FDs is exponentially large.

function minimize (F )

Input: F : a set of FDs.
Output: A non-redundant cover ofF .

1. for each(Y ! l) 2 F do /* eliminate extra attributes */
2. for eachl0 2 Y do
3. if F j= (Y � fl0g)! l
4. thenY := Y � fl0g;
5. G:= F ; /* eliminate redundant FDs */
6. for each� in F do
7. if (G� f�g) j= �
8. thenG:= G� f�g;
9. returnG;

Obviously, Algorithmnaive is too expensive to be
practical. The problem is that it needs to computeF+,
which is exponential in the size ofU even with trivial FDs
removed. This observation motivates us to develop an algo-
rithm that directly findsFm without computingF+.
A Polynomial-Time Algorithm. We next present a more
efficient algorithm for finding a minimum cover for all the

propagated FDs. The algorithm takesO(m8n6) time, wherem andn are the sizes of XML keys�, and the transforma-
tion�, respectively. The algorithm works as follows. Recall
that the transformationRule(U) can be depicted as a table
treeT , in which each variablex in the setX of Rule(U)
is represented by a unique node, referred to as thex-node.
The algorithm traversesT top-down starting from the root
of T , xr, and generates a setF of FDs that is a cover ofF+, i.e., a superset ofFm. More specifically, at eachx-
node encountered, it expandsF by including certain FDs
propagated from�. It then removes redundant FDs fromF
to produce a minimum coverFm.

The obvious question is what new FDs are added at eachx-node. As in Algorithmpropagation, at eachx-node a
new FDY ! l is included intoF only if (1) x is keyed with
a set of attributes that define the fields inY ; (2) the fieldl is
defined by the value of a nodey andy is unique underx.

Example 5.1: Recall the universal relationU defined by
the transformation� of Example 3.1, the table tree de-
picted in Fig. 4, and the set� of XML keys of Ex-
ample 2.1. An FD derived from� at the z2 node isbookIsbn; hapNum; seNum ! seName. The left-hand
side of the FD corresponds to a transitive set of keys for
the zs node consisted of a section�number which is an
attribute ofzs, as well as a chapter�number and a book�isbn, which are a key ofzs’s ancestory. The right-hand
side of the FD is defined by a nodez2 unique underzs, byKS5 in �. Thus the key for thezs node actually consists
of the key of its ancestory as well as a key forsetion
(�number) relative toy. 2

Critical to the performance of the algorithm is to min-
imize the number of FDs added at eachx-node while en-
suring that no FDs inFm are missed. This is done in two
ways: First, we reduce our search for candidate FDs to those
whose left-hand side corresponds to attributes of keys in�.
Second, we observe that an ancestortarget of an x-node
may have several keys, but that in creating a transitive key
for x only one of them needs to be selected as long as the
following property is enforced: for any two transitive keysK1 andK2 of the x-node,F includesY1 ! l for eachl 2 Y2 andY2 ! l0 for eachl0 2 Y1, whereY1; Y2 are sets
ofU fields defined byK1 andK2, respectively. Given this,Y1 andY2 are equivalent by Armstrong’s Axioms.

There is a subtlety caused by the troublesomenull
value. LetK2 be a transitive key for anx-node,K1 be a
transitive key for an ancestory of x, Y1 andY2 be the sets
of U fields defined byK1 andK2, respectively, andZ be
another set ofU fields. Then the following is a rule for
populatingF : if (Y1 [ Z ! l) is in F and l is aU field
defined by a descendantz of x, then (Y2 [ Z ! l) should
be also be included inF . The intuition behind this rule is
that a key forx is also a key for its ancestory, provided
that the existence ofx undery is assured. This is because

8



Algorithm minimumCover
Input: XML keys �, a universal relationU defined

by Rule(U) along with a setX of variables.
Output: a minimum coverFm for all FDs onU

propagated from�.

1. for eachx in X do
2. keys[x℄:= nil; keyAn[x℄:= fg;
3. unique[x℄:= fg; att[x℄:= fg; des[x℄:= fg;
4. for eachy in desendant(x) do
5. if l : value(y) is in Rule(U) then
6. des[x℄:= des[x℄ [ flg;
7. if implication(�, (P (xr; x); (P (x; y); fg)))
8. thenunique[x℄:= unique[x℄ [ flg;
9. if y  x=�l0 is a variable mapping then
10. att[x℄ := att[x℄ [ f�l0g;
11. allV ars:= xr :: nil; keys[xr℄:= fg :: nil;
12. keyAn[xr℄:= fg; anestor[xr℄:= nil; F := fg;
13. for eachl in unique[xr℄ do F := F [ f; ! lg;
14. for eachx in hildren(xr) do genFDs(x);
15. whileallV ars 6= nil do
16. x:= head(allV ars);
17. for eachR 2 keyAn[x℄ do
18. for each(Y ! l) in F do
19. if l 2 des[x℄ andR is subset ofY then
20. for eachK 2 keys[x℄ do
21. F := F [ f(K [ (Y �R))! lg;
22. allV ars:= tail(allV ars);
23.Fm:= minimize(F ); returnFm;

proceduregenFDs (x)
Input: x: a variable inRule(U).
Output: expandedF .
1. allV ars:= x :: allV ars; w:= parent(x);
2. anestor[x℄:= anestor[w℄ + (w :: nil);
3. whilekeys[w℄ = nil dow:= parent(w);
4. keyAn[x℄:= keyAn[x℄ [ head(keys[w℄);
5. for each(Q; (Q0; S)) in � do
6. K:= fl j �l0 2 S; l : value(y) 2 Rule(U);y  x=�l0 is a variable mappingg;
7. if S � att[x℄ and jKj = jSj then
8. traverse[x℄:= anestor[x℄; keyAnestor:= false;
9. whiletraverse[x℄ 6= nil andnot keyAnestor do
10. target:= head(traverse[x℄);
11. if keys[target℄ 6= nil andimplication

(�, (P (xr; target); (P (target;x); S)))
12. thenkeyAnestor:= true
13. elsetraverse[x℄:= tail(traverse[x℄);
14. if keyAnestor then
15. K:= K [ head(keys[target℄);
16. keys[x℄:= K :: keys[x℄;
17. keyAn[x℄:= keyAn[x℄ [ head(keys[target℄);
18. for eachl in unique[x℄ �K do
19. F := F [ fK ! lg;
20. for eachy in hildren(x) dogenFDs(y);

Figure 6. Computing minimum cover

there is a unique ancestory of x in a tree that connects tox via the pathP (y; x). Thus, provided the existence ofx
undery, we haveY2 ! l0 for any l0 2 Y1. As a result, ifY1 [ Z ! l thenY2 [ Z ! l, by the transitivity of FD
implication. The existence ofx undery is ensured by the
existence ofz: if Y2 [Z ! l, then by the definition of FDs,z must exist undery; hence,x must be on the path fromy toz, i.e.,x exists. It is worth remarking that whenl is not de-
fined by a descendant ofx, the rule may not be sound sinceY2 ! l0 may not hold for anl0 2 Y1; more specifically,Y2 consists ofnull if x does not exist undery, while l0
may not be. As an example, consider two transitive keys at
a nodex: K1 = f(Q1; f�A1g); (Q1; (Q2; f�A2g))g andK2 = f(Q1=Q2; f�A3g)g, with each attribute�Ai popu-
lating a fieldli inU. Note that(Q1; f�A1g) is a key of the
ancestory of x that connects tox via the pathQ2. Consider
the following FDs:f1 = (l1; l2) ! l3, f2 = l3 ! l1, andf3 = l3 ! l2. Althoughf1 andf3 are indeed propagated
from K1 andK2, f2 is not. This is because the existence
of attribute�A1 of nodey in [[Q1℄℄ does not guarantee the
existence of attribute�A3 of x in y[[Q2℄℄; therefore,l1 can
have a non-null value even whenl3 is null, violating
the FD. Thusf2 should not be included inF . However, ifF containsl1 ! l4 for somel4 defined with a descendent
of x, thenF should also includel3 ! l4.

To keep track of the information needed to generate FDs
at eachx-node, we associate the following with each vari-
ablex in Rule(U):� keys[x℄: a list of sets ofU fields, each set mapped

from a transitive key of thex-node;� keyAn[x℄: a set of sets ofU fields, each mapped from
a transitive key of an ancestor ofx;� des[x℄: the set of all descendants of thex-node;� unique[x℄: the set of all the unique descendants of thex-node;� att[x℄: the set of attributes of thex-node;� anestor[x℄: the list of all the ancestors ofx starting
from the root;

Note thatunique[x℄ is a subset ofdes[x℄, andatt[x℄ is a
subset ofunique[x℄ since any node in an XML tree has at
most one attribute labeled with a particular name.

Using this notation, at eachx-node, we expand the coverF of FDs as follows: First, for each(Q; (Q0; S)) in � we
computeK, the set of fields ofU defined by attributes inS. We check whetherS is contained inatt[x℄ and whether
every attribute ofS defines aU field (by comparing the
cardinalities ofS andK). If it is the case then we traverse
the ancestor path ofx starting from the root. We find the
first ancestortarget of x that is keyed, and check whetherS is a key for thex-node relative totarget using Algo-
rithmimplication. If these conditions are met we con-
struct a transitive keyK 0 for x by combiningS with an ar-
bitrary transitive key for the ancestortarget of thex-node,
which is inkeys[target℄. We incrementkeys[x℄ by adding

9



this transitive key, and insertkeys[target℄ in keyAn[x℄.
Second, we expandF by includingY ! l for eachl inunique[x℄ (excludingY ), whereY is a set ofU fields de-
fined byK 0. That is, the transitive key of thex-node de-
termines the unique descendants ofx. After the setF is
computed by traversing all variablesx in Rule(U), it is
expanded by applying transitivity on keys inkeyAn[x℄,
which includes a key ofx’s closest keyed ancestor. That is,
if K1 2 keyAn[x℄, we inspect eachY ! l in F , check-
ing if K1 is a subset ofY , i.e., whether there existsZ such
that Y = K1 [ Z. If this is the case andl 2 des[x℄,
then for eachK2 in keys[x℄ we add(K2 [ Z) ! l to F .
One can show that the sizes ofkeys[x℄ andkeyAn[x℄ are
quadratic in the size of�, unique[x℄ is bounded by the
size ofRule(U), and the setX is no larger than the size
of Rule(U); thus the setF is bounded bym4n3, i.e., the
size (thus the cardinality) ofF is at mostO(m4n3), a poly-
nomial in the input size.

Algorithm . Based on these observations, we show Algo-
rithmminimumCover in Fig, 6. After computingdes[x℄,att[x℄, unique[x℄ and initializingkeys[x℄, andkeyAn[x℄
for each variablex in Rule(U) (Lines 1 to 10), the algo-
rithm initializes these variables for the root node (Lines
11, 12), and inserts inF FDs of the form; ! l for
each unique field under the root (Line 13). It then in-
vokes a recursive proceduregenFDs to process the chil-
dren of the root node (Line 14). ProceduregenFDs ex-
pandsF given an inputx-node as described above, and re-
cursively processes the children of thex-node. AfterF is
computed, AlgorithmminimumCover expands it by ap-
plying the transitivity rule (Lines 15 to 22) and invokes
functionminimize given in the last section to eliminate
redundant FDs fromF , and thus yields a minimum coverFm (Lines 23). The correctness of the algorithm is estab-
lished in [11].

Example 5.2: Given the transformation� of Exam-
ple 3.1 and the set� of XML keys of Example 2.1, Al-
gorithm minimumCover returns the FDs given in Ex-
ample 3.1, which are a minimum cover for all the FDs
propagated from� via �. Specifically, the algorithm tra-
verses the table tree of Fig. 4 (a) top-down starting at
the root. At nodexb, two FDs are generated: one isbookIsbn ! bookTitle, and the other isbookIsbn !authContat. Herekeys[xb℄ = [f�isbng℄. At nodey,
FD bookIsbn; hapNum ! hapName is included inF
andkeys[y℄ is changed to[f�isbn;�numberg℄, which is
constructed by combining�number, a key ofy relative
to xb, and the key inkeys[xb℄. Similarly, at nodezs FDbookIsbn; hapNum; seNum ! seName is inserted intoF . No FDs are generated at any other nodes. 2

The complexity of the algorithm isO(m8n6) time,
wherem and n are the sizes of XML keys� and table

treeTR, respectively (see [11] for details). Since� andRule(U) are usually small, this algorithm is efficient in
practice. The experimental results of the next section also
show that it substantially outperforms Algorithmnaive.

A final remark is that, although one can generalize
Algorithm minimumCover to check XML key propa-
gation instead of using Algorithmpropagation, there
are good reasons for not doing so. The complexity of
Algorithm minimumCover is much higher than that of
Algorithm propagation (O(m8n6) vs. O(m2n3)).
In short, Algorithm propagation is best used to
inspect a predefined relational schema, whereas Algo-
rithm minimumCover helps normalize a universal rela-
tion at the early stage of relational design.

6 Experimental Study
The various algorithms presented in this paper have

been implemented, and a number of experiments per-
formed. The results of these experiments show that despite
theirO(m2n3) andO(m8n6) worst-case performance, both
Algorithms propagation and minimumCover work
well in practice: they take merely a few seconds even
given large transformation and XML keys. For comput-
ing minimum cover, AlgorithmminimumCover is sev-
eral orders of magnitude faster than Algorithmnaive, and
for checking key propagation Algorithmpropagation
significantly outperforms the generalization of Algorithm
minimumCover. Our results also reveal that Algo-
rithm minimumCover is more sensitive to the number of
XML keys than to the size of the transformation. This is
nice since in many applications the number of keys does not
change frequently, whereas a relational schema may define
tables with a variety of different arities (number of fields).
Our results also show that Algorithmpropagation has
a surprisingly low sensitivity to the size of the transforma-
tion, and that its execution time grows linearly with the size
of XML keys.

To perform these experiments, we synthetically gener-
ated transformations and XML keys based on the number
of fields in a relation, the depth of a table-tree, and the num-
ber of XML keys. All experiments were conducted on
the same 1.6GHz Pentium 4 machine with 512MB mem-
ory. The operating system is Linux RedHat v7.1 and the
program was implemented in C++.

The first experiment evaluates the performance of
the two algorithms for computing minimum cover (see
Fig. 7(a)). These results tell us the following. First,
the average complexity of AlgorithmminimumCover in
practice is much better than itsO(m8n6) worst-case com-
plexity. Consider, for example, the execution time of
the algorithm fordepth = 10 andkey = 10. When the
number of fields is increased (which corresponds roughly
to increasing the size of the transformation), the execu-
tion time grows in the power of two in average instead

10



of in the power of six. Second, the algorithm needs less
than 35 seconds for 200 fields, and a little over 2 minutes
even for 500 fields. Since in most applications the num-
ber of fields in a relation is much less than 500, we can say
that AlgorithmminimumCover performs well in practice.
Third, the performance of AlgorithmminimumCover is
much better than Algorithmnaive. For example, when
the number of fields is incremented by 5, the execution time
of minimumCover at most doubles, while fornaive it
grows almost two-hundred-fold.

We next consider checking XML key propagation. An
algorithm for doing so, Algorithmpropagation, was
presented in Section 4. An alternative algorithm can also
be developed by means of AlgorithmminimumCover
as follows: Given a transformation�, a set of keys�,
and an FD� = Y ! l, the algorithm first invokes
minimumCover(�; �) to compute a minimum coverFm
of all the FDs propagated; it then checks whether or notFm
implies� using relational FD implication, and whether all
the fields inY are guaranteed to have a non-null value whenl is notnull. It returnstrue iff these conditions are met.
In what follows, we refer to this generalized algorithm as
GminimumCover since the performance is roughly com-
parable to the original algorithm.

Our second experiment serves two purposes: to com-
pare the effectiveness of these two algorithms for check-
ing key propagation, and to study the impact of the
depth of table-tree (depth) on the performance of Algo-
rithmspropagation andGminimumCover. Fig. 7(b)
depicts the execution time of these algorithms forfield
= 15 andkeys = 10 with depth varying from 2 to15. (These parameters were chosen based on the aver-
age tree depth found in real XML data [9].) The re-
sults in Fig. 7(b) reveal the following. First, Algo-
rithm propagation works well in practice: it takes
merely0:05 second even when the table tree is as deep as15. Second, these algorithms are rather insensitive to the
change todepth. Third, propagation is much faster
thenGminimumCover for checking key propagation, as
expected. Although the actual execution times of the algo-
rithms are quite different, the ratios of increase when the
depth of the table-tree grows are similar. This is because in
both algorithms the depth determines how many times Al-
gorithmimplication is invoked, and because the com-
plexity of Algorithm implication is a function of the
size of the XML keys, which grows when the depth of the
table tree gets larger.

Our third experiment demonstrates how the number
of XML keys (keys) influences the performance of Al-
gorithms propagation and GminimumCover when
checking key propagation. The results (Fig. 7(c)) show
that increasing the number of keys has a bigger impact
on AlgorithmGminimumCover than onpropagation,

(a) Time for computing minimum cover

(b) Effect of depth of the table tree

(c) Effect of number of keys

Figure 7. Experimental results
11



in which the growth of the execution time is almost lin-
ear. In fact, additional experiments tell us that fordepth
= 10 andkeys = 50, AlgorithmGminimumCover runs
in under 2 minutes for 200 fields, but when increasing
the number of keys to 100, its execution time is over 4
minutes for relations with 150 fields. In contrast, Algo-
rithm propagation runs in both settings in less than 5
seconds. In addition, for 1000 fields, which is the maximum
number of fields allowed by Oracle [22], the execution time
of propagation is 85 seconds on average for 50 keys,
and 142 seconds for 100 keys.

A closer look at Algorithmpropagation reveals that
the constant ratio of increase is based on the time needed
for executing calls to Algorithmimplication. That is,
if the depth of the table-tree is fixed, the number of calls
is roughly the same for the whole experiment; the increase
in running time is based on the the performance of Algo-
rithm implication, which depends on the size of the
XML keys. The performance ofimplication also has
an impact on the AlgorithmGminimumCover. However,
the number of keys has a bigger influence in this algorithm
because for each node in the table-tree all the keys are an-
alyzed. Also, by increasing the number of XML keys, the
number of FDs in the resulting set is likely to grow, increas-
ing the execution time for eliminating redundant FDs by
callingminimize.

7 Conclusion
We have proposed a framework for refining the relational

design of XML storage based on XML key propagation.
For this purpose we have developed algorithms for checking
whether a functional dependency is propagated from XML
keys, and for finding a minimum cover for all functional
dependencies propagated from XML keys, along with com-
plexity results in connection with XML constraint propaga-
tion. Our experimental results show that these algorithms
are efficient and effective in practice. These algorithms can
be generalized and incorporated into relational storage tech-
niques published in the literature (e.g. [25, 26, 22]). Our
results are also useful in optimizing queries and in under-
standing XML to XML transformations.

Topics for future work include studying the propagation
of other forms of integrity constraints, and re-investigating
constraint propagation in the presence of types (e.g., XML
Schema).

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML
with data values: Typechecking revisited. InPODS, 2001.

[3] M. Arenas, W. Fan, and L. Libkin. What’s hard about XML
Schema constraints? InDEXA, 2002.

[4] C. Beeri and P. A. Bernstein. Computational problems re-
lated to the design of normal form relational schemas.ACM
Trans. on Database Systems, 4(1):455–469, 1979.

[5] P. Bohannon, J. Freire, P. Roy, and J. Simeon. From XML
schema to relations: A cost-based approach to XML storage.
In ICDE, 2002.

[6] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan.
Keys for XML. In WWW’10, 2001.

[7] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan.
Reasoning about keys for XML. InDBPL, 2001.

[8] D. Chamberlin et al. XQuery 1.0: An XML Query Lan-
guage. W3C Working Draft, June 2001.
http://www.w3.org/TR/xquery.

[9] B. Choi. What are real DTDs like. InWebDB, 2002.
[10] J. Clark and S. DeRose. XML Path Language (XPath). W3C

Working Draft, Nov. 1999.
http://www.w3.org/TR/xpath.

[11] S. Davidson, W. Fan, C. Hara, and J. Qin. Propagating XML
constraints to relations. Technical Report MS-CIS-02-16,
University of Pennsylvania, 2002.

[12] A. Deutsch, M. Fernandez, and D. Suciu. Storing semistruc-
tured data with STORED. InSIGMOD’99, 1999.

[13] A. Deutsch, L. Popa, and V. Tannen. Physical data indepen-
dence, constraints and optimization with universal plans.In
VLDB, 1999.

[14] A. Deutsch and V. Tannen. Querying XML with mixed and
redundant storage. Technical Report MS-CIS-02-01, Uni-
versity of Pennsylvania, 2002.

[15] W. Fan and L. Libkin. On XML integrity constraints in the
presence of DTDs.JACM, 49(3):368–406, 2002.

[16] G. Gottlob. Computing covers for embedded functional de-
pendencies. InPODS, 1987.

[17] J. E. Hopcroft and J. D. Ullman.Introduction to Automata
Theory, Languages and Computation. Addision Wesley,
1979.

[18] A. Layman et al. XML-Data. W3C Note, Jan. 1998.
http://www.w3.org/TR/1998/NOTE-XML-data.

[19] D. Lee and W. W. Chu. Constraints-preseving transfor-
mation from XML document type definition to relational
schema. InER, 2000.

[20] D. Maier. Minimum covers in relational database model.J.
of ACM, 27(4):664–674, 1980.

[21] I. Manolescu, D. Florescu, and D. Kossmann. Pushing XML
queries inside relational databases. Tech. Report no. 4112,
INRIA, 2001.

[22] Oracle Corporation. Oracle9i Application Developer’s
Guide - XML, Release 1 (9.0.1), 2001.

[23] R. Ramakrishnan and J. Gehrke.Database Management
Systems. McGraw-Hill Higher Education, 2000.

[24] A. Schmidt, M. L. Kersten, M. Windhouwer, and F. Waas.
Efficient relational storage and retrieval of XML documents.
In WebDB (Informal Proceedings), pages 47–52, 2000.

[25] J. Shanmugasundaram et al. Relational databases for query-
ing XML documents: Limitations and opportunities.VLDB
Journal, pages 302–314, 1999.

[26] J. Shanmugasundaram et al. A general techniques for query-
ing XML documents using a relational database system.
SIGMOD Record, 30(3):20–26, 2001.

[27] H. Thompson. Personal communication, 2002.
[28] H. Thompson et al. XML Schema. W3C Working Draft,

May 2001.http://www.w3.org/XML/Schema.

12


