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Abstract— Workflow systems have become increasingly popu-
lar for managing experiments where many bioinformatics taks
are chained together. Due to the large amount of data generatl
by these experiments and the need for reproducible results, N
provenance has become of paramount importance. Workflow "
systems are therefore starting to provide support for queryng |
provenance. However, the amount of provenance informatiomay
be overwhelming, so there is a need for abstraction mechaniss to
help users focus on the most relevant information. The techque | t77mmmmmmmsmmsmmsmssmmomso 000
we pursue is that of “user views.” Since bioinformatics task may
themselves be complex sub-workflows, a user view determines
what level of sub-workflow the user can see, and thus what data Fig. 1. Phylogenomic workflow
and tasks are visible in provenance queries.

In this paper, we formalize the notion of user views, demon-
strate how they can be used in provenance queries, and give
an algorithm for generating a user view based on which tasks .
are relevant for the user. We then describe our prototype and 414
give performance results. Although presented in the contexof S (12:M11)
scientific workflows, the technique applies to other data-dented @ e ‘"00»{ s1:m1 H S2:M3 H $3:M4 % S4:M5 [+ S5M3 > SE:M4 [ ST:M7
workflows. d308,...;d408—d409 o N Rk
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I. INTRODUCTION d415, ..., d445
(M9)

Workflow management systems (e.g. [1], [2], [3]) hav
become increasingly popular as a way of specifying and
implementing large-scale in-silico experiments. In sugb-s Fig. 2. Phylogenomic workflow run
tems, a workflow can be graphically designed by chaining
together bioinformatics tasks (e.g. aligning sequencetd-b
ing a phylogenetic tree). Such workflows typically use dathe annotations provided by GenBank (M2) and generate a set
coming from various databases and involve several todls, af curated annotations; new user input is needed for this. Th
requiring inputs in a particular format. Scientific workflsw annotations are then formatted (M8) to be taken as inputeto th
may therefore contain a large number of formatting taskdylogenetic tree reconstruction task (M7). Other animriat
which are unimportant in terms of the scientific goal of thare also considered: M6 takes in annotations from the user’s
workflow, and which make the workflow appear extremeli@gb and formats them to be taken as input to M7. From the
complex. annotations produced by M8 (and possibly M6) together with

As an example, consider the workflow specification (a.kthe alignment produced by M4, M7 provides a phylogenetic
workflow definition or schema) in Figure 1, which describetee labeled with functional annotations. Note that a nurobe
a common analysis in molecular biologfhylogenomic in- these tasks omodules(e.g. M1, M4, M8) involve formatting
ference of protein biological functionThis workflow first and are not central to the scientific goal of the experiment,
takes in a set of entries selected by the user from a databagé that edges represent the precedence and poteatidlow
(such as GenBank), and formats these entries to extracbeiween modules during an execution.
set of sequences, and, possibly, a set of annotations (M1)Workflows may be executed several times a month, resulting
An alignment is then created (M3), and the result formatted vast amounts of intermediate and final data objects. Eigur
(M4). The user may also be interested in rectifying thshows an execution of the workflow in Figure 1. Each box
alignment (M5). M3 to M5 are repeated until the biologisfe.g. S1:M1) is called atepand represents the execution of
is satisfied with the result obtained. The user may also tispa module; in the figure, it is labeled both with a unique id




for the step (e.g. S1) as well as the module of which it is ¢
execution (e.g. M1). Edges in this execution are labeleth wi
data ids (e.g. d1, d202, d447) representing the actual data D
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is used/created during the execution. In the workflow exenut vy

(a.k.a workflow run) of Figure 2, one hundred sequences ¢ ////////é @
taken as initial input (d1 to d100), minor modifications ar (a) Joe's user view (b) Mary's user view
done on the annotations (d202 to d206), and thirty additiona

annotations are used (d415 to d445). Fig. 3. Induced phylogenomic workflows

In order to understand and reproduce the results of an
experiment, scientists must be able to determmewhatsmquea"gnmem,, (M3), when in fact there is no precedence or

of steps and input data were used to produce data ObJeCts'dﬁtaﬂow between those modules. We must therefore restrict

askprovenancejueries, such aVhat are all the data ObJeC,tS/whgt groupings can occur so as to preserve the precedence

. . ; "§&tveen relevant modules and hence the perceived data-prove
However, since a workflow execution may contain mal

steps and data objects, the amount of provenance informat|0|n tHis paper, we have two goals. First, we want to help

can be qverwhelm_ing._For example, t_he provenance of the ﬁrﬂglers construct relevant user views. For example, Joe would
data object d447 in Figure 2 would include every data objeg}, h esented with M1,.., M8 and indicate that he finds M2,
(d1,...,d447) and every step (S1,...,S10). There is the¥ed  \13 574 M7 to be relevant. Based on this input, the user view
need for abstraction mechanisms to present the retestant Figure 3(a) would be created.
provenance information to the user. Second, we want to design a system in which the answer
A technique that is used in systems such as Kepler [1] apd, nrovenance query depends on the level at which the user
Taverna [3] is that otomposnernoo_lules, in which a mo_dule IS can see the workflow. For example, based on the execution in
itself a smaller workflow. _Compqsne modules are an 'mpdrtaf—‘igure 2, the answer to a query by Mary on what data objects
mechanism for abstraction, privacy, and reuse [4] betwegp e sed to produce d413 would include the data passed

workflows. The idea in this paper is to use composite modulgsyeen executions of M11 and M5, d410 and d411. However,
as an abstraction mechanism, driven by user-input on whatdss qata would not be visible to Joe since it is internal ® th

releva_n_t for provenance. execution of M10. Thus the answer to a provenance query
Intuitively, we want to allow users to group modules 0genends on the user view. Our approach should also be able
gether to get a workflow in which composite modules represegig itch hetween user views. While several workflow systems

some relevant task. For example, suppose user Joe belieyes e to answer provenance queries [5], none take user
“Annotations checking” (M2), “Run alignment” (M3) and,aws into account.

“Build Phylo tree” (M7) (shaded boxes in Figure 1) to be cqnpiputions. In this paper we propose a model for

relevant. Then he might group M6, M7 and M8 together if erying and reasoning about provenance through user views
composite module M9 (shown as a dotted box), which theBection 2). We then define properties of a “good” user view,
takes on the meaning of relevant module M7, e.g. building,y present an algorithm which takes as input a workflow

a phylogenetic tree. Similarly, he might group M3, M4 and e ification and a set of relevant modules, and constructs a
M5 together in composite module M10, which takes on “E"ood user view (Section 3).

meaning “Run alignment”. n - _ Based on this model, we have builpeovenance reasoning
Note that users may differ in their interests: While Joe i§stemwhich assists in the construction of good user views,
not interested in the alignment modification step (MS), &80t giqres provenance in an Oracle warehouse, and provides a use

user, Mary, may be (M5 is lightly shaded in Figure 1). Maryerface for querying and visualizing provenance withpeest
would therefore not include M5 in her composite modulg, 5 ,ser view (Section 4).

representing “Run alignment”; M11 includes only M3 and M4, 14 evaluate our provenance reasoning system, we have

leaving M5 visible. She may, however, agree on composiigaated an extensive suite of simulated scientific workflow
module M9. Joe and Mary will therefore have differerser ghqcifications based on patterns observed in 30 actual work-
viewsdefining the level of granularity at which they wish 1055 collected from scientists. Measurements include the
view the workflow. Using the composite modules in the uses; of querying the warehouse, while varying the kind of
view, aninducedworkflow can be created (see Figure 3). workflow, run, and user view (Section 5).

Since M1 is not relevant to Joe, he may now wish t0 |t should be noted that although our approach is illustrated
group it with M2, M9 or M10. However, these groupingg;sing scientific workflows, it igenericin the sense that it can

would dramatically modify the perceived. dataflowl betwe%le used by any workflow system which provides the required
relevant modules. For example, by grouping M1 with M2 ithtormation.

a composite module M12, there would exist an edge from

M12 to M10 in the view, due to the edge from M1 to M3 Il. WORKFLOW MODEL AND PROVENANCE

in the workflow specification. That is, it would appear that Workflow specification. A workflow specificatiomefines
“Annotation checking” (M2) must be performed before “Rurthe order in which modules can be executed and indicates



dataflow. More formally, it is a directed grapls,, (N, F), provenancedor a data object as the step which produced it and
in which nodes are uniquely labeled modules. Two specidie input set of data objects. Tlieep provenanctor a data
nodes,input (1) and output (O), are source and sink nodespbject is recursively defined as all the steps and input set of
respectively, and indicate the beginning and end of the worttata objects that were transitively used to produce it.

flow. Every node ofGG,, must be on some path fromput to For example, the immediate provenance of the data object
output d413 in the workflow run of Figure 2 is the step with id S6,

User view. A user viewU of a workflow specification is which is an instance of the module M4, and its input set of data
a partition of its nodesV (excludinginput and outpu), that objects{d412}. The deep provenance of d413 includes all the
is a set{Mj, ..., M,} such that) # M; C N, M; and M; steps and their inputs that transitively produced it, andildo
are disjoint fori # j, and M; U Ms U ... U M,, = N. Each include (among other things) the step with id S2, which is an
M; is called acompositemodule. Thesizeof U, |U|, is the instance of the module M3, and its input set of data objects
number of composite modules it contains. For example, t{d308,...,d408.
size of Joe’s user view is 4 while that of Mary is 5. Composite executions.The execution of consecutive steps

A user viewU = {M;, ..., M, } of a workflow specification within the same composite module causes a virtual execution
G.,, inducesa “higher level” workflow specificationl/(G,,), of the composite step, shown in Figure 2 by dotted boxes.
in which there is a node for each/; (labeled with a new These virtual executions can be constructed from the lag-inf
composite module name)nput and output nodes, and an mation as well as containment information between modules
edgeM; — M; whenever there is an edge @1, between and composite modules. For example, we would construct
a module in}; and a module inM; (similarly for edges an execution of M10 with the id S13 in Figure 2, which
input — M; andM; — output). The induced specification takes as input the set of data objedd308,...,d408 and
for Joe’s and Mary’'s user views are shown in Figures 3 (@yoduces as outpufd413}. Similarly, we would construct
and (b), respectively. two executions of M11, the first of which (id S11) takes as

Workflow run. An execution of a workflow specification input {d308,...,d408 and produces as outp{ii410}, and the
is called aworkflow run It generates a partial order efeps second of which (id S12) takes as ind@411} and produces
each of which has a set afputandoutputdata objects. More {d413} (see [8] for details).
formally, it is a directed acyclic graplG,, in which nodes  Since user views are defined in terms of composite modules,
are labeled with unique step-ids as well as the modules thkey restrict what provenance information can be seen in
which they are executions. Module labels are not necegsadin execution by hiding internal steps as well as the data
unique due to cycles in the workflow specification, that ipassed between internal steps. For example, the immediate
loops in the specification are unrolled in the execution. Fprovenance of d413 seen by Joe would be S13 and its input,
example, in Figure 2 there are two executions of M3, S2 afd308,...,d408, since composite module M10 is in his user
S5, since the loop between M3 and M5 was executed twiagew, whereas that seen by Mary would be S12 and its input,
Edges are labeled with a unique edge label indicating the 8411}, since M11 is in her user view. The deep provenance
of the data output by the source step and input to the targétd413 as seen by Mary would include the first execution of
step. Nodesnput and outputindicate the beginning and endM11, S11, and its inpufd308,...,d408. However, Joe would
of the execution, respectively; every node must be on somet see the data d411, nor would he be aware of the looping
path frominput to output inside of S13, i.e. the two executions of M3.

Provenance. Each data object in the workflow dataspace
is produced either as a result of a step of a workflow run, or
is input by the user. We call therovenanceof a data object We now turn to the question of constructing user views
the sequence of modules and input data objects on whichuging a bottom-up approach. Such an algorithm will take as
depends [5], [6]. If the data is a parameter or was input toput a workflow specification and a set of relevant modules,
the workflow execution by a user, its provenance is whatevand produce as output a user view. But what are the properties
metadata information is recorded, e.g. who input the dath aof a “good” user view?
the time at which the input occurred. Following other work From discussions with our scientist collaborators, a user
(e.g. [7], [1]), we assume data is never overwritten or updiatview is (intuitively) good if (i) the user sees a composite
in place. Each data object therefore has a unique identifigér anodule for each relevant module. The composite module takes
is produced by at most one step. on the meaning of the relevant module it contains, hence in

We assume that each workflow run generates a log of events induced workflow the paths (dataflow) between relevant
which tells what module a step is an instance of, what dataodules (as represented by their composite modules) should
objects and parameters were input to that step, and what dagapreserved. No path should be (ii) added or (iii) removed
objects were output from that step. For example, the logccodtom the original workflow. However, the need to preserve
include the start time of each step, the module of which it wagths between relevant modules may mean that it is impassibl
an instance, and read (write) events that indicate which st® include every non-relevant module in the specification in
read (wrote) which data objects at what time. some composite module which represents a relevant module.

Using this log information, we can determine th@enediate That is, we may need to create one (or more) composite

Ill. CONSTRUCTING USER VIEWS



Algorithm RelevUserViewBuilder

Input: workflow spec.G. (N, E), relevant modules?
Output: user viewU

/* Step 1: Create relevant composite module¥
1. U=

2. initializen € (N — R) as unmarked;

3. forall » € R do

4.  in(r)={n € (N — R) | rSucc(n) = {r}},
5

6

7

(a) Specification and composite modules (b) Induced user view

Fig. 4. Counter-example: Properties 2 & 3 mark each in in(r);
. forall » € R do
out(r) = {n € (N — R) | rPred(n) = {r} and

modules that do not contain a relevant module. Since sugh n is unmarked;
8. mark eachn in out(r);

composite modules have no meaning in terms of a relevant g° (.. 21, ¢ & do

module, (iv) there should be as few as possible. 10. M =in(r)Uout(r) U {r} ; insert M in U;
Observations (i) to (iv) are respectively formalized by| /+ Step 2: Create non-relevant composite modulest/
Properties 1 to 3 and a minimality condition, as follows: 11. NRC =0

Property 1: Given a workflow specificatior?,, and a set | 12.for all unmarkedn € (N — R) do

R C N of relevant modules, a user viel is well-formediff 13. if 3M € NRC s.t. rPredM(M) = rPred(n) and
rSuccM(M) = rSucc(n) then

every composite module ity contains at most one element| 1, insertn to M-
of R. 15. else

Given a well-formed user view for (G,,, R) andn € N, 16. M = {n}; insert M to NRC;
we useC'(n) to denote the composite module {4 which [* Step 3: Make the user view minimat/

containsn. For simplicity, we extend the notation to include i; re?gragl?“ﬂ ”g Jf\lfjgkgr change toVRC
. . _ . 1
C(input) = input and C(output) = output. Furthermore, 19, for all My € NRC

we use the termmr - pat h to denote a path iz, (or in 20. M = M, U My:
view U (G,,)) which contains no relevant intermediate module 21, V™ ={n € M | n has an incoming edge from
r € R (or relevant composite modulg(r)). As an example, somen’ ¢ M};
in the workflow specification of Figure 1, there exists an| 22. V* = {n € M | n has an outgoing edge to
nr - pat h from input to M2, but not frominput to M7, since _ somen’ ¢ M};

23. if Vn € V*t: rPred(n) = rPredM(M) and

all paths connecting these two modules contain an interedi Wn € V- rSucc(n) — rSuccM(M) then

node ink (M2, M3). ) ) 24, removeM; and M, from NRC;
Property 2: A user view U preserves datafloviff every 25. insertM to NRC:
edge inG,, that induces an edge on an- pat h from C(r) 26.return (U U NRC);

to C(r') in U(Gy) lies on annr - pat h fromr to ' in G,,.
Here,r,r’ are nodes inR U {input, output}.

Property 3: A user viewU is complete w.r.t datafloviff
for every edges on annr -path fromr to s’ in G, that
induces an edge’ in U(G.,), ¢ lies on annr - path from No two M;, M; can be removed front/ and replaced by
C(r) to C(r"). Here,r,r’" are nodes inR U {input, output}. M; U M; to yield a solution that preserves Properties 1-3.

In other words, evennr - pat h from C(r) to C(+') in Using this algorithm, both Joe’s and Mary’s user views would
U(G,) must be the residue of amr - path from r to »* be constructed automatically.
in G, and eachr-path in G, must have a residue in The functions used in the algorithm are defined as follows:
U(Gy)- Forne N andM € U:

As an example, consider the workflow and user vieW) rPred(n)= {r € (RU {input}) | there is amr-path fromr
U shown in Figure 4. WhileU is well-formed, it does ton }
not preserve dataflow: The edde;,r2) induces the edge (i) rSucc(n)= {r € (RU {output}) | there is amr - pat h from
(nr-path) (C(r1),C(r2)) in U(G,), but there is no path ntor }
from r; to rp in G,. This gives the impression that; (i) rPreaM(M)=J,,, rPred(n)
produces data necessary for. U is also not complete w.r.t. (iv) rSuccM(M)= |, ,, rSucc(n)
dataflow as the edge1,n2) is on annr - pat h from r; to The algorithm has three steps. In the first step (Lines 1 to
O while the induced edgé¢C(r1),C(r3)) in U(Gy) is not. 10), for each relevant module € R, a composite module
This gives the impression that the outputsaf cannot flow C(r) is created, which includes non-relevant modules that
directly to O (without going throughrs). are connected te by annr - pat h and for whichr is their

Algorithm RelevUserViewBuilder, given in Figure 5, take®only relevant successoir{(r)) or predecessonf:t(r)). Since
as input a workflow specificatiot,, and a set of relevant a modulen can be both inin(r) and out(r’), r # r/, the
modulesR, and produces a user vieW = {My,...,M,}. algorithm “marks”n when it is included inn(r) (Line 5), and
SuchU not only preserves Properties 1-3, but itnsnimat  does not consider it when computingt(r’) (Line 7). As an

Fig. 5. RelevUserViewBuilder



&
(a) workflow specification  (b) Optimum soclution  (c) RelevUserViewBuilder

Fig. 6. Example of workflow spec.
Fig. 7. Example of non minimum solution

example, consider the workflow specification of Figure 6. Tt
algorithm construct{ M2, M3}, and {M6, M8} as relevant ]
composite modules, singe(M3) = { M2}, andout(M6) = Provenance warehouse
{M8}. Observe thai\/1 is not inin(M3) because from\/1
there arenr - pat hs to M3, M6, andoutput. Similarly, M7

[

o

£
is not an element ofut(M6) because it can be reached fron .H £ User View Builder Wrappers
both input and M6 through annr - pat h . E

Step 2 of the algorithm is responsible for grouping nor b

relevant m_o_dules that remained unmarkgd after the_ first st Workflow | [ User View Log
More specifically, a non-relevant composite module is eeat definitions | | definitions | | files
for modules that have exactly the same set of relevant mou- —
ules as predecessorsPfed(n)) and successorx§ucc(n)), Fig. 8. Architecture

considering only those connected by - pat hs (Lines 11

to 16). Consider again the workflow specification of Figure
6. This step of the algorithm construcfd/4, M5}, {M1}, not combine modules with samePred/rSucc; in contrast,

and {M7}, since rPred(M4) = rPred(M5) = {input}, the solution produced by RelevUserViewBuilder (Figure)y(c
rSucc(M4) = rSucc(M5) = {M3, output}, rPred(M1) = has size 5. It is an open question as to whether there exists
{input}, rSucc(M1) = {M3, M6, output}, rPred(M7) = a polynomial time algorithm which preserves Properties 1-3
{input, M6}, andrSucc(M7) = {output}. and guarantees a minimum solution.

The last step of the algorithm checks whether non-relevantThese properties do not state that composite modules must
composite modules can be merged. Two modulés and be connected. However, Properties 1-3 guarantee that a rele
M2 can be merged into a new moduMd iff this does not vant composite module will always be a connected partition.
createnr - pat hs in the view that do not exist in the originalThis is not true for non-relevant composite modules, wheze w
specification. This condition is checked by comparing th@ay wish to hide parallel executions. We have also shown that
relevant successors of the entry poinis—( with the suc- Properties 1-3 do not introduce loops in the induced workflow
cessors of\/, and the relevant predecessors of the exit poinesher than those that were present in the original spediitat
(V+) with the relevant predecessors &f (Line 23). If these [8].
two_sets are e_qual then the p_roperty is preserv_ed. Consider V. ZOOM PROTOTYPE
again our running example of Figure 6. The algorithm merges

(M1} with {M4, M5} to createM, sinceV ~ (M) = {M1}, The goal of our prototype, ZOOM, is to provide users with
V(M) = {M1, M4, M5}, rPredM(M) = rPred(M1) = an interface to query the provenance information provided

rPred(M4) = rPred(M5) = {input}, and rSucch(M) = by a workflow system, as well as to help them construct an

rSucc(M1) = {M3, M6, output}. However, observe that 2PPropriate user view.

M cannot be merged with/7. This is becausePred(M7) The architecture of ZOOM is presented in Figure 8. The
includes /6 from which M1 (an element of/ +) cannot be system designer provides information about workflow specifi

reached. Thus, this merging would induce - pat h in cations and possibly user view definitions, which are caeder
the view'from{J,\/IG M8} to {M2, M3} throughM; however to tables and stored in the provenance warehouse. Following

in the original specification there is mz - pat h from M6 (or during) a workflow execution, information about the ihpu
to M3 and output of steps is also extracted from the workflow log

Theorem 1:RelevUserViewBuilder preserves Properties 131d Stored in the warehouse. Users interact with the sysyem b
3 and produces a minimal user view. building a user view or posing a provenance query. Provemanc

(The proof can be found in [8].) information is displayed graphically to aid in understangi

RelevUserViewBuilder is clearly a polynomial-time algone results. _ _ _
UserViewBuilder. UserViewBuilder takes as input the

rithm (O(N|*>+|E|)), and is very fast in practice (see Section " o ) :
5.1). However, RelevUserViewBuilder does not guarantee’¥'kflow definition, loads it in a graphical environment,
minimumsolution, i.e. one with the smallest size. For example,ithe prototype is available aht t p: // zoonuser vi ews. db. ci s.

the minimum solution shown in Figure 7(b) has size 4 and dogsenn. edu/ cgi - bi n/ pmai ki . php.
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LASSE F RKFLOW
Definition | Simulate runs | View runs| Provenance
Executions Users output User views Number of .
7 oo e [ e N = Class Pattern (Frequency) workflows Avg Size
Class 1 Real workflows 30 12
Mary = Class 2 Sequence: 80%
[ Compute locally (Linear) Loop: 10% 10 20
o Parallel Process: 10%
i Data Id Ts
@n 4204 ‘ y Class 3 | Parallel Process: 20%
User input d203 X 1 (Parallel) | Parallel Input: 10% 10 20
gggg | 1 Synchronization: 20%
o0 { 1 Sequence: 50%
Class 4 Loop: 50% 10 20
(Loop) Sequence: 50%
K|
[t aio]
e describe precisely how an experiment has been done, they are
User output [ & |1 ] | typically shared in detail with only a small group of collab-
orators. Very few are made available publicly, althoughythe
Fig. 9. Graph of provenance information may be outlined in scientific publications in an experiménta

methods section.

) . To evaluate the feasibility of our approach, we therefore
and allows users to specify which modules are relevant. d§jjected scientific workflows published in the literature a

produces as output a user view. In our prototype, algorithia|| as examples of use of several scientific workflow systems
RelevUserViewBuilder runs interactively, allowing theeus g ;ch as myGrid [3] and Kepler [1]. We also obtained detailed
to visualize the new user view each time he flags or unflaggormation about workflows that our collaborators in bigjo
a modulg as relevant. . were running. In this way, a total of thirty scientific workfle
Querying Provenance. In the prototype, runs are displayedyere collected together with their runs. From this data, we
graphically. By selecting a run and clicking on an edggyiractedpatterns of workflows (e.g., sequence, loop) [11],
between two steps, the user can see the_data set passedrbetmg@inferred statistics on their usage (e.g. the sequeritapa
them. To query provenance, the user first selects the datgddsed four times more than the reflexive loop). Statistics
of interest, and then the requested provenance informéatiory, runs, such as the average number of loop iterations, were
calculated with respect to the user view, and displayed g&o inferred. We then generated simulated workflows by
a graph. When the workflow graphs are large, the user cghmpining patterns according to usage statistics, and et
navigate over the portion of the graph he is interested in. ASns of these simulated workflows that reflect the statistics
the user's needs evolve, he may modify (add or remove) therred from real workflow runs. In this way, we were able
set of modules he considers to be relevant. The provenaggeyenerate realistic synthetic workflows and runs. We were
graph is then automatically modified for the new user viewso aple to gather information about characteristics @f us
For example, the answer to the deep provenance of the figglys (e.g. their size) from the collected workflow definiti
output (data id d447) using Joe’s view is shown in Figure 9. |4 qur approach, provenance reasoning is based on the log
The database used for our prototype is Oracle 10.g. The uggig provided by workflow systems (e.g., [12], [13]). Our
interface and wrappers are developed using Java with JDBGperiments therefore do not measure the cost of provenance
Deep provenance queries are implemented using Oraclgicking which produces the log files; rather, while varying
recursive query capabilities (CONNECT BY), extended Witthe class of workflow, runs, and user view, we measure the
stored procedures. Details of the relational schema and gt of constructing user views and querying the provenance
implementation can be found in [8] and in the demo papgfarehouse, as well as determine how evolvable and inteeacti

[9]. our approach is.
Ongoing work on our prototype includes providing users

with forms to express various (canned) provenance querfds Experimental setup
such aReturn the data objects which have a given data object The experiments were performed on a Dell PowerEdge 1950
in their data provenance with 4GB RAM and 250GB disk space running Linux RedHat
Enterprise AS4.4. Oracle 10.g was used as the databasmsyste
and was allocated 1GB of memory.

As observed in [10], evaluating any approach to provenanceClasses of workflows. Each class of workflow exhibits
is difficult. Evaluating an approach for querying proverangarticular pattern frequencies (sequence, loop etc.)leThb
in scientific workflow systems is particularly challengingee describes these classes: Class 1 is the set of real workftdws c
it requires realistic workflows and runs on which to base tHected, while Classes 2-4 are synthetic workflows. Thersgti
experiments. Since scientific workflows reflect expertisd amvere based on the characteristics of real workflows colecte

V. EVALUATION



TABLE I
CLASSES OFRUNS

10,000 | @ ADMIN
B UBIO
O UBlackBox

1,340

1,000

User Data Loop- Size
Kind input | prod. by step| iteration (Nodes
(range) (range) (range) -Edges)

100

# Rows

Small 1-10 1-10 1-3 105-523
Medium | 1-50 1-50 1-10 306-6406 10
Large 1-100 1-100 1-50 1153-41633

but are considerably more complex (e.g., no workflow that w &7 AF o o o oY af T oY o & e
collected had as many loops and involved as many nodes < ¢ ¢ & & & & & & & & &
those in Class 4). Run-Workflow class

Classes of runs. We also identified parameters that de-
termine the complexity of a workflow run, and used them
to generate different classes of runs, as shown in Table II.

These parameters were: the size of the run (small, medium . .
ugé:?t adding one relevant class in a workflow creates only one

and large); the amount of data given as input by the user (u . : i .
input), the amount of data generated by a step (data proﬁiucggw composite class, meaning that RelevUserViewBuilder al

and the number of loop iterations. The “size” parameter g]prlthm does not frequently construct non-relevant coritpos

Table Il indicates the maximum number of nodes and edg@sOdmeS'

of the workflow runs Experiments on querying provenance through user
User views. We used algorithm RelevUserViewBuilder t views. Since querying provenance is affected more by the

create relevant user views. The choice of relevant moduf@é® _O_f th_e run than_b_y the size of the speuflcgtlon_, we used
given as input to the algorithm was done both by harﬁjoecmcatlons containing about 20 nodes, which is slightly
(using our experience from case studies and advice given er than the 12 node average of the real workflows coliizcte

biologists) as well as randomly. In our experiments, we ¢ d V\_”th more loops than found in practice in ord_er to

the user views generated in the former case as UBio a?l%mpl'ca_te the runs (most collected _Workflows were linear).
those generated in the latter case as UV. In the latter case,%y iterating over the loops many times we were able to

randomly chose a given percentage of modules in a workfidlgherate very large ru_ns (see Table 1i). .

to be relevant. Relevant modules were selected randomly 10Ve used two metrics to measure the cost of querying
times for each percentage, and the percentage varied frofRfgvenance: The time to produce the query result and the

Fig. 10. Size of query result

to 100 by steps of 10. size of the query result. Size plays a crucial role since it
measures the difficulty of understanding the result prayide
B. Experiments and results and therefore the usability of the system. Using 10 workflows

The goal of our experiments is to evaluate: (i) the petd each of the 4 classes described in Table I, we created 30 run
formance of the RelevUserViewBuilder algorithm, (ii) theof €ach kind in Table Il (small, medium and large), genetatin
benefit of user views when querying provenance, and (ii$600 runs in total. This corresponds to what would happen
the interactive capability of our system. Benefit is meagurdn a large laboratory with 40 workflows, each of which is
in terms of the size of the answer to a provenance queg)xecuted about twice a week.
which should be as concise as possible while providing all In the next two experiments described below, we used the
provenance information that is relevant to the user. most expensive provenance query possible: the deep prove-

Experiments on RelevUserViewBuilder. In the following nance of the final output of the run. We also considered three
two experiments, we have evaluated RelevUserViewBuilgler types of user views: UAdmin, in which each step class is
running the algorithm on 1000, increasingly large, randmmi relevant (no composite modules); UBio, constructed fro re
workflow specifications (100-2000 nodes). evant modules using RelevUserViewBuilder; and UBlackBox,

Scalability. In our first experiment, we evaluated the scaldan which the entire workflow is in one composite class.
bility of RelevUserViewBuilder. Each execution of the algo Conciseness of query resulfigure 10 shows the size of
rithm took less than 80ms. the query result, i.e. the number of tuples returned in tlepde

Optimality. In the second experiment, we evaluated thgrovenance of the final output of a run, while varying the
“optimality” of RelevUserViewBuilder by increasing thepe type of user view and runs (note that log scale is used for
centage of relevant modules chosen and measuring the nunthery-axis). Each bar represents a run of a particular kind
of relevant composite modules created. Recall that a lowmgunl, small; run2, medium; run3, large) of a workflow of a
bound on the size of a user view is the number of relevaparticular class (Classl through Class4, see Table I). kbllsm
modules, and that such a view is “optimal” in the sense thatritns, an average of 24 data items are returned in UAdmin,
only contains relevant composite modules. Our results sdowl3 in UBio, and 5 in UBlackBox. In medium and large runs,



R B e————— Effect of view granularity on size of query resulLastly,

500 — Figure 11 shows how the size of the query result (i.e. the

00 / number of rows) increases as a function of the percentage of

// relevant modules in all workflows for small (runl), medium
(run2) and large runs (run3). Each point represents theageer

size of the query result over 120,000 provenance queries ove

: 200
- / "_’,.//r"""”‘ runs of each of the four classes of workflows. Increasing the
é;”_f::_,._—.,—-—-——-——- percentage (and therefore number) of relevant modules in a
0 T T T T T T T T T

workflow increases the granularity of provenance infororati
e B w o s e w thereby allowing the user to see more provenance informatio
W of relevant modules
Although not shown in this figure (which averages over
Fig. 11. Effect of view granularity on size of query result all classes of workflows), for Class4 workflows (loops) the
increase in size of the query result is more than linear. In
contrast to the experiment in Figure 10, in which relevant
UBIo views are even better filters, yielding only 20% of thenodules were selected by hand, by randomly selecting them,
data returned in UAdmin and an average of 22 times more dédaps are much more likely to be seen as the size of composite
than UBlackBox. Interestingly, Class4 workflows (with manynodules decreases.
loops) benefit enormously from user views since iteratidns o
loops are frequently hidden (up to 90%).

Query response time. We tested various strategies to Provenance and annotations have been studied extensively
implement the computation of deep provenance through ugsr the database community [7], [14], [10], [15], [16]. The
views, including SQL views, stored procedures, and a wariedim is to determine which tuples were used to generate the
of indexes to optimize the query (details can be found @nswer to a query by exploiting the algebraic form of the
[8]). The best results were obtained by the following sggte query and/or the relational or XML-like form of the data. In
first compute UAdmin and then remove information hiddecontrast, transformations occurring in workflows are enaér
within composite steps of the given user view. Using thigrocesses (black boxes), and the log files typically provide
strategy, whatever the size of the user view, the respomse tionly object ids. Provenance is more coarse-grained, and the
was dominated by the first step. Even when the result wssucture of data cannot be reasoned about.
large, the query time was less than 30 seconds. On averag&\orkflow systems have been developed in many domains,
answering queries for small runs took 23 milliseconds, igser e.g. business processes and e-commerce. Within the §cienti
for medium runs took 213 milliseconds, and queries for larg@ammunity they are used to conduct and manage experiments
runs took 1.1 seconds. (e.g. [1], [2], [17], [3]). Many of these systems record in-

Interactive capability of ZOOM*UserViews. In the formation about the processes used to derive intermediate
next two experiments, we tested the interactive capabilignd final data objects from raw data, and can be classified
of our system to respond to the need for finer provenaniceterms of provenance along three axes: the level at which
information. We did this by measuring the cost of increasingformation is recorded, the ability to create compositks$a
the percentage of relevant modules in a workflow in terms afid the ease with which provenance queries can be asked.
the query result size and response time. All kinds of rurs, &lirst, the level at which information is recorded variesnfro
classes of workflows, and randomized user views were testadvery low level, e.g. Condor [18] which is job-centric, to
The deep provenance of the final output was used as the quaigher levels e.g., Taverna, which stores and annotates run

Effect of view granularity on response tim&Ve analyzed with semantic concepts [3], [13], and Kepler, in which it is
the cost of switching user views while analyzing the provesossible to track data flows and dependencies among actors,
nance of a given data-item, to show how the user can interéakens, and objects [1]. Survey of this work can be found
with the system when trying to understand provenance. Redal [19]. Although many workflow systems differ in how they
that to compute any user view UV provenance information, wecord provenance, the majority attempt to provide thensisie
first compute UAdmin and then project out UV information. lrwith the necessary tools to assess the quality of experahent
our system, when a query is executed on a given workflow ruesults and to improve the repeatability of such resultg.[20
the UAdmin provenance information is stored in a tempora/ecent “provenance challenges” have been held to encourage
table, and does not need to be recomputed when switchsygtem designers to learn about the capabilities and esipees
the user view on the same workflow run. The results therefaness of each others’ systems and work toward interoperable
showed that on average it takes 13 msec to compute the praa@utions [5]. Second, the ability to create composite dask
nance for a different user view. The maximum computatigivased on the ideas of Statecharts [21]) appears in many work
time was 1 sec for an execution in run4 with 90% of relevafiow systems: Kepler [1] allows composite actors, and Tav-
modules. Visualizing the results took longer: On average etna/myGrid [13] uses nested workflow processors/knovdedg
took 300 msec to show the provenance graph for a new us@w models. Third, workflow systems differ in the extent to
view, and the maximum time was 2 sec. which they facilitate queries on the provenance infornmatio

# Rows
w
o
o
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Some systems merely provide the user with XML or RDFelevantatomic modules contained within it. To evaluate the

files containing the workflow definition and log informatiorbenefit of provenance through user views, we performed a

associated with each run (e.g. [3], [1]). Others, like GBID series of experiments and showed how our approach helps

[22] or Redux [23], incorporate workflow and data modelingsers quickly focus on meaningful answers to provenance

into the same system by using a workflow system on top qtieries.

a DBMS. For more information about the various layers of Constructing user views is a very interesting problem, and

a generic architecture dealing with provenance recordimdy athere are several directions of future work that we are pogsu

querying, see [24]. (see [8]). In particular, it is an open problem as to whether
Work on modeling and querying information generated biyrere exists a polynomial time algorithm for producing a

workflow systems has also appeared in the e-business domé&ood” user view and guaranteeing a minimum solution. We

While WQM [25] and BP-QL [26] provide query languagesre currently exploring how to do this for “well-structuted

for business processes, they do not address user views. workflows such as those found in business processes (e.g.
In [6], we introduced a simple model of provenance that waPEL [28]).

used in the First Provenance Challenge [5]. We were able to

show that our model captured the necessary informatioméor t ACKNOWLEDGMENT

challenge queries, and that this information could be et@éh  We would like to thank S. Cohen for her help in col-

from the log file of the workflow systems participating inecting real scientific workflows, and S. Khanna for his help

the challenge. However, we did not provide an algorithm fan wrestling with the open problem of finding a minimum

computing (relevant) user views. solution.
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