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Abstract: Reconciliation is the process of providing a consistent view of the data imported from different sources. De-
spite some efforts reported in the literature for providing data reconciliation solutions with asynchronous
collaboration, the challenge of reconciling data when multiple users work asynchronously over local copies
of the same imported data has received less attention. In this paper, we propose AcCORD, an asynchronous
collaborative data reconciliation model based on data provenance. AcCORD is innovative because it sup-
ports applications in which all users are required to agree on the data integration in order to provide a single
consistent view to all of them, as well as applications that allow users to disagree on the correct data value,
but promote collaboration by sharing updates. We also introduce different policies based on provenance for
solving conflicts among multiusers’ updates. An experimental study investigates the main characteristics of
the policies, showing the efficacy of AcCORD.

1 INTRODUCTION

Reconciliation is the process of providing a consis-
tent view of the data imported from different sources.
This problem has been widely investigated consider-
ing a single user, or multiple users working over a
single copy of the data (Köpcke et al., 2010; Cao
et al., 2013). However, the problem of reconciling
data when multiple users work asynchronously over
distinct copies of the data has received less attention.
In this context, users may collaborate by sharing their
decisions for solving data conflicts. However, they are
allowed to disagree on which are the correct values.
Thus, the goal of the reconciliation process can be to
provide a either single consistent view for all users,
or distinct views for each of them. That is, when data
conflicts are detected, it may be required that all users
agree on the correct data value in a collaborative in-
tegration process, or it may be allowed them to dis-
agree, but help each other by sharing their decisions.

Conventional data integration involves schema
and instance level integration. At the schema level
the goal is to solve structural heterogeneity (Nguyen
et al., 2011; Bhattacharjee and Jamil, 2012). Instance
level integration faces two major problems: entity res-
olution and conflict resolution. The first refers to the
problem of identifying data that refer to same object
in real world, and the latter, to the problem of solv-

ing conflicts among values provided from different
sources (Köpcke et al., 2010; Cao et al., 2013). In this
paper, we focus on the conflict resolution problem.

Integration processes are time-consuming and
usually involve manual intervention. Thus, when sev-
eral users import data from the same sources, or sub-
sets of these sources, share decisions and work col-
laboratively can be an interesting time-saving strat-
egy. Given that the collaborative work should not
interfere on each user integration process, a remote
synchronization upon each update (Kermarrec et al.,
2001) may not be convenient. Synchronous systems
are highly interactive, and prevent users from working
in a disconnected mode. Thus, for the sake of flexi-
bility, an asynchronous reconciliation is desirable for
several kinds of applications.

An asynchronous collaborative data reconciliation
is characterized by a high degree of independence,
in which users work autonomously, and are loosely
connected to each other at any given time. An exam-
ple of such a collaborative environment are e-health
systems. These systems enable collaborative treat-
ments among healthcare service providers, such as
physicians, hospitals and laboratories, which can au-
tonomously and independently curate, revise, and ex-
tend the shared data (Hossain et al., 2014). Other ap-
plication scenarios include data sharing and curation
in bioinformatics and bibliographical data.



The independence and asynchronicity of individ-
ual integration processes pose two main challenges.
First, how the conflict solving decisions are stored in
order to be exchanged among collaborators. That is,
in order to share their decisions, information on the
updates made by each user must be stored. Such in-
formation are called data provenance and consists of
a set of metadata that identify the data sources and
transformations applied to them, from their inception
to their current state (Cheney et al., 2009; Mahmood
et al., 2013). Second, it is possible that not all collab-
orators agree on their updates. Thus, we need to solve
conflicts among collaborators’ updates, mainly when
different collaborators take distinct decisions over the
same data conflict.

In this paper, we propose AcCORD
(Asynchronous COllaborative data ReconcIliation
moDel). AcCORD is an asynchronous model for
collaborative reconciliation in which each user’s
updates are kept in a repository of operations. Each
user has its own repository for storing the provenance
and his/her own copy of the sources. That is, when-
ever inconsistencies among imported sources are
detected, the user may autonomously take decisions
to solve them, and updates that are locally executed
are registered in his/her own repository. Updates are
shared among collaborators by importing each others
repositories. Since users may have different points
of view, repositories may also be inconsistent. Thus,
in this paper we also propose policies for solving
conflicts among repositories. Distinct policies can be
applied by different users in order to reconcile the
updates. Depending on the applied policy, the final
view of the imported sources may either be the same
for all users, that is, a single global integrated view,
or result in distinct local views for each of them.

1.1 Motivating Example

Consider a set of sources in the domain of biblio-
graphic data named after their owners, such as Anne,
Bruce and Eugene. Users U1, . . . ,Un are individually
integrating these sources, by keeping local copies of
the sources and updating them whenever conflicts on
overlapping data are detected.

Example 1. Consider user U1. After importing the
data, he/she notices that they disagree on the values
of attributes Final page, Year and Initial page of the
paper entitled “PrInt”, and decides that Eugene is the
most trustworthy source. Thus he/she copies (cp) its
Final page value (234 ) to source Bruce overwriting
the value 1365 and then from Bruce to Anne over-
writing the value 1352. These updates are stored in
repository R1 as depicted in Figure 1. In order to help

presenting the examples, we add to the repositories an
user identifier (column user) and an operation identi-
fier (column id).

user id op origin target key attribute origin target timestamp
source source value value

U1 1 cp Eugene Bruce Paper Final 234 1365 08:28:43
[Title=PrInt] page 03/18/2014

2 cp Bruce Anne Paper Final 234 1352 08:29:01
[Title=PrInt] page 03/18/2014

Figure 1: Repository R1 with user U1 decisions.

Here, we borrow the idea of data provenance
based on operations from the PrInt model (Tomazela
et al., 2013). However, our collaborative reconcili-
ation model is no limited to this specific operation-
based provenance model.

Later, U1 decides to manually edit (ed ) the value
of source Eugene, modifying the Final page to 235.
This causes a new record [id: 3, op: ed, origin source:
null, target source: Eugene, key: Paper[Title=PrInt],
attribute: Final page, origin value: 235, target value:
234, timestamp: 14:45:03 03/18;2014] to be ap-
pended to repository R1. Note that we may consider
the repository is now inconsistent, given that there
are two distinct values being written on Final page
of source Eugene. Since the repository reflects the
user’s decisions over time, its last operation is consid-
ered to contain the correct value, and previous deci-
sions can be reapplied by propagating the update to
both sources Bruce and Anne. These actions are re-
flected in the repository by rearranging and updating
it, as depicted in Figure 2. �

user id op origin target key attribute origin target timestamp
source source value value

U1 3 ed null Eugene Paper Final 235 234 14:45:03
[Title=PrInt] page 03/18/2014

1 cp Eugene Bruce Paper Final 235 1365 08:28:43
[Title=PrInt] page 03/18/2014

2 cp Bruce Anne Paper Final 235 1352 08:29:01
[Title=PrInt] page 03/18/2014

Figure 2: Consistent view of repository R1 after source Eu-
gene has been updated.

Now consider a set of users U1, . . . ,Un, each of
them importing the same set of sources and solving
data conflicts independently. Since they all agree to
collaborate, they exchange their updates by export-
ing their repositories R1, . . . ,Rn. Thus, each user Ui
has now access not only to his/her own repository Ri,
but can import into Ri the updates of all collaborators.
They can all benefit by applying the imported updates
on their own copies of the sources, and thus reducing
their workload in the integration process. However,
this can be done either if decisions made elsewhere
do not conflict with their own, or among collabora-
tors. If this is not the case, each of them has to decide
how to solve the conflict.



Example 2. Consider again user U1 and his/her
repository after importing collaborators’ repositories
U2, . . . ,U6, depicted in Figure 3. It shows how each
user decided on conflicts over attribute Final page of
Paper[Title=PrInt]. Observe that a time-based con-
flict resolution among multiple users working inde-
pendently may not be adequate in this context. In our
running example, if the latest decision were consid-
ered to be the correct one, we would pick U2’s, since
the records timestamps are the most recent. U2 con-
sidered the value provided by Bruce to be the correct
one, and thus this decision would also be propagated
to U1’s copies of the sources. However, this may not
be the intended action for user U1, who had locally de-
cided that source Eugene should prevail over Bruce.
�

user id op origin target key attribute origin target timestamp
source source value value

U1 1 cp Eugene Bruce Paper Final 234 1365 08:28:43
[Title=PrInt] page 03/18/2014

2 cp Bruce Anne Paper Final 234 1352 08:29:01
[Title=PrInt] page 03/18/2014

3 cp Bruce Anne Paper Year 2013 2012 08:29:17
[Title=PrInt] 03/18/2014

U2 1 cp Bruce Daniel Paper Final 1365 1358 13:41:47
[Title=PrInt] page 03/18/2014

U3 1 ed null Daniel Paper Final 1357 1358 12:24:55
[Title=PrInt] page 03/18/2014

2 cp Daniel Carl Paper Final 1357 1352 12:32:47
[Title=PrInt] page 03/18/2014

U4 1 cp Daniel Franklin Paper Final 1358 422 10:13:45
[Title=PrInt] page 03/18/2014

2 cp Daniel Gary Paper Final 1358 205 10:14:21
[Title=PrInt] page 03/18/2014

3 cp Franklin Hugo Paper Final 1358 335 10:15:42
[Title=PrInt] page 03/18/2014

U5 1 cp Bruce Gary Paper Final 1365 205 09:45:57
[Title=PrInt] page 03/18/2014

2 cp Gary Ivan Paper Final 1365 722 09:50:02
[Title=PrInt] page 03/18/2014

U6 1 cp Bruce Hugo Paper Initial 1353 323 07:25:56
[Title=PrInt] page 03/18/2014

Figure 3: Repository R1 with all users’ decisions.

1.2 Contributions

In a multiuser reconciliation process, policies, such
as based on voting or for giving priority to local de-
cisions, have to be introduced. More important, it is
necessary to have a generic model that can support
different scenarios, according to the intended result
among collaborative users. That is, they may want to
collectivity generate of a single integrated view to all
of them, or individually create distinct local views.

In this paper, we tackle these challenges, and
make the following contributions:

• We introduce AcCORD, an asynchronous model
of collaborative data reconciliation in which
users’ updates are stored in logs, called reposito-
ries. Repositories keep data provenance, that is,
the operations applied to the data sources that led
to the current state of his/her local database.

• We propose policies for solving possible con-
flicts resulting from an asynchronous collabora-
tive mulituser reconciliation process. These poli-
cies can target applications that generate an inte-
grated view or distinct local views as a result of
the collaborative work.

The paper is organized as follows. Section 2 re-
views related work, Section 3 introduces our proposed
model for collaborative work, Section 4 describes the
characteristics of the operations stored in the reposi-
tory, Section 5 details the proposed policies for mul-
tiusers reconciliation, Section 6 addresses the experi-
mental tests, and Section 7 concludes the paper.

2 RELATED WORK

Several techniques focusing on data sharing and data
integration or asynchronous reconciliation, have been
proposed in the literature (see for example the surveys
in (Saito and Shapiro, 2005; Halevy et al., 2006)).
In this section, we focus on the conflict resolution
problem on multiuser level and the definition of a
generic model that allows collaborative reconciliation
in which users may be allowed to agree or disagree
on their updates. We present the related work in two
groups: (i) related work aimed at multiuser reconcili-
ation in the database area; and (ii) related work aimed
at asynchronous reconciliation in the distributed sys-
tem area.

Orchestra (Taylor and Ives, 2006; Green et al.,
2007; Ives et al., 2008) is a work in first group. It
is a collaborative peer-to-peer system that uses prove-
nance to share data. It is similar to AcCORD in that
each user controls a local instance of the database
and can work independently for a certain period. It
also proposes a policy to reconcile conflicts among
imported data. This policy is based on trust among
data providers. It specifies that local conflicting op-
erations have higher priority than imported ones, but
does not specify how the providers’ trust are com-
puted. The main differences between Orchestra and
AcCORD is that the former only allows collaborative
users to share their updates. The single proposed pol-
icy does not necessarity make all database instances
converge to a consistent state, and it does not create
a global integrated view of the data. Thus, it does
not support data integration, as AcCORD does. Fur-
ther, Orchestra proposes only one policy to solve data
conflicts. In this paper, we introduce different rec-
onciliation policies, and AcCORD can support other
policies as well. Thus, AcCORD is more flexible, and
can be applied to different collaborative reconciliation
scenarios.



Youtopia (Kot and Koch, 2009) is a system for
collaborative integration of relational data. Unlike
our work, Youtopia manages conflicts among updates
from multiple users in a synchronous mode through
serializability and concurrency control techniques.
Also, Youtopia neither performs a provenance-based
integration, nor introduces support to different recon-
ciliation policies, as we propose in this work. Further-
more, both Orchestra and Youtopia, need the user’s
interference during the reconciliation process to de-
cide data conflicts not solved by their policies, unlike
AcCORD which applies the proposed policies to re-
solve all conflicts automatically.

PrInt (Tomazela et al., 2013) is a provenance
model that supports data integration conflict resolu-
tion at instance level. Its main objective is the strict re-
production of user’s decisions among distinct integra-
tion processes. These decisions are represented as op-
erations, which contain provenance data. PrInt stores
the operations in a repository and introduces the con-
cept of repository consistency for managing conflicts
in a single user level. Thus, it aims at data integration
processes performed by a single user, as opposed to
AcCORD, which focuses on several users performing
a collaborative reconciliation process. Here, we bor-
row some ideas from PrInt, such as the notions of op-
erations, repository and transitive and overlapping op-
erations. However, we extend these principles to sup-
port multiple users working asynchronously. Also,
we define a general model and different policies to
manage inconsistencies in this new context.

We now move on to discuss related work in the
second group, i. e. asynchronous collaboration in
the distributed system area. We analyze existing tech-
niques in a tandem, as they face the same limitations
when compared to our work.

IceCube (Kermarrec et al., 2001) does operation-
based reconciliation. It captures the static and dy-
namic reconciliation constraints between all pairs of
operations, proposes schedules that satisfy the static
constraints, and validates them against dynamic con-
straints. IceCube does not present algorithms to solve
conflicts, but tries to avoid them by scheduling opera-
tions, in a particular order.

Bayou (Edwards et al., 1997) is another operation-
based reconciler designed to support the construc-
tion of asynchronous collaborative applications. It
provides a replicated, shared and weakly-consistent
database. To this end, it supports conflict detec-
tion and resolution methods based on client-provided
merge procedures, and can rollback the effects of pre-
viously executed write operations and reapply them
according to a global serialization order. Bayou is not
as flexible as IceCube, but it addresses distribution is-

sues and provides a distributed infrastructure for col-
laboration.

Harmony (Pierce et al., 2004) is a state-based rec-
onciler for structured data, which considers only the
current version of the replicas, together with a version
of the last state they had in common. Harmony deals
with conflicts by allowing replicas to remain differ-
ent after reconciliation. By contrast, operation-based
reconcilers, as Bayou and IceCube, try to construct
a common sequence of operations. Therefore, they
deal with conflicts by omitting conflicting operations.
This approach always achieves a common final state,
but sometimes it backs out user changes.

Although IceCube, Bayou and Harmony focus on
asynchronous reconciliation and use logs to support
the process or allow copies to remain inconsistent for
a given period, which are features similar to those
adopted by AcCORD, the main objective of these
techniques differs from ours in the following way:
they present algorithms to find schedules that mini-
mize the number of conflicts among updates, or let the
conflict resolution up to the application. On the other
hand, we show in this paper how to reach reconcilia-
tion when multiusers wish to share their updates and
detail how conflict among operations can be solved.

3 AcCORD

We introduce AcCORD, an asynchronous collabora-
tive data reconciliation model. The scenario consid-
ered by AcCORD is depicted in Figure 4. In this
scenario, collaborative users U1, . . . ,Un reconcile data
imported from several data sources. Each user de-
cides how to solve attribute value conflicts on corre-
sponding objects according to his/her point of view
(Figure 4(a)). To this end, each user may apply tools
for helping the integration process and for storing
updates in a operation-based provenance repository.
As a result, each user produces a set of local views,
which are integrated versions of the sources, and a
repository, which contains provenance data composed
of a sequence of operations that reflect his/her up-
dates. As several collaborative users work on the
same sources, they maintain their own local views,
and the original sources are not updated.

After finishing the integration and provenance
process, a given user, say user U1, decides to reconcile
his/her updates with the updates of the other collabo-
rative users (Figure 4(b)), i.e. to perform a reconcili-
ation process considering multiuser updates, which is
the focus of our work. Note that we denote the pro-
cess performed by a single user as an integration pro-
cess, and the process performed by several users as a



reconciliation process, since the former always gen-
erate a single integrated view and the latter can gen-
erate the same integrated view to all users, or distinct
local views for each of them. The proposed recon-
ciliation process takes as input several sets of prove-
nance data, each one representing decisions that a sin-
gle user takes to solve inconsistencies among sources,
and produces as output a set of provenance data rep-
resenting the reconciliation of the updates of all users.
We call each input as “provenance data on single user
level”, and the output as “provenance data on mul-
tiuser level”.

The provenance data on multiuser level produced
by the reconciliation process depends on the data rec-
onciliation policy applied to solve conflicts among
users’ updates. It is used to update the repository of
operations of the user who is executing the reconcili-
ation, i.e. user U1 in our running example. In this pa-
per, we propose different policies to reconcile data in
a multiuser level, which are detailed in Section 5. The
collaborators may choose the same data reconciliation
policy or different reconciliation policies, depending
on intended final result. If the users are working col-
laboratively towards a unique integrated view of the
data then they should all share the same updates, and
thus apply the same data reconciliation policy. On the
other hand, when users want to share their particu-
lar updates, but wish to maintain their own view of
the reconciled data, each of them may apply distinct
data reconciliation policies. Additionally, a given user
may decide not to perform the multiuser reconcilia-
tion, working only in the single user level.

After updating the repository of operations, the
user may apply an operation-based provenance model
to update his/her local views according to the new
provenance data stored in the repository (Figure 4(c)).

Before introducing our reconciliation policies, we
detail in Section 4 some characteristics of the reposi-
tory and restrictions that apply over its operations.

4 OPERATIONS REPOSITORY

AcCORD is based on a repository of operations stor-
ing provenance data. Although other models can be
used, here we assume that repositories are sequences
of records containing the following attributes:

• op: operation that reflects a user decision in the
reconciliation process;

• originSource: source that provides the correct
value of an entity’s attribute.

• targetSource: source on which the attribute value
was updated by op;

• key: key value that identifies an entity;

• attribute: attribute name on which op is per-
formed;

• originValue: originSource’s attribute value;

• targetValue: targetSource’s attribute value before
being overwritten by originValue;

• timestamp: op execution time.

Operations in a repository may contain dependen-
cies in a single user level or in multiuser level. Def-
inition 1 details dependencies among operations on a
single user level. Here, we denote by r(a) the value
of attribute a in a record r.

Definition 1 (Dependencies among operations). An
operation b is dependent on an operation a when they
are performed by the same user, a occurred before b,
they involve the same attribute of the same object and
the target of a is equal to the origin of b. That is,

• a(targetSource, key, attribute) = b(originSource,
key, attribute) and a(timestamp) < b(timestamp).

Also, an operation c is dependent on an operation
a if there is an operation b that is dependent on a and
c is dependent on b. That is,

• a(targetSource, key, attribute) = b(originSource,
key, attribute), a(timestamp) < b(timestamp), and

• b(targetSource, key, attribute) = c(originSource,
key, attribute), and b(timestamp) < c(timestamp).

Intuitively, an operation b depends on a if the
value written by a is later used by b, propagating it
to other sources.

Example 3. In Figure 3, operation 2 performed by
U5 depends on operation 1 performed by the same
user. If U5 performs another operation 3 with the
values: [id: 3, op: cp, origin source: Ivan, target
source: John, key: Paper[Title=PrInt], attribute: Final
page, origin value: 1365, target value: 1366, times-
tamp: 09:53:26 03/18/2014], this new operation also
depends (by transitivity) on operation 1. �

Definition 2 details conflicting operations on mul-
tiuser level.

Definition 2 (Conflicting operations). Two opera-
tions a and b conflict when they are performed on the
same attribute of the same object, and if: (i) the tar-
get source of a is equal to the target source of b, or
(ii) the target source of a is equal to the origin source
of b. That is,

1. a(targetSource, key, attribute) = b(targetSource,
key, attribute), or

2. a(targetSource, key, attribute) = b(originSource,
key, attribute).
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Figure 4: The proposed AcCORD model.

Example 4. Consider again the example in Figure 3.
Operation 1 of U2 conflicts with operation 1 of U1 be-
cause origin source (Bruce) in the operation of U2 is
equal to target source of U1’s operation. Intuitively,
while U2 considers Bruce to have the correct value to
write on Daniel’s source, U1 overwrites Bruce’s value
with Eugene’s. Also, operation 1 of U2 conflicts with
operation 1 of U3 because the target source in both op-
erations are the same. Here, the conflict results from
the fact that U2 and U3 are writing distinct values on
the same data item. �

5 PROPOSED POLICIES

We propose four policies to reconcile data on a mul-
tiuser level. As described in Section 3, each policy
takes as input several sets of “provenance data on sin-
gle user level” generated by users U1, ...,Un and pro-
duces as output a set of “provenance data on multiuser
level”, which is used to update the repository of oper-
ations of the user that required the multiuser reconcil-
iation process.

The general procedure for sharing updates is as
follows. First, a user imports a set of “provenance

data on single user level” and cluster their operations
according to key and attribute. Then, clusters are an-
alyzed in order to detect inconsistencies. If the opera-
tions in a cluster conflict (Definition 2), these conflict-
ing operations and their dependent operations (Defi-
nition 1) may be maintained in the cluster, removed
from the cluster or updated, according to the chosen
policy. Otherwise, if the operations in a cluster do
not conflict, they remain in the cluster. After this pro-
cess, the operations that remained in the clusters rep-
resent the “provenance data on multiuser level”, and
now composes the new version of the user’s reposi-
tory of operations.

The policies differ from each other with respect
to the way they manage conflicting operations and
their dependent operations. We introduce these poli-
cies and discuss their features and applicability in the
following sections.

5.1 The LocalView Policy

The LocalView Policy is characterized by giving pri-
ority to updates made locally over those made else-
where. Thus, whenever imported updates conflict
with his/her own, they are simply ignored.

Consider, for example, that U1 is reconciling



his/her repository with those imported from users
U2, . . .U6. Conflicts in R1 after importing repositories
R2, . . . ,R6 are managed as follows. For each cluster, if
a given operation p performed by U2, ...,Un conflicts
with an operation o performed by U1, the policy re-
moves p from the cluster. Also, the policy removes
all dependent operations on p from the cluster.
Example 5. Consider repository R1 depicted in Fig-
ure 3. Figure 5 shows R1 after U1 applies the mul-
tiuser reconciliation process using the LocalView Pol-
icy. R1 does not contain operations from users U2, U3,
U4 and U5, as they conflict and thus are removed from
the cluster. Observe that U6’s operation is kept in the
repository since it is applied to a different attribute,
Initial page. �

user id op origin target key attribute origin target timestamp
source source value value

U1 1 cp Eugene Bruce Paper Final 234 1365 08:28:43
[Title=PrInt] page 03/18/2014

2 cp Bruce Anne Paper Final 234 1352 08:29:01
[Title=PrInt] page 03/18/2014

3 cp Bruce Anne Paper Year 2013 2012 08:29:17
[Title=PrInt] 03/18/2014

U6 1 cp Bruce Hugo Paper Initial 1353 323 07:25:56
[Title=PrInt] page 03/18/2014

Figure 5: Repository R1 after the reconciliation process us-
ing the LocalView Policy.

The operations represent decisions that the user
takes to solve inconsistencies, the LocalView Policy
should be used whenever he/she believes that local
decisions are more accurate than decisions made by
others. Also, this policy guarantees that the user de-
cisions will never be overwritten by other users deci-
sions. Thus, when collaborators decide to apply the
LocalView Policy, the local views for each them will
probably be different, as they might have taken differ-
ent decisions to solve the same conflict. This policy
is adequate for data sharing collaborative works.

5.2 The RemoveConflicts Policy

The RemoveConflicts Policy is characterized by not
prioritizing conflicting operations, independently of
the user that required the reconciliation process.

It manages conflicting operations and their depen-
dent operations as follows. For each cluster, the pol-
icy removes all the conflicting operations and their de-
pendent operations.
Example 6. Consider repository R1 depicted in Fig-
ure 3. Figure 6 shows repository R1 after U1 re-
quired the multiuser reconciliation process using the
RemoveConflicts Policy. R1 only contains operations
that do not conflict. �

The RemoveConflicts Policy removes all conflict-
ing operations and their dependent operations when-

user id op origin target key attribute origin target timestamp
source source value value

U1 3 cp Bruce Anne Paper Year 2013 2012 08:29:17
[Title=PrInt] 03/18/2014

U6 1 cp Bruce Hugo Paper Initial 1353 323 07:25:56
[Title=PrInt] page 03/18/2014

Figure 6: Repository R1 after the reconciliation process us-
ing the RemoveConflicts Policy.

ever it is not able to decide which conflicting opera-
tion is correct. These operations should be returned to
the collaborative users so that they can discuss about
the potential inconsistencies and agree on the inte-
grated values for the imported data. Provenance data
related to the integrated values should be appended to
U1’s repository of operations. Thus, this policy should
be used to postpone the decision on which is the value
to be kept in the local database, aiming at generat-
ing a single global integrated view to all users. Also,
when the collaborative users decide to apply the Re-
moveConflicts Policy, the local views of each user will
eventually be the same.

5.3 The Timestamp Policy

The Timestamp Policy is characterized by prioritizing
the temporal order of conflicting operations.

It manages conflicting operations and their depen-
dent operations as follows. For each cluster, the pol-
icy chooses to keep in the cluster the most recent con-
flicting operation, i.e. the conflicting operation o that
has the largest timestamp. The policy also keeps in
the cluster all dependent operations on o. Each re-
maining conflicting operations p in the cluster are
managed according to its conflict type. If the conflict
between o and p occurs because the origin source of
p is equal to the target source of o, the value of origin
value of p and its dependent operations are changed to
the same value of origin value of o. These updated op-
erations are also moved to the end of all clusters. Oth-
erwise, if the conflict between o and p occurs because
the origin source of o is equal to the target source of
p, or, the target source in both operations are equal,
then operation p is removed from the cluster, since it
cannot be redone. As for the dependent operations on
p, they are updated such that their originValue are set
to the same value of origin source of o, and they are
moved to the end of all clusters.
Example 7. Consider repository R1 depicted in Fig-
ure 3. Figure 7 shows repository R1 after U1 required
the multiuser reconciliation process using the Times-
tamp Policy. The operation with the largest timestamp
is that performed by U2; therefore, operation 1 of U2
is kept in the repository. As for the other users, oper-
ation 1 of U1 conflicts with operation 1 of U2 because
target source in the operation of U1 is equal to ori-



gin source in U2’s operation. Thus, operation 1 of
U1 is removed from the repository and its dependent
operation 2 is updated and moved to the end of the
repository. Operation 3 of U1 does not conflict with
any other, and remains in the repository. Also, opera-
tion 1 of U3 conflicts with operation 1 of U2 because
the values of target source in both operations are the
same. Thus, operation 1 of U3 is removed and its de-
pendent operation 2 is updated and moved to the end
of the repository. Further, operations 1 and 2 of U4
conflicts with operation 1 of U2 because origin source
in the U4’s operations are equal to target source in the
operation of U2. Thus, operations 1, 2 and the depen-
dent operation 3 of U4 are updated and moved to the
end of the repository. Finally, operations of U5 do not
conflict with operation 1 of U2 and operation of U6
does not conflict with any other. Operations of both
users compose the repository R1. �

user id op origin target key attribute origin target timestamp
source source value value

U1 3 cp Bruce Anne Paper Year 2013 2012 08:29:17
[Title=PrInt] 03/18/2014

U2 1 cp Bruce Daniel Paper Final 1365 1358 13:41:47
[Title=PrInt] page 03/18/2014

U5 1 cp Bruce Gary Paper Final 1365 205 09:45:57
[Title=PrInt] page 03/18/2014

2 cp Gary Ivan Paper Final 1365 722 09:50:02
[Title=PrInt] page 03/18/2014

U6 1 cp Bruce Hugo Paper Initial 1353 323 07:25:56
[Title=PrInt] page 03/18/2014

U1 2 cp Bruce Anne Paper Final 1365 1352 08:29:01
[Title=PrInt] page 03/18/2014

U3 2 cp Daniel Carl Paper Final 1365 1352 12:32:47
[Title=PrInt] page 03/18/2014

U4 1 cp Daniel Franklin Paper Final 1365 422 10:13:45
[Title=PrInt] page 03/18/2014

2 cp Daniel Gary Paper Final 1365 205 10:14:21
[Title=PrInt] page 03/18/2014

3 cp Franklin Hugo Paper Final 1365 335 10:15:42
[Title=PrInt] page 03/18/2014

Figure 7: Repository R1 after the reconciliation process us-
ing the Timestamp Policy.

The Timestamp Policy maintains the most recent
update made by any user, i.e. the conflict operation
that has the most recent timestamp. It is motivated by
the same principle adopted by several commercial and
non-commercial systems, such as Google Docs1 and
Wikipedia2. This policy should be used to generate a
single global integrated view. Also, when the collabo-
rative users decide to apply the Timestamp Policy, the
local views of each user will be eventually the same.

5.4 The Voting Policy

The Voting Policy is characterized by maintaining the
conflicting operation that reflects the majority of de-
cisions.

1Google Inc., https://www.google.com
2Wikimedia, http://www.wikipedia.org/

It manages conflicting operations and their depen-
dent operations as follows. For each cluster, the pol-
icy counts how many users have chosen the same ori-
gin value for a conflicting attribute. The operations
whose origin value was chosen by the majority repre-
sent the winning operations and are kept in the cluster.
All operations dependent on them are also kept in the
cluster. Similar to the Timestamp Policy, each remain-
ing conflicting operation p in the cluster is managed
according to its conflict type. If the conflict between p
and any operation belonging to the winner group, say
operation o, is because the origin source of p is equal
to the target source of o, the value of origin value of p
and its dependent operations are changed to the same
value of origin value of o. These updated operations
are also moved to the end of all clusters. Otherwise,
if the conflict between p and any operation belonging
to the winner group occurs because the origin source
of o is equal to the target source of p, or, the target
source in both operations are equal, operation p is re-
moved from the cluster, since it is not possible to redo
the operation. As for the dependent operations on p,
they are updated such that their origin value are set to
the same value of origin source of any operation from
the winner group, and moved to the end of all clus-
ters. If there is no winner, all conflicting operations
and their dependent operations are removed from the
cluster.

Example 8. Consider repository R1 depicted in Fig-
ure 3. Figure 8 shows repository R1 after U1 required
the multiuser reconciliation process using the Voting
Policy. The winning operations are operation 1 of U2
and operation 1 of U5. These two operations, together
with operation 2 of U5, which is dependent of opera-
tion 1 of U5, are kept in the repository. R1 does not
contain operation 1 of U1 as it was removed from the
repository because it conflicts with operation 1 of U2
and with operation 1 of U5 (its target source is equal
the origin source in both operations). On the other
hand, the dependent operation 2 of U1 is updated and
moved to the end of the repository. Operation 3 of
U1 is maintained in the repository because it is not a
conflicting operation. Also, operation 1 of U3 was re-
moved from the repository because it conflicts with
operation 1 of U2 (its target source are equal). Its de-
pendent operation is updated and moved to the end
of the repository. Further, operation 1 of U4 conflicts
with operation 1 of U2. So, this operation and its de-
pendent operation 3 are updated and moved to the end
of the repository. Operation 2 of U4 conflicts with op-
eration 1 of U2 (its origin source is equal the target
source in operation 1 of U2), thus its origin value is
set to the same value of origin value of U2’s operation
1, and it is moved to the end of the repository. �



user id op origin target key attribute origin target timestamp
source source value value

U1 3 cp Bruce Anne Paper Year 2013 2012 08:29:17
[Title=PrInt] 03/18/2014

U2 1 cp Bruce Daniel Paper Final 1365 1358 13:41:47
[Title=PrInt] page 03/18/2014

U5 1 cp Bruce Gary Paper Final 1365 205 09:45:57
[Title=PrInt] page 03/18/2014

2 cp Gary Ivan Paper Final 1365 722 09:50:02
[Title=PrInt] page 03/18/2014

U6 1 cp Bruce Hugo Paper Initial 1353 323 07:25:56
[Title=PrInt] page 03/18/2014

U1 2 cp Bruce Anne Paper Final 1365 1352 08:29:01
[Title=PrInt] page 03/18/2014

U3 2 cp Daniel Carl Paper Final 1365 1352 12:32:47
[Title=PrInt] page 03/18/2014

U4 1 cp Daniel Franklin Paper Final 1365 422 10:13:45
[Title=PrInt] page 03/18/2014

3 cp Franklin Hugo Paper Final 1365 335 10:15:42
[Title=PrInt] page 03/18/2014

2 cp Daniel Gary Paper Final 1365 205 10:14:21
[Title=PrInt] page 03/18/2014

Figure 8: Repository R1 after the reconciliation process us-
ing the Voting Policy.

The Voting Policy is motivated by the fact that if
the majority of users trust on a determined attribute
value, then this value seems to be the correct one, and
should be adopted as such. When it is not possible to
decide which is the correct value of an attribute, then
the conflicting operations removed from the clusters
should be returned to the collaborative users, similarly
to the discussion in Section 5.3. Finally, the use of
the Voting Policy by all collaborative users represents
an integration scenario, in which all local views will
eventually be the same.

6 PERFORMANCE EVALUATION

AcCORD and its reconciliation policies were vali-
dated through performance tests using real data ex-
tracted from 4 curricula of researchers who work for
the Department of Computer Science of the Univer-
sity of São Paulo at São Carlos. These curricula were
chosen because they had a large number of publica-
tions in common.

The size of the data sources amounts to 3.11 MB.
The largest curriculum had 1.20 MB and contained 25
objects, while the smallest had 238 KB and contained
3 objects. Each object had the following attributes:
title, year, venue, local of publication, language, me-
dia, type of publication, pages, ISSN, volume, num-
ber, 6 attributes for keywords, and the authors of the
publication, which were composed of the attributes
name, citation name and citation order.

To aid the user in the integration and provenance
process, we used the original implementation of PrInt
described in Section 2. Each user interacted with
PrInt to integrate imported data from the curricula and
to generate his/her own repository with copy, edit, re-

move and insert operations, which reflected the user’s
decisions. The attributes of provenance stored in each
repository followed those defined in Section 4. The
largest repository had 390 KB and contained 749 op-
erations, while the smallest repository had 40 KB and
contained 79 operations.

The prototype of AcCORD was implemented in
C++ using Qt version 4.6.2 and compiled with GNU
g++ version 4.4.3. The experiments were conducted
on a computer with an Intel Core 2 Duo 2.93 GHz
processor and 4 GB of main memory.

The experiments consider a collaborative recon-
ciliation work performed by several users, and that
user U1 imports the sets of “provenance data on sin-
gle user level” from other users, and applies a rec-
onciliation policy. We report the effects of managing
conflicting operations to the repository R1, which is
the repository of U1. The goal of the experiments is
to investigate the effects of adopting of each policy re-
garding: (i) the total number of operations removed,
which may cause loss of user decisions; (ii) the effect
of increasing the number of collaborators (iii) the ef-
fect of each policy in removing operations performed
locally, reflecting losses of the user’s own decisions.

In Section 6.1 we report the results when U1 ap-
plies the reconciliation process for the first time. Sec-
tion 6.2presents the results when U1 applies the rec-
onciliation process several times consecutively.

6.1 First Reconciliation Process

In this experiment, we varied the number of collabo-
rative users from 2 to 16. For each scenario, we con-
sidered that U1 required the reconciliation process for
the first time. Thus, repository R1 always contains
only the operations of U1’s first integration process,
i.e. R1 does not contain operations related to any pre-
vious reconciliation process.

Figure 9 depicts: (i) the total number of opera-
tions stored in R1 after U1 imported all sets of prove-
nance data, but before applying a reconciliation pol-
icy; and (ii) the number of operations in R1 after
executing the reconciliation process, whith each of
the proposed policies. The results demonstrated that
the RemoveConflicts Policy and the Voting Policy re-
moved more operations than the other policies. Also,
they had the same behavior. The result obtained for
the RemoveConflicts Policy was expected, as it re-
moves all conflicting operations, but the result ob-
tained for the Voting Policy was unexpected. How-
ever, by analyzing the sources, we identified that there
were no winners for any set of conflicting operations.
In such a situation, the Voting Policy has the same be-
havior as the RemoveConflicts Policy.



Figure 9: Number of operations of all users considering
each proposed policy.

Figure 10 depicts: (i) the initial number of opera-
tions in R1 after U1 imported all sets of provenance
data, but before U1 applied a reconciliation policy;
and (ii) the number of operations from U1 removed
from R1 after the reconciliation process. The goal of
this is to show the loss of changes made by the local
user U1. As expected, the LocalView Policy did not re-
move any operation. The Timestamp Policy removed
an average number of U1’s operations, as this policy
is able to update and keep some conflicting opera-
tions and the ones dependent on them. For the some
reason reported in previous experiments, the Remove-
Conflicts Policy and the Voting Policy had the same
behavior, removing a larger number of U1’s opera-
tions.

Figure 10: Number of operations of user U1 applying each
proposed policy.

6.2 Several Consecutive Reconciliation
Processes

For all tests described in this section, we fixed the
number of collaborative users to 4. We consid-
ered that U1 executed the reconciliation process 5
times consecutively. Thus, in reconciliation process
1, at time t1, R1 contains operations of repositories
R1, . . . ,R4; in reconciliation process 2 at time t2, R1
contains operations of repositories R1, . . . ,R4, such
that these repositories also contain the new operations
generated from time t1 to t2; and so on.

Figure 11 depicts the number of operations stored
in R1 before and after applying each policy. The re-
sults show that the Timestamp Policy provides the best
results, as it removes the smallest number of conflict-
ing operations after each reconciliation process. The
LocalView Policy removed an average number of op-
erations, while the RemoveConflicts Policy and the
Voting Policy have the same behaviour and remove
more operations that the other policies. The results
also show that for all policies, even for the Remove-
Conflicts Policy and the Voting Policy, the size of the
repository grows after the execution of each new rec-
onciliation process. For example, consider the Times-
tamp Policy. Before the first reconciliation process
there were 1417 operations, and at the end of the
fifth process, the repository contained 2445 opera-
tions. The difference represents the contribution other
users made to U1’s work in the reconciliation process.
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Figure 11: Number of operations stored in R1 before and
after each reconciliation process by each proposed policy.

We next report the effect of each policy, consider-
ing only the local operations of U1. The results, de-
picted in Figure 12, are similar to those discussed for
Figure 10: the LocalView Policy did not remove any
operation, the Timestamp Policy removed an average
number of operations, and the RemoveConflicts Pol-



icy and the Voting Policy removed the largest number
of operations.
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Figure 12: Number of operations of U1 applying each pro-
posed policy.

As in all previous tests, the RemoveConflicts Pol-
icy and the Voting Policy showed the same behav-
ior. Thus, in order to determine how they differ, we
considered a new scenario with only 3 collaborative
users. Figure 13 depicts the number of operations of
U1 stored in R1 before and after applying each policy
after 5 consecutive reconciliation processes. The re-
sults show fewer number of removals for the Voting
Policy. The first reconciliation process starts with op-
erations 1338 for both policies, while the fifth strats
with 1788 for the RemoveConflicts Policy and 2286
for the Voting Policy. At the end of the fifth process,
R1 contained 1084 operations applying the Remove-
Conflicts Policy and 1909 applying the Voting Policy.
This result was achieved because there were winning
operations among conflicting operations considering
the Voting Policy.

7 CONCLUSIONS

In this paper, we focus on the challenge of reconcil-
ing data when multiple users work asynchronously
over local copies of the same imported data. Our
contributions are twofold. First, we propose Ac-
CORD, an asynchronous collaborative data reconcil-
iation model, and second, we introduce reconcilia-
tion policies for solving conflicts resulting from mul-
tiusers’ updates. We base our proposals on the fol-
lowing major concepts: (i) data provenance, which
represents decisions that the users take to solve con-
flicts on imported data; (ii) repository, which works
as a log and stores data provenance as operations; and
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Figure 13: Number of operations stored in R1 before and
after each reconciliation process by RemoveConflicts and
Voting policies.

(iii) flexibility, by supporting applications in which all
users are required to agree on the integration process
for providing a single consistent view to all of them,
as well as applications that allow users to disagree on
the correct data value, but promote collaboration by
sharing updates.

AcCORD can be applied to several kinds of ap-
plications characterized by a high degree of indepen-
dence, in which users work autonomously, and are
loosely connected to each other at any given time.
Examples of such applications include e-health sys-
tems, curation in bioinformatics and data sharing in
bibliographical data. Another advantage of AcCORD
refers to its extensibility, since it does not consider
any particular integration or operation based prove-
nance model. Thus, users are free to choose tools at
their convenience, and still be able to apply AcCORD
to collaboration among them.

Our work highlights the need for different rec-
onciliation policies to be available when users per-
form asynchronous collaborative data reconciliation.
The proposed policies target either applications that
allow an integrated view or distinct local views of
the collaborative work. Experiments have been con-
ducted to analyze the proposed policies considering
both a single reconciliation process and several con-
secutive processes. The results obtained showed the
main characteristics of the policies in terms of man-
aging conflicting users’ decisions.

The RemoveConflicts Policy removed the largest
number of operations, as expected. Because of the
tests input data, the Voting Policy presented the same
worst case behavior as the RemoveConflicts Policy
in all experiments, except the last. In the last test,
considering a scenario with 3 users, the Voting Pol-



icy managed to have winning operations, and showed
better results in terms of number of removals, than
the RemoveConflicts Policy. The Voting Policy re-
moved from 30.7% to 58.1% less operations than the
RemoveConflicts Policy. Also, The Timestamp Policy
removed the smallest number of operations. The Lo-
calView Policy showed average results, by removing
operations in conflict with local operations instead of
managing and reusing them.

The results presented in this paper show the effi-
ciency of AcCORD, as they corroborate the hypoth-
esis that collaborative data reconciliation can provide
gains for the local user, saving him/her from part of
the work already done by other users. These gains ex-
ist even when the number of concurrent users on the
same sources grow increasing the number of conflicts.

We are currently extending AcCORD with new
reconciliation policies, such as a policy based on the
confidence of sources and one based on the history
of user’s updates. We also plan to investigate how to
improve the feedback given to the collaborative users
when the reconciliation policies identify conflicting
decisions.
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