
Querying and Managing Provenance through User
Views in Scientific Workflows

Olivier Biton #1, Sarah Cohen-Boulakia#2, Susan B. Davidson#3, Carmem S. Hara∗4

#University of Pennsylvania, Philadelphia, USA
{1biton, 2sarahcb, 3susan}@cis.upenn.edu

∗ Universidade Federal do Paraná, Brazil
4carmem@inf.ufpr.br

Abstract— Workflow systems have become increasingly popu-
lar for managing experiments where many bioinformatics tasks
are chained together. Due to the large amount of data generated
by these experiments and the need for reproducible results,
provenance has become of paramount importance. Workflow
systems are therefore starting to provide support for querying
provenance. However, the amount of provenance informationmay
be overwhelming, so there is a need for abstraction mechanisms to
help users focus on the most relevant information. The technique
we pursue is that of “user views.” Since bioinformatics tasks may
themselves be complex sub-workflows, a user view determines
what level of sub-workflow the user can see, and thus what data
and tasks are visible in provenance queries.

In this paper, we formalize the notion of user views, demon-
strate how they can be used in provenance queries, and give
an algorithm for generating a user view based on which tasks
are relevant for the user. We then describe our prototype and
give performance results. Although presented in the context of
scientific workflows, the technique applies to other data-oriented
workflows.

I. I NTRODUCTION

Workflow management systems (e.g. [1], [2], [3]) have
become increasingly popular as a way of specifying and
implementing large-scale in-silico experiments. In such sys-
tems, a workflow can be graphically designed by chaining
together bioinformatics tasks (e.g. aligning sequences, build-
ing a phylogenetic tree). Such workflows typically use data
coming from various databases and involve several tools, all
requiring inputs in a particular format. Scientific workflows
may therefore contain a large number of formatting tasks
which are unimportant in terms of the scientific goal of the
workflow, and which make the workflow appear extremely
complex.

As an example, consider the workflow specification (a.k.a
workflow definition or schema) in Figure 1, which describes
a common analysis in molecular biology:Phylogenomic in-
ference of protein biological function. This workflow first
takes in a set of entries selected by the user from a database
(such as GenBank), and formats these entries to extract a
set of sequences, and, possibly, a set of annotations (M1).
An alignment is then created (M3), and the result formatted
(M4). The user may also be interested in rectifying the
alignment (M5). M3 to M5 are repeated until the biologist
is satisfied with the result obtained. The user may also inspect

Fig. 1. Phylogenomic workflow

Fig. 2. Phylogenomic workflow run

the annotations provided by GenBank (M2) and generate a set
of curated annotations; new user input is needed for this. The
annotations are then formatted (M8) to be taken as input to the
phylogenetic tree reconstruction task (M7). Other annotations
are also considered: M6 takes in annotations from the user’s
lab and formats them to be taken as input to M7. From the
annotations produced by M8 (and possibly M6) together with
the alignment produced by M4, M7 provides a phylogenetic
tree labeled with functional annotations. Note that a number of
these tasks ormodules(e.g. M1, M4, M8) involve formatting
and are not central to the scientific goal of the experiment,
and that edges represent the precedence and potentialdataflow
between modules during an execution.

Workflows may be executed several times a month, resulting
in vast amounts of intermediate and final data objects. Figure 2
shows an execution of the workflow in Figure 1. Each box
(e.g. S1:M1) is called astepand represents the execution of
a module; in the figure, it is labeled both with a unique id

for the step (e.g. S1) as well as the module of which it is an
execution (e.g. M1). Edges in this execution are labeled with
data ids (e.g. d1, d202, d447) representing the actual data that
is used/created during the execution. In the workflow execution
(a.k.a workflow run) of Figure 2, one hundred sequences are
taken as initial input (d1 to d100), minor modifications are
done on the annotations (d202 to d206), and thirty additional
annotations are used (d415 to d445).

In order to understand and reproduce the results of an
experiment, scientists must be able to determine what sequence
of steps and input data were used to produce data objects, i.e.
askprovenancequeries, such as:What are all the data objects/
sequence of steps which have been used to produce this tree?

However, since a workflow execution may contain many
steps and data objects, the amount of provenance information
can be overwhelming. For example, the provenance of the final
data object d447 in Figure 2 would include every data object
(d1,...,d447) and every step (S1,...,S10). There is therefore a
need for abstraction mechanisms to present the mostrelevant
provenance information to the user.

A technique that is used in systems such as Kepler [1] and
Taverna [3] is that ofcompositemodules, in which a module is
itself a smaller workflow. Composite modules are an important
mechanism for abstraction, privacy, and reuse [4] between
workflows. The idea in this paper is to use composite modules
as an abstraction mechanism, driven by user-input on what is
relevant for provenance.

Intuitively, we want to allow users to group modules to-
gether to get a workflow in which composite modules represent
some relevant task. For example, suppose user Joe believes
“Annotations checking” (M2), “Run alignment” (M3) and
“Build Phylo tree” (M7) (shaded boxes in Figure 1) to be
relevant. Then he might group M6, M7 and M8 together in
composite module M9 (shown as a dotted box), which then
takes on the meaning of relevant module M7, e.g. building
a phylogenetic tree. Similarly, he might group M3, M4 and
M5 together in composite module M10, which takes on the
meaning “Run alignment”.

Note that users may differ in their interests: While Joe is
not interested in the alignment modification step (M5), another
user, Mary, may be (M5 is lightly shaded in Figure 1). Mary
would therefore not include M5 in her composite module
representing “Run alignment”; M11 includes only M3 and M4,
leaving M5 visible. She may, however, agree on composite
module M9. Joe and Mary will therefore have differentuser
viewsdefining the level of granularity at which they wish to
view the workflow. Using the composite modules in the user
view, an inducedworkflow can be created (see Figure 3).

Since M1 is not relevant to Joe, he may now wish to
group it with M2, M9 or M10. However, these groupings
would dramatically modify the perceived dataflow between
relevant modules. For example, by grouping M1 with M2 in
a composite module M12, there would exist an edge from
M12 to M10 in the view, due to the edge from M1 to M3
in the workflow specification. That is, it would appear that
“Annotation checking” (M2) must be performed before “Run

Fig. 3. Induced phylogenomic workflows

alignment” (M3), when in fact there is no precedence or
dataflow between those modules. We must therefore restrict
what groupings can occur so as to preserve the precedence
between relevant modules and hence the perceived data prove-
nance.

In this paper, we have two goals. First, we want to help
users construct relevant user views. For example, Joe would
be presented with M1,.., M8 and indicate that he finds M2,
M3 and M7 to be relevant. Based on this input, the user view
in Figure 3(a) would be created.

Second, we want to design a system in which the answer
to a provenance query depends on the level at which the user
can see the workflow. For example, based on the execution in
Figure 2, the answer to a query by Mary on what data objects
were used to produce d413 would include the data passed
between executions of M11 and M5, d410 and d411. However,
this data would not be visible to Joe since it is internal to the
execution of M10. Thus the answer to a provenance query
depends on the user view. Our approach should also be able
to switch between user views. While several workflow systems
are able to answer provenance queries [5], none take user
views into account.

Contributions. In this paper we propose a model for
querying and reasoning about provenance through user views
(Section 2). We then define properties of a “good” user view,
and present an algorithm which takes as input a workflow
specification and a set of relevant modules, and constructs a
good user view (Section 3).

Based on this model, we have built aprovenance reasoning
systemwhich assists in the construction of good user views,
stores provenance in an Oracle warehouse, and provides a user
interface for querying and visualizing provenance with respect
to a user view (Section 4).

To evaluate our provenance reasoning system, we have
created an extensive suite of simulated scientific workflow
specifications based on patterns observed in 30 actual work-
flows collected from scientists. Measurements include the
cost of querying the warehouse, while varying the kind of
workflow, run, and user view (Section 5).

It should be noted that although our approach is illustrated
using scientific workflows, it isgenericin the sense that it can
be used by any workflow system which provides the required
information.

II. WORKFLOW MODEL AND PROVENANCE

Workflow specification. A workflow specificationdefines
the order in which modules can be executed and indicates

dataflow. More formally, it is a directed graph,Gw(N, E),
in which nodes are uniquely labeled modules. Two special
nodes,input (I) and output (O), are source and sink nodes,
respectively, and indicate the beginning and end of the work-
flow. Every node ofGw must be on some path frominput to
output.

User view. A user viewU of a workflow specification is
a partition of its nodesN (excluding input and output), that
is a set{M1, ..., Mn} such that∅ 6= Mi ⊆ N , Mi and Mj

are disjoint fori 6= j, andM1 ∪ M2 ∪ ... ∪ Mn = N . Each
Mi is called acompositemodule. Thesizeof U , |U |, is the
number of composite modules it contains. For example, the
size of Joe’s user view is 4 while that of Mary is 5.

A user viewU = {M1, ..., Mn} of a workflow specification
Gw inducesa “higher level” workflow specification,U(Gw),
in which there is a node for eachMi (labeled with a new
composite module name),input and output nodes, and an
edgeMi −→ Mj whenever there is an edge inGw between
a module inMi and a module inMj (similarly for edges
input −→ Mi andMi −→ output). The induced specification
for Joe’s and Mary’s user views are shown in Figures 3 (a)
and (b), respectively.

Workflow run. An execution of a workflow specification
is called aworkflow run. It generates a partial order ofsteps,
each of which has a set ofinput andoutputdata objects. More
formally, it is a directed acyclic graph,Gr, in which nodes
are labeled with unique step-ids as well as the modules of
which they are executions. Module labels are not necessarily
unique due to cycles in the workflow specification, that is,
loops in the specification are unrolled in the execution. For
example, in Figure 2 there are two executions of M3, S2 and
S5, since the loop between M3 and M5 was executed twice.
Edges are labeled with a unique edge label indicating the ids
of the data output by the source step and input to the target
step. Nodesinput and output indicate the beginning and end
of the execution, respectively; every node must be on some
path frominput to output.

Provenance. Each data object in the workflow dataspace
is produced either as a result of a step of a workflow run, or
is input by the user. We call theprovenanceof a data object
the sequence of modules and input data objects on which it
depends [5], [6]. If the data is a parameter or was input to
the workflow execution by a user, its provenance is whatever
metadata information is recorded, e.g. who input the data and
the time at which the input occurred. Following other work
(e.g. [7], [1]), we assume data is never overwritten or updated
in place. Each data object therefore has a unique identifier and
is produced by at most one step.

We assume that each workflow run generates a log of events,
which tells what module a step is an instance of, what data
objects and parameters were input to that step, and what data
objects were output from that step. For example, the log could
include the start time of each step, the module of which it was
an instance, and read (write) events that indicate which step
read (wrote) which data objects at what time.

Using this log information, we can determine theimmediate

provenancefor a data object as the step which produced it and
the input set of data objects. Thedeep provenancefor a data
object is recursively defined as all the steps and input set of
data objects that were transitively used to produce it.

For example, the immediate provenance of the data object
d413 in the workflow run of Figure 2 is the step with id S6,
which is an instance of the module M4, and its input set of data
objects{d412}. The deep provenance of d413 includes all the
steps and their inputs that transitively produced it, and would
include (among other things) the step with id S2, which is an
instance of the module M3, and its input set of data objects
{d308,...,d408}.

Composite executions.The execution of consecutive steps
within the same composite module causes a virtual execution
of the composite step, shown in Figure 2 by dotted boxes.
These virtual executions can be constructed from the log infor-
mation as well as containment information between modules
and composite modules. For example, we would construct
an execution of M10 with the id S13 in Figure 2, which
takes as input the set of data objects{d308,...,d408} and
produces as output{d413}. Similarly, we would construct
two executions of M11, the first of which (id S11) takes as
input {d308,...,d408} and produces as output{d410}, and the
second of which (id S12) takes as input{d411} and produces
{d413} (see [8] for details).

Since user views are defined in terms of composite modules,
they restrict what provenance information can be seen in
an execution by hiding internal steps as well as the data
passed between internal steps. For example, the immediate
provenance of d413 seen by Joe would be S13 and its input,
{d308,...,d408}, since composite module M10 is in his user
view, whereas that seen by Mary would be S12 and its input,
{d411}, since M11 is in her user view. The deep provenance
of d413 as seen by Mary would include the first execution of
M11, S11, and its input{d308,...,d408}. However, Joe would
not see the data d411, nor would he be aware of the looping
inside of S13, i.e. the two executions of M3.

III. C ONSTRUCTING USER VIEWS

We now turn to the question of constructing user views
using a bottom-up approach. Such an algorithm will take as
input a workflow specification and a set of relevant modules,
and produce as output a user view. But what are the properties
of a “good” user view?

From discussions with our scientist collaborators, a user
view is (intuitively) good if (i) the user sees a composite
module for each relevant module. The composite module takes
on the meaning of the relevant module it contains, hence in
the induced workflow the paths (dataflow) between relevant
modules (as represented by their composite modules) should
be preserved. No path should be (ii) added or (iii) removed
from the original workflow. However, the need to preserve
paths between relevant modules may mean that it is impossible
to include every non-relevant module in the specification in
some composite module which represents a relevant module.
That is, we may need to create one (or more) composite

Fig. 4. Counter-example: Properties 2 & 3

modules that do not contain a relevant module. Since such
composite modules have no meaning in terms of a relevant
module, (iv) there should be as few as possible.

Observations (i) to (iv) are respectively formalized by
Properties 1 to 3 and a minimality condition, as follows:

Property 1: Given a workflow specificationGw and a set
R ⊆ N of relevant modules, a user viewU is well-formediff
every composite module inU contains at most one element
of R.

Given a well-formed user viewU for (Gw, R) andn ∈ N ,
we useC(n) to denote the composite module inU which
containsn. For simplicity, we extend the notation to include
C(input) = input andC(output) = output. Furthermore,
we use the termnr-path to denote a path inGw (or in
view U(Gw)) which contains no relevant intermediate module
r ∈ R (or relevant composite moduleC(r)). As an example,
in the workflow specification of Figure 1, there exists an
nr-path from input to M2, but not frominput to M7, since
all paths connecting these two modules contain an intermediate
node inR (M2, M3).

Property 2: A user view U preserves dataflowiff every
edge inGw that induces an edge on annr-path from C(r)
to C(r′) in U(Gw) lies on annr-path from r to r′ in Gw.
Here,r, r′ are nodes inR ∪ {input, output}.

Property 3: A user view U is complete w.r.t dataflowiff
for every edgee on annr-path from r to r′ in Gw that
induces an edgee′ in U(Gw), e′ lies on annr-path from
C(r) to C(r′). Here,r, r′ are nodes inR ∪ {input, output}.

In other words, everynr-path from C(r) to C(r′) in
U(Gw) must be the residue of annr-path from r to r′

in Gw, and eachnr-path in Gw must have a residue in
U(Gw).

As an example, consider the workflow and user view
U shown in Figure 4. WhileU is well-formed, it does
not preserve dataflow: The edge(n1, r2) induces the edge
(nr-path) (C(r1), C(r2)) in U(Gw), but there is no path
from r1 to r2 in Gw. This gives the impression thatr1

produces data necessary forr2. U is also not complete w.r.t.
dataflow as the edge(r1, n2) is on annr-path from r1 to
O while the induced edge(C(r1), C(r3)) in U(Gw) is not.
This gives the impression that the output ofr1 cannot flow
directly to O (without going throughr3).

Algorithm RelevUserViewBuilder, given in Figure 5, takes
as input a workflow specificationGw and a set of relevant
modulesR, and produces a user viewU = {M1, ..., Mn}.
SuchU not only preserves Properties 1-3, but it isminimal:

Algorithm RelevUserViewBuilder

Input: workflow spec.Gw(N, E), relevant modulesR
Output: user viewU

/* Step 1: Create relevant composite modules*/
1. U = ∅;
2. initialize n ∈ (N − R) as unmarked;
3. for all r ∈ R do
4. in(r)= {n ∈ (N − R) | rSucc(n) = {r}};
5. mark eachn in in(r);
6. for all r ∈ R do
7. out(r) = {n ∈ (N − R) | rPred(n) = {r} and

n is unmarked};
8. mark eachn in out(r);
9. for all r ∈ R do
10. M = in(r) ∪ out(r) ∪ {r} ; insertM in U ;
/* Step 2: Create non-relevant composite modules*/
11. NRC = ∅;
12. for all unmarkedn ∈ (N − R) do
13. if ∃M ∈ NRC s.t. rPredM(M) = rPred(n) and

rSuccM(M) = rSucc(n) then
14. insertn to M ;
15. else
16. M = {n}; insertM to NRC;
/* Step 3: Make the user view minimal*/
17. repeat until no further change toNRC
18. for all M1 ∈ NRC
19. for all M2 ∈ NRC
20. M = M1 ∪ M2;
21. V − = {n ∈ M | n has an incoming edge from

somen′ /∈ M};
22. V + = {n ∈ M | n has an outgoing edge to

somen′ /∈ M};
23. if ∀n ∈ V +: rPred(n) = rPredM(M) and

∀n ∈ V −: rSucc(n) = rSuccM(M) then
24. removeM1 andM2 from NRC;
25. insertM to NRC;
26. return (U ∪ NRC);

Fig. 5. RelevUserViewBuilder

No two Mi, Mj can be removed fromU and replaced by
Mi ∪ Mj to yield a solution that preserves Properties 1-3.
Using this algorithm, both Joe’s and Mary’s user views would
be constructed automatically.

The functions used in the algorithm are defined as follows:
For n ∈ N andM ∈ U :
(i) rPred(n)= {r ∈ (R ∪ {input}) | there is annr-path from r

to n }

(ii) rSucc(n)= {r ∈ (R ∪ {output}) | there is annr-path from
n to r }

(iii) rPredM(M)=
⋃

n∈M
rPred(n)

(iv) rSuccM(M)=
⋃

n∈M
rSucc(n)

The algorithm has three steps. In the first step (Lines 1 to
10), for each relevant moduler ∈ R, a composite module
C(r) is created, which includes non-relevant modules that
are connected tor by annr-path and for whichr is their
only relevant successor (in(r)) or predecessor (out(r)). Since
a modulen can be both inin(r) and out(r′), r 6= r′, the
algorithm “marks”n when it is included inin(r) (Line 5), and
does not consider it when computingout(r′) (Line 7). As an

I M1

M2 M3

M5M4

M6
M7

M8

O

Fig. 6. Example of workflow spec.

example, consider the workflow specification of Figure 6. The
algorithm constructs{M2, M3}, and{M6, M8} as relevant
composite modules, sincein(M3) = {M2}, andout(M6) =
{M8}. Observe thatM1 is not in in(M3) because fromM1
there arenr-paths to M3, M6, andoutput. Similarly, M7
is not an element ofout(M6) because it can be reached from
both input andM6 through annr-path .

Step 2 of the algorithm is responsible for grouping non-
relevant modules that remained unmarked after the first step.
More specifically, a non-relevant composite module is created
for modules that have exactly the same set of relevant mod-
ules as predecessors (rPred(n)) and successors (rSucc(n)),
considering only those connected bynr-paths (Lines 11
to 16). Consider again the workflow specification of Figure
6. This step of the algorithm constructs{M4, M5}, {M1},
and {M7}, since rPred(M4) = rPred(M5) = {input},
rSucc(M4) = rSucc(M5) = {M3, output}, rPred(M1) =
{input}, rSucc(M1) = {M3, M6, output}, rPred(M7) =
{input, M6}, andrSucc(M7) = {output}.

The last step of the algorithm checks whether non-relevant
composite modules can be merged. Two modulesM1 and
M2 can be merged into a new moduleM iff this does not
createnr-paths in the view that do not exist in the original
specification. This condition is checked by comparing the
relevant successors of the entry points (V −) with the suc-
cessors ofM , and the relevant predecessors of the exit points
(V +) with the relevant predecessors ofM (Line 23). If these
two sets are equal then the property is preserved. Consider
again our running example of Figure 6. The algorithm merges
{M1} with {M4, M5} to createM , sinceV −(M) = {M1},
V +(M) = {M1, M4, M5}, rPredM(M) = rPred(M1) =
rPred(M4) = rPred(M5) = {input}, andrSuccM(M) =
rSucc(M1) = {M3, M6, output}. However, observe that
M cannot be merged withM7. This is becauserPred(M7)
includesM6 from which M1 (an element ofV +) cannot be
reached. Thus, this merging would induce annr-path in
the view from{M6, M8} to {M2, M3} throughM ; however,
in the original specification there is nonr-path from M6
to M3.

Theorem 1:RelevUserViewBuilder preserves Properties 1-
3 and produces a minimal user view.
(The proof can be found in [8].)

RelevUserViewBuilder is clearly a polynomial-time algo-
rithm (O(|N |2+ |E|)), and is very fast in practice (see Section
5.1). However, RelevUserViewBuilder does not guarantee a
minimumsolution, i.e. one with the smallest size. For example,
the minimum solution shown in Figure 7(b) has size 4 and does

Fig. 7. Example of non minimum solution

Fig. 8. Architecture

not combine modules with samerPred/rSucc; in contrast,
the solution produced by RelevUserViewBuilder (Figure 7(c))
has size 5. It is an open question as to whether there exists
a polynomial time algorithm which preserves Properties 1-3
and guarantees a minimum solution.

These properties do not state that composite modules must
be connected. However, Properties 1-3 guarantee that a rele-
vant composite module will always be a connected partition.
This is not true for non-relevant composite modules, where we
may wish to hide parallel executions. We have also shown that
Properties 1-3 do not introduce loops in the induced workflow
other than those that were present in the original specification
[8].

IV. ZOOM PROTOTYPE

The goal of our prototype, ZOOM, is to provide users with
an interface to query the provenance information provided
by a workflow system, as well as to help them construct an
appropriate user view.1

The architecture of ZOOM is presented in Figure 8. The
system designer provides information about workflow specifi-
cations and possibly user view definitions, which are converted
to tables and stored in the provenance warehouse. Following
(or during) a workflow execution, information about the input
and output of steps is also extracted from the workflow log
and stored in the warehouse. Users interact with the system by
building a user view or posing a provenance query. Provenance
information is displayed graphically to aid in understanding
the results.

UserViewBuilder. UserViewBuilder takes as input the
workflow definition, loads it in a graphical environment,

1The prototype is available athttp://zoomuserviews.db.cis.
upenn.edu/cgi-bin/pmwiki.php.

Fig. 9. Graph of provenance information

and allows users to specify which modules are relevant. It
produces as output a user view. In our prototype, algorithm
RelevUserViewBuilder runs interactively, allowing the user
to visualize the new user view each time he flags or unflags
a module as relevant.

Querying Provenance. In the prototype, runs are displayed
graphically. By selecting a run and clicking on an edge
between two steps, the user can see the data set passed between
them. To query provenance, the user first selects the data id
of interest, and then the requested provenance informationis
calculated with respect to the user view, and displayed as
a graph. When the workflow graphs are large, the user can
navigate over the portion of the graph he is interested in. As
the user’s needs evolve, he may modify (add or remove) the
set of modules he considers to be relevant. The provenance
graph is then automatically modified for the new user view.
For example, the answer to the deep provenance of the final
output (data id d447) using Joe’s view is shown in Figure 9.

The database used for our prototype is Oracle 10.g. The user
interface and wrappers are developed using Java with JDBC.
Deep provenance queries are implemented using Oracle’s
recursive query capabilities (CONNECT BY), extended with
stored procedures. Details of the relational schema and the
implementation can be found in [8] and in the demo paper
[9].

Ongoing work on our prototype includes providing users
with forms to express various (canned) provenance queries
such asReturn the data objects which have a given data object
in their data provenance.

V. EVALUATION

As observed in [10], evaluating any approach to provenance
is difficult. Evaluating an approach for querying provenance
in scientific workflow systems is particularly challenging since
it requires realistic workflows and runs on which to base the
experiments. Since scientific workflows reflect expertise and

TABLE I

CLASSES OFWORKFLOWS

Class Pattern (Frequency) Number of
workflows

Avg Size

Class 1 Real workflows 30 12
Class 2 Sequence: 80%
(Linear) Loop: 10% 10 20

Parallel Process: 10%
Class 3 Parallel Process: 20%

(Parallel) Parallel Input: 10% 10 20
Synchronization: 20%

Sequence: 50%
Class 4 Loop: 50% 10 20
(Loop) Sequence: 50%

describe precisely how an experiment has been done, they are
typically shared in detail with only a small group of collab-
orators. Very few are made available publicly, although they
may be outlined in scientific publications in an experimental
methods section.

To evaluate the feasibility of our approach, we therefore
collected scientific workflows published in the literature as
well as examples of use of several scientific workflow systems,
such as myGrid [3] and Kepler [1]. We also obtained detailed
information about workflows that our collaborators in biology
were running. In this way, a total of thirty scientific workflows
were collected together with their runs. From this data, we
extractedpatternsof workflows (e.g., sequence, loop) [11],
and inferred statistics on their usage (e.g. the sequence pattern
is used four times more than the reflexive loop). Statistics
on runs, such as the average number of loop iterations, were
also inferred. We then generated simulated workflows by
combining patterns according to usage statistics, and produced
runs of these simulated workflows that reflect the statistics
inferred from real workflow runs. In this way, we were able
to generate realistic synthetic workflows and runs. We were
also able to gather information about characteristics of user
views (e.g. their size) from the collected workflow definitions.

In our approach, provenance reasoning is based on the log
files provided by workflow systems (e.g., [12], [13]). Our
experiments therefore do not measure the cost of provenance
tracking which produces the log files; rather, while varying
the class of workflow, runs, and user view, we measure the
cost of constructing user views and querying the provenance
warehouse, as well as determine how evolvable and interactive
our approach is.

A. Experimental setup

The experiments were performed on a Dell PowerEdge 1950
with 4GB RAM and 250GB disk space running Linux RedHat
Enterprise AS4.4. Oracle 10.g was used as the database system
and was allocated 1GB of memory.

Classes of workflows. Each class of workflow exhibits
particular pattern frequencies (sequence, loop etc.). Table I
describes these classes: Class 1 is the set of real workflows col-
lected, while Classes 2-4 are synthetic workflows. The settings
were based on the characteristics of real workflows collected

TABLE II

CLASSES OFRUNS

User Data Loop- Size
Kind input prod. by step iteration (Nodes

(range) (range) (range) -Edges)
Small 1-10 1-10 1-3 105-523

Medium 1-50 1-50 1-10 306-6406
Large 1-100 1-100 1-50 1153-41633

but are considerably more complex (e.g., no workflow that we
collected had as many loops and involved as many nodes as
those in Class 4).

Classes of runs. We also identified parameters that de-
termine the complexity of a workflow run, and used them
to generate different classes of runs, as shown in Table II.
These parameters were: the size of the run (small, medium,
and large); the amount of data given as input by the user (user
input), the amount of data generated by a step (data produced);
and the number of loop iterations. The “size” parameter of
Table II indicates the maximum number of nodes and edges
of the workflow runs.

User views. We used algorithm RelevUserViewBuilder to
create relevant user views. The choice of relevant modules
given as input to the algorithm was done both by hand
(using our experience from case studies and advice given by
biologists) as well as randomly. In our experiments, we call
the user views generated in the former case as UBio and
those generated in the latter case as UV. In the latter case, we
randomly chose a given percentage of modules in a workflow
to be relevant. Relevant modules were selected randomly 10
times for each percentage, and the percentage varied from 0
to 100 by steps of 10.

B. Experiments and results

The goal of our experiments is to evaluate: (i) the per-
formance of the RelevUserViewBuilder algorithm, (ii) the
benefit of user views when querying provenance, and (iii)
the interactive capability of our system. Benefit is measured
in terms of the size of the answer to a provenance query,
which should be as concise as possible while providing all
provenance information that is relevant to the user.

Experiments on RelevUserViewBuilder. In the following
two experiments, we have evaluated RelevUserViewBuilder by
running the algorithm on 1000, increasingly large, randomized
workflow specifications (100-2000 nodes).

Scalability.In our first experiment, we evaluated the scala-
bility of RelevUserViewBuilder. Each execution of the algo-
rithm took less than 80ms.

Optimality. In the second experiment, we evaluated the
“optimality” of RelevUserViewBuilder by increasing the per-
centage of relevant modules chosen and measuring the number
of relevant composite modules created. Recall that a lower
bound on the size of a user view is the number of relevant
modules, and that such a view is “optimal” in the sense that it
only contains relevant composite modules. Our results showed

Fig. 10. Size of query result

that adding one relevant class in a workflow creates only one
new composite class, meaning that RelevUserViewBuilder al-
gorithm does not frequently construct non-relevant composite
modules.

Experiments on querying provenance through user
views. Since querying provenance is affected more by the
size of the run than by the size of the specification, we used
specifications containing about 20 nodes, which is slightly
larger than the 12 node average of the real workflows collected,
and with more loops than found in practice in order to
complicate the runs (most collected workflows were linear).
By iterating over the loops many times we were able to
generate very large runs (see Table II).

We used two metrics to measure the cost of querying
provenance: The time to produce the query result and the
size of the query result. Size plays a crucial role since it
measures the difficulty of understanding the result provided,
and therefore the usability of the system. Using 10 workflows
in each of the 4 classes described in Table I, we created 30 runs
of each kind in Table II (small, medium and large), generating
3,600 runs in total. This corresponds to what would happen
in a large laboratory with 40 workflows, each of which is
executed about twice a week.

In the next two experiments described below, we used the
most expensive provenance query possible: the deep prove-
nance of the final output of the run. We also considered three
types of user views: UAdmin, in which each step class is
relevant (no composite modules); UBio, constructed from rel-
evant modules using RelevUserViewBuilder; and UBlackBox,
in which the entire workflow is in one composite class.

Conciseness of query result.Figure 10 shows the size of
the query result, i.e. the number of tuples returned in the deep
provenance of the final output of a run, while varying the
type of user view and runs (note that log scale is used for
the y-axis). Each bar represents a run of a particular kind
(run1, small; run2, medium; run3, large) of a workflow of a
particular class (Class1 through Class4, see Table I). In small
runs, an average of 24 data items are returned in UAdmin,
13 in UBio, and 5 in UBlackBox. In medium and large runs,

Fig. 11. Effect of view granularity on size of query result

UBio views are even better filters, yielding only 20% of the
data returned in UAdmin and an average of 22 times more data
than UBlackBox. Interestingly, Class4 workflows (with many
loops) benefit enormously from user views since iterations of
loops are frequently hidden (up to 90%).

Query response time. We tested various strategies to
implement the computation of deep provenance through user
views, including SQL views, stored procedures, and a variety
of indexes to optimize the query (details can be found in
[8]). The best results were obtained by the following strategy:
first compute UAdmin and then remove information hidden
within composite steps of the given user view. Using this
strategy, whatever the size of the user view, the response time
was dominated by the first step. Even when the result was
large, the query time was less than 30 seconds. On average,
answering queries for small runs took 23 milliseconds, queries
for medium runs took 213 milliseconds, and queries for large
runs took 1.1 seconds.

Interactive capability of ZOOM*UserViews. In the
next two experiments, we tested the interactive capability
of our system to respond to the need for finer provenance
information. We did this by measuring the cost of increasing
the percentage of relevant modules in a workflow in terms of
the query result size and response time. All kinds of runs, all
classes of workflows, and randomized user views were tested.
The deep provenance of the final output was used as the query.

Effect of view granularity on response time.We analyzed
the cost of switching user views while analyzing the prove-
nance of a given data-item, to show how the user can interact
with the system when trying to understand provenance. Recall
that to compute any user view UV provenance information, we
first compute UAdmin and then project out UV information. In
our system, when a query is executed on a given workflow run,
the UAdmin provenance information is stored in a temporary
table, and does not need to be recomputed when switching
the user view on the same workflow run. The results therefore
showed that on average it takes 13 msec to compute the prove-
nance for a different user view. The maximum computation
time was 1 sec for an execution in run4 with 90% of relevant
modules. Visualizing the results took longer: On average it
took 300 msec to show the provenance graph for a new user
view, and the maximum time was 2 sec.

Effect of view granularity on size of query result.Lastly,
Figure 11 shows how the size of the query result (i.e. the
number of rows) increases as a function of the percentage of
relevant modules in all workflows for small (run1), medium
(run2) and large runs (run3). Each point represents the average
size of the query result over 120,000 provenance queries over
runs of each of the four classes of workflows. Increasing the
percentage (and therefore number) of relevant modules in a
workflow increases the granularity of provenance information,
thereby allowing the user to see more provenance information.
Although not shown in this figure (which averages over
all classes of workflows), for Class4 workflows (loops) the
increase in size of the query result is more than linear. In
contrast to the experiment in Figure 10, in which relevant
modules were selected by hand, by randomly selecting them,
loops are much more likely to be seen as the size of composite
modules decreases.

VI. RELATED WORK

Provenance and annotations have been studied extensively
by the database community [7], [14], [10], [15], [16]. The
aim is to determine which tuples were used to generate the
answer to a query by exploiting the algebraic form of the
query and/or the relational or XML-like form of the data. In
contrast, transformations occurring in workflows are external
processes (black boxes), and the log files typically provide
only object ids. Provenance is more coarse-grained, and the
structure of data cannot be reasoned about.

Workflow systems have been developed in many domains,
e.g. business processes and e-commerce. Within the scientific
community they are used to conduct and manage experiments
(e.g. [1], [2], [17], [3]). Many of these systems record in-
formation about the processes used to derive intermediate
and final data objects from raw data, and can be classified
in terms of provenance along three axes: the level at which
information is recorded, the ability to create composite tasks,
and the ease with which provenance queries can be asked.
First, the level at which information is recorded varies from
a very low level, e.g. Condor [18] which is job-centric, to
higher levels e.g., Taverna, which stores and annotates runs
with semantic concepts [3], [13], and Kepler, in which it is
possible to track data flows and dependencies among actors,
tokens, and objects [1]. Survey of this work can be found
in [19]. Although many workflow systems differ in how they
record provenance, the majority attempt to provide the scientist
with the necessary tools to assess the quality of experimental
results and to improve the repeatability of such results [20].
Recent “provenance challenges” have been held to encourage
system designers to learn about the capabilities and expressive-
ness of each others’ systems and work toward interoperable
solutions [5]. Second, the ability to create composite tasks
(based on the ideas of Statecharts [21]) appears in many work-
flow systems: Kepler [1] allows composite actors, and Tav-
erna/myGrid [13] uses nested workflow processors/knowledge
view models. Third, workflow systems differ in the extent to
which they facilitate queries on the provenance information.

Some systems merely provide the user with XML or RDF
files containing the workflow definition and log information
associated with each run (e.g. [3], [1]). Others, like GridDB
[22] or Redux [23], incorporate workflow and data modeling
into the same system by using a workflow system on top of
a DBMS. For more information about the various layers of
a generic architecture dealing with provenance recording and
querying, see [24].

Work on modeling and querying information generated by
workflow systems has also appeared in the e-business domain.
While WQM [25] and BP-QL [26] provide query languages
for business processes, they do not address user views.

In [6], we introduced a simple model of provenance that was
used in the First Provenance Challenge [5]. We were able to
show that our model captured the necessary information for the
challenge queries, and that this information could be extracted
from the log file of the workflow systems participating in
the challenge. However, we did not provide an algorithm for
computing (relevant) user views.

The approach presented in the present paper is agnostic
as to the workflow system it supports. It can be used in
any workflow system that provides basic log-like information,
whether or not composition is available, and whether the
recorded information is provided as a file or is stored in
a DBMS. Our approach only requires a definition of the
workflow, and information about the objects consumed and
produced by steps in a workflow run.

Finally, there has been work on displaying workflow prove-
nance information (see [19]) and providing support for com-
parative visualization [27], neither of which provide prove-
nance information at various levels of user views. Furthermore,
the problem of constructing relevant user views cannot be
simply resolved by masking the graphical display of the
workflow since it will not ensure the precedence between
relevant composite modules in the possibly complex graph
structure of the workflow.

VII. C ONCLUSIONS

This paper presents an abstraction mechanism calleduser
viewsfor querying provenance information in workflows. The
technique is appropriate for any data-oriented workflow system
in which log-like information is collected at run time. We
present an algorithm (RelevUserViewBuilder) for constructing
a user view based on input from the user on what modules
they believe to be relevant. Our algorithm guarantees that the
view has one composite class for each relevant class, preserves
and is complete w.r.t. the dataflow between relevant modules,
and is minimal. We show the interaction between provenance
and user views, and argue that user views not only allow
users to visualize the workflow specification at a meaningful
level, but to see provenance information at an appropriate
level of detail. Our approach can be used in conjunction with
other composite module construction techniques used in cur-
rent workflow systems by either marking relevantcomposite
modules in the existing workflow specification, or by viewing
each composite module as itself being a workflow and marking

relevantatomic modules contained within it. To evaluate the
benefit of provenance through user views, we performed a
series of experiments and showed how our approach helps
users quickly focus on meaningful answers to provenance
queries.

Constructing user views is a very interesting problem, and
there are several directions of future work that we are pursuing
(see [8]). In particular, it is an open problem as to whether
there exists a polynomial time algorithm for producing a
“good” user view and guaranteeing a minimum solution. We
are currently exploring how to do this for “well-structured”
workflows such as those found in business processes (e.g.
BPEL [28]).

ACKNOWLEDGMENT

We would like to thank S. Cohen for her help in col-
lecting real scientific workflows, and S. Khanna for his help
in wrestling with the open problem of finding a minimum
solution.

REFERENCES

[1] S. Bowers and B. Ludäscher, “Actor-oriented design of scientific work-
flows,” in Int. Conf. on Concept. Modeling, 2005, pp. 369–384.

[2] I. Foster, J. Vockler, M. Wilde, and Y. Zhao, “Chimera: A virtual data
system for representing, querying, and automating data derivation,” in
SSDBM, 2002, pp. 37–46.

[3] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. Greenwood,
K. Carver, M. G. Pocock, A. Wipat, and P. Li, “Taverna: a tool for the
composition and enactment of bioinformatics workflows.”Bioinformat-
ics, vol. 20(1), pp. 3045–3054, 2003.

[4] C. B. Medeiros, J. Perez-Alcazar, L. Digiampietri, J. G.Z. Pastorello,
A. Santanche, R. S. Torres, E. Madeira, and E. Bacarin, “Woodss and
the web: annotating and reusing scientific workflows,”SIGMOD Rec.,
vol. 34, no. 3, pp. 18–23, 2005.

[5] L. Moreau, “The first provenance challenge.” 2006,
http://twiki.ipaw.info/bin/view/Challenge/.

[6] S. Cohen, S. Cohen-Boulakia, and S. Davidson, “Towards amodel of
provenance and user views in scientific workflows,” inData Integration
in the Life Sciences, ser. LNBI, vol. 4075. Springer, 2006, pp. 264–279.

[7] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom, “ULDBs:
Databases with Uncertainty and Lineage.” inVLDB, 2006, pp. 953–964.

[8] O. Biton, S. Cohen-Boulakia, and S. Davidson, “Queryingand managing
provenance through user views in scientific workflow systems,” in U. of
Penn., TR # MS-CIS-07-13, 2007.

[9] ——, “Zoom*UserViews: querying relevant provenance in workflow
systems,” inVLDB (demo), 2007.

[10] P. Buneman, A. Chapman, and J. Cheney, “Provenance management in
curated databases,” inSIGMOD, 2006, pp. 539–550.

[11] W. van der Aalst et al., “Workflow patterns initiative.” 2007,
http://www.workflowpatterns.com/.

[12] S. Bowers, T. M. McPhillips, B. Ludäscher, S. Cohen, and S. B.
Davidson, “A model for user-oriented data provenance in pipelined
scientific workflows.” inIPAW, ser. LNCS, vol. 4145. Springer, 2006,
pp. 133–147.

[13] J. Zhao, C. Wroe, C. Goble, R. Stevens, D. Quan, and M. Greenwood,
“Using semantic web technologies for representing e-science prove-
nance,” inISWC, 2004, pp. 92–106.

[14] D. Bhagwat, L. Chiticariu, W. Tan, and G. Vijayvargiya,“An annotation
management system for relational databases,” inVLDB, 2004, pp. 900–
911.

[15] P. Buneman, S. Khanna, and W. Tan, “Why and where: A characteriza-
tion of data provenance.” inICDT, 2001, pp. 316–330.

[16] Y. Cui and J. Widom, “Lineage tracing for general data warehouse
transformations,” inVLDB, 2001, pp. 471–480.

[17] R. Müller, U. Greiner, and E. Rahm, “Agentwork: a workflow system
supporting rule-based workflow adaptation.”Data Knowl. Eng., vol. 51,
no. 2, pp. 223–256, 2004.

[18] M. Litzkow, M. Livny, and M. Mutka, “Condor - a hunter of idle
workstations,” inProc. Conf. of Distributed Computing Systems, 1988.

[19] Y. Simmhan, B. Plale, and D. Gannon, “A survey of data provenance in
e-science.”SIGMOD Rec., vol. 34(3), pp. 31–36, 2005.

[20] R. Bose, I. Foster, and L. Moreau, “Report on the international prove-
nance and annotation workshop.”SIGMOD Rec., vol. 35(3), pp. 51–53,
2006.

[21] D. Harel, “Statecharts: A visual formalism for complexsystems.”
Science of Comp. Programming, vol. 8, pp. 231–274, 1987.

[22] D. Liu and M. Franklin, “GridDB: A data-centric overlayfor scientific
grids,” in VLDB, 2004, pp. 600–611.

[23] R. S. Barga and L. A. Digiampietri, “Automatic generation of workflow
provenance.” inIPAW, ser. LNCS, vol. 4145. Springer, 2006, pp. 1–9.

[24] S. Miles, P. Groth, M. Branco, and L. Moreau., “The requirements of
recording and using provenance in e-science experiments.”Journal of
Grid Computing, 2006.

[25] V. Christophides, R. Hull, and A. Kumar, “Querying and splicing of
xml workflows.” in Cooperative Inf. Systems, ser. LNCS, vol. 2172.
Springer, 2001, pp. 386–402.

[26] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo, “Querying business
processes,” inVLDB, 2006, pp. 343–354.

[27] J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Scheidegger, and
H. T. Vo, “Managing rapidly-evolving scientific workflows.”in IPAW,
ser. LNCS, vol. 4145. Springer, 2006, pp. 10–18.

[28] “BPEL. business process execution language for web services.”
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/.

