
A Flexible Network Monitoring Tool Based on a
Data Stream Management System

Natascha Petry Ligocki, Carmem S. Hara
Departamento de Informática

Universidade Federal do Paraná
Curitiba-PR, Brazil

{ligocki,carmem}@inf.ufpr.br

Christian Lyra
Ponto de Presença

Rede Nacional de Ensino e Pesquisa
Curitiba-PR, Brazil
lyra@pop-pr.rnp.br

Abstract

Network monitoring is a complex task that generally
requires the use of different tools for specific purposes.
This paper describes a flexible network monitoring tool,
called PaQueT, designed to meet a wide range of moni-
toring needs. The user can define metrics as queries in a
process similar to writing queries on a database manage-
ment system. This approach provides an easy mechanism to
adapt the tool as system requirements evolve. PaQueT al-
lows one to monitor values ranging from packet level met-
rics to those usually provided only by tools based on Net-
flow or SNMP. PaQueT has been developed as an extension
of Borealis Data Stream Management System. The first ad-
vantage of our approach is the ability to generate measure-
ments in real time, minimizing the volume of data stored;
second, the tool can be easily extended to consider several
types of network protocols. We have conducted an experi-
mental study to verify the effectiveness of our approach, and
to determine its capacity to process large volumes of data.

1 Introduction

Nowadays, data distribution via computer networks is of
paramount importance. It is used not only for commercial
purposes, but also for personal use. As a consequence, the
quality of a network, including the Internet, is a crucial fac-
tor in day-to-day life. Network problems can have a great
impact in every type of service, causing problems in several
applications, ranging from difficulties in a research lab to
complete chaos in stock market and air traffic control. In
many applications, the network is expected to be constantly
available, and complaints from end users about lack of con-
nection and delays are not uncommon. Another factor that
causes apprehension is the vulnerability of the system to
network attacks.

Network administrators rely on data provided by mon-
itoring tools [21] to prevent and identify problems such as
bottlenecks, bad distribution of resources, misconfiguration,
and potential threats to the system security. As an example,
the administrator may use TCPDump [20] for testing a fire-
wall or to trace a specific traffic once a problem is identi-
fied. In order to characterize traffic flow he may use tools
based on Netflow[11], Sflow[18] and SNMP[9]. Typically,
in order to accomplish his tasks, the administrator has to
master several tools, each of them for a specific purpose. It
would be helpful if a single tool were able to generate mea-
surements based on several protocols through an integrated
interface. This would facilitate the task of monitoring and
minimize the amount of training required from the admin-
istrators.

This paper presents a network monitoring tool called Pa-
QueT (Packet Query Tool), which has been designed to
cover a wide range of monitoring needs. It has been im-
plemented as an extension of Borealis Data Stream Man-
agement System (DSMS)[3]. PaQueT’s primary goals are
flexibility and extensibility. Flexibility is achieved by al-
lowing the user to determine which metrics he/she is inter-
ested in by defining a query. This process is similar to writ-
ing queries on a database management system, but differs
on the type of data processed: instead of considering stored
data, it processes streams of packets in a network. The ex-
pressive power of the language is similar to SQL, the stan-
dard query language for relational databases. As a conse-
quence, the administrator may define queries for obtaining
not only data that are frequently provided by network snif-
fers, but also refined data such as the number of TCP/UDP
packets by port in a given time frame, or the top-k source or
destination addresses in a local network.

This approach of defining measurements as queries fa-
vors reusability. Network administrators often develop
scripts for monitoring special scenarios of network traffic.
These scripts, usually developed in Perl, are difficult to

reuse. Moreover, maintaining existing scripts is a hard task,
since they are not easy to understand and have poor doc-
umentation. In PaQueT, modifications and improvements
can be easily made on the fly by just executing a different
query. Another advantage of our approach is the fact that
query results are generated in real time, and do not require
packets to be locally stored to be processed.

Another key factor of PaQueT is extensibility. In its cur-
rent implementation, PaQueT has been designed to monitor
a local network, by sniffing packets. Nevertheless, the tool
can be easily extended to monitor a backbone, by receiving
a flow of Netflow records or SNMP data. Thus, the tool can
provide a general framework for monitoring a network, in
which the administrator express queries to gather measure-
ments in both local and wide area networks using the same
language, and without requiring any local storage.

It is important to notice that some of the advantages the
tool provide are consequences of the fact that PaQueT has
been implemented on top of Borealis. However, a DSMS
cannot be considered a network monitoring tool by itself.
Thus, the main contribution of this paper is the development
of an extension to Borealis DSMS to provide a flexible net-
work monitoring tool. We have conducted an experimental
study to verify the effectiveness of our approach, and also to
determine its capacity for handling large volumes of data.

The rest of this paper is organized as follows: in Sec-
tion 2 DSMSs and some related work are presented. The
following section describes Borealis DSMS, the extensions
required for developing a network monitoring tool, and the
architecture of PaQueT. Section 4 reports the results of our
experimental study. Section 5 concludes the paper present-
ing some future work.

2 Data Stream Management Systems

Data Stream Management Systems (DSMSs) were de-
signed to provide the same functionality as Database Man-
agement Systems (DBMSs), but applied to continuous data
flows (streams). The main feature of these systems is their
ability to provide results in real time, without requiring data
to be locally stored. This is particularly useful for network
monitoring. However, when the flow rate exceeds the pro-
cessing capacity of the system, the results may be less pre-
cise. Several DSMSs [12, 1, 5, 10, 6, 3] have been proposed
in the literature in the last few years.

The main difference between DBMSs and DSMSs is re-
lated to how data and queries are handled [16]. DBMSs
work with static data and dynamic queries, while DSMSs
work with dynamic data and static queries. That is, tra-
ditional databases apply different queries on the same set
of data; on the other hand, DSMSs apply the same queries
on streaming (dynamic) data. A more detailed discussion
about stream processing can be found in [22]. Most work

on DSMSs are recent, and the majority of these systems are
prototypes. Some applications have been developed on top
of these prototypes. In [19] a comparative study between
the functionality of TelegraphCQ DSMS [10] and T-RAT
[24], a tool for network dynamics analysis, is presented.
Other study cases include the use of Borealis DSMS in a
multi-user game [4], and in a sensor network [2]. Signifi-
cant results have also been obtained by a commercial DSMS
called Gigascope [12]. It has been shown that Gigascope
presents several advantages in comparison with other well
known tools for network monitoring like Netflow [11].

Most of previous work either implements a specific ap-
plication, or compares its functionality and performance
with other network monitoring tools. In contrast, in this pa-
per we propose an extension to Borealis DSMS in order to
provide a flexible monitoring tool. Borealis is open-source,
and, to the best of our knowledge, it is the only distributed
DSMS currently available. To support a distributed archi-
tecture, it provides fault tolerance mechanisms, distributed
processing, scalability, load balancing, and load shedder fa-
cilities [4]. These features are extremely important for im-
proving its performance, especially for data capture, given
that targeted applications often have distributed input data
sources.

3 PaQueT - A Network Monitoring Tool

In this section we first describe how typical Borealis ap-
plications are developed in order to motivate the extensions
to the system incorporated by PaQueT. Then we describe
the tool architecture, and some implementation details.

3.1 Borealis Applications

We will illustrate how an application is developed us-
ing Borealis DSMS, considering the following query: “how
many UDP and TCP packets passed in a network interface
considering time frames of 60 seconds”. First, an XML doc-
ument containing the description of input and output data is
defined. Both input and output data consist of a stream of
records, where each record is defined as a sequence of ele-
ments. This is illustrated in Figure 1. The input schema,
called PacketTuple (Lines 1 to 29) contains Ethernet
and IP headers and an element for each field in TCP and
UDP packet headers. In Figure 1 some of the fields were
omitted for simplification. For each field it is given a name,
a type, and optionally a size. The output schema, denoted
as AggregateTuple (Lines 30 to 34), contains fields for
storing the result of the query: ip p field, which contains
the name of the protocol (“tcp” or “udp”), a timestamp
of the result generation, and the number of packets in the
time frame (numPackets).

2

1. <schema name=“PacketTuple” >
2. <field name=“timestamp” type=“int” />

3. <field name=“ether dhost” type=“string” size=“6” />
4. <field name=“ether shost” type=“string” size=“6” />
5. <field name=“ether type” type=“string” size=“1” />

6. <field name=“ip vhl” type=“string” size=“1” />
...

12. <field name=“ip p” type=“string” size=“4” />
...

15. <field name=“ip dest” type=“string” size=“4” />

16. <field name=“tcp sport” type=“int” />
...

24. <field name=“tcp urp” type=“string” size=“2” />

25. <field name=“udp sport” type=“int” />
...

28. <field name=“udp sum” type=“int” />
29. </schema>

30. <schema name=“AggregateTuple”>
31. <field name=“ip p” type=“string” size=“4” />
32. <field name=“timestamp” type=“int” />
33. <field name=“numPackets” type=“int” />
34. </schema>

Figure 1. Input and output schema definition.

Figure 2. Example of a query diagram.

Next, the user defines a query to obtain the expected re-
sult. This can be done using either a graphical interface
called Borealis Graphical User Interface (Borgui), as illus-
trated in Figure 2, or directly by an XML file as shown in
Figure 3. Some portions of the file were omitted for sim-
plification. In Borgui, queries are defined by boxes, rep-
resenting operators, and by arrows, representing data flow.
Operators supported by Borealis include relational algebra
operators such as selection, projection, join, and union, as
well as aggregation operators such as count, sum, and av-
erage. User defined operators can also be defined. Time
frames are defined based either on units of time or on the
amount of input data. In the example of Figure 2, a union
operator combines the input data of all monitoring points; a
filter (or selection) operator drops packets that are not TCP
or UDP, and an aggregation operator counts the number of
packets of each type sniffed in the last 60 seconds. Given a
query in its graphical format, it is translated to a query ex-
pressed in XML. The query in Figure 3 expresses the same

query of Figure 2, but applied to only one monitoring point.

XML documents containing both input/output schema
and the query are given as input to Marshal, a tool pro-
vided by Borealis which generates code to marshal data be-
tween applications and Borealis. In our running example,
the application is a C++ program for sniffing packets and
breaking them down into fields in the input schema. The
marshalling code generated by Borealis are C++ function
interfaces to send and receive data from a Borealis engine,
both as streams of records, as defined by the input/output
schema. After compiling both the C++ application program
and the marshaling code, the query can be executed by a
Borealis stream processing engine.

1. <borealis>
2. <input stream=“Packet” schema=“PacketTuple” />
3. <output stream=“Aggregate”

schema=“AggregateTuple” />

4. <query name=“NumPacketsUdpTcp” >
5. <box name=“Filter” type=“filter” >
6. <in stream=“Packet” />
7. <out stream=“Filter” />

8. <parameter name=“expression.0”
value=“ip p=’tcp’ || ip p=’udp’” />

9. </box>

10. <box name=“Counter” type=“aggregate” >
11. <in stream=“Filter” />
12. <out stream=“Aggregate” />

13. <parameter name=“aggregate-function.0”
value=“count()” />

...
23. </box>
24. </query>
25. </borealis>

Figure 3. An XML query representation.

There are two major drawbacks for applying Borealis
as a network monitoring tool: first, the need for defining
both the input and output schema of queries registered in
the system; and second, new queries require coding pieces
of C++ code and compilation of the program. In this paper,
we present PaQueT, an extension of Borealis DSMS that al-
lows users to define arbitrary queries on streams of packets
with dynamic stream connections. This facility enables Pa-
QueT to be used by technicians without programming skills.
Moreover, since network protocols clearly define the struc-
ture of packet headers, the network administrator can use
PaQueT to monitor the network in various levels of granu-
larity: from tcp/udp packets to Netflow and Sflow records,
using the same query language.

3

3.2 PaQueT Architecture

Figure 4 gives an overview of PaQueT. It consists of
three main modules: Borealis stream processing engine, IP
Tool, and Dynamic Stream Interface. IP Tool is responsible
for receiving the stream of packets, breaking them down
into fields of a predefined Packet Schema, and forwarding
data to a Borealis engine. Packet Schema may consist of
only fields in TCP and UDP packets, as illustrated in Figure
1, or can be extended to other protocols supported by IPv4
network layer, and other formats such as Netflow, Sflow,
and SNMP. Data forwarded from IP Tool to Borealis con-
sist of a subset of fields in the input schema dynamically
determined by Dynamic Stream Interface as new queries
are registered in the system. Queries are defined using the
Query Register, which has both a command line interface,
and a graphical interface, which is an extension of Borgui.

Figure 4. PaQueT architecture.

In order to register a query in PaQueT the user must
know the name of the input fields and their meanings to
be able to correctly express the expected measurements. IP
Tool is the module responsible for capturing the input traf-
fic, interpreting packets, and filling up records according to
the input schema. It is possible to define more than one
input schema for PaQueT allowing one to use information
from different sources and granularity. For instance, Figure
1 is just a simple example to show PaQueT’s capabilities,
defining just one schema that covers IP Packets with header
from TCP and UDP protocols. Alternatively, it is possible
to define two distinct schemas: one for TCP packets, and
another for UDP packets. It would also be possible to create
schemas describing Netflow records and SNMP data. Our
approach is not limited to any particular type of network,
but depends only on the available data sources.

Dynamic Stream Interface module receives as input an
XML document containing the query definition. It dynami-
cally registers the query in Borealis processing engine, and

infers both the input and output schema of the query. The
input schema determines the structure of records forwarded
from IP Tool to Borealis. The output schema consists also
of a record of fields, inferred by the Dynamic Stream Inter-
face, based on the query definition. Query results can be
exported in different portable formats as defined by the user
in the query. The output can either be stored in a DBMS
or in a file (Persistent Storage), or be redirected to a Result
Analyzer for generating reports on the fly. Alternatively, the
Analyzer may combine incoming data with stored data.

3.3 Implementation

In its current implementation, the IP Tool has been de-
veloped to sniff packets from a network. It has been imple-
mented in C++, using Pcap [8]. After capturing the pack-
ets, their headers are broken down into fields in the input
schema. If there are no privacy restrictions, it is also pos-
sible to include the contents of the packet to be processed.
The information gathered by IP Tool is determined by the
Dynamic Stream Interface based on the registered queries.

Dynamic Stream Interface module has been imple-
mented reusing some code from Borealis to infer both input
and output schemas. However, it does not depend on the
Borealis installation. It has been developed such that it is
possible to update the DSMS to newer versions without any
modifications to PaQueT. The module first checks whether
all fields used in the query are defined in the input schema.
The output schema is determined based on how the input
data is used and the operations applied to it. After validat-
ing the query and successfully inferring the output schema,
the query is registered in the Borealis engine.

PaQueT provides a uniform interface for a network ad-
ministrator to obtain a wide range of monitoring data, which
are usually obtained from a number of different tools. The
purpose of our approach is to allow the user to obtain cus-
tomized monitoring information in real time using a simple
query language. The experimental study described in the
next section shows that PaQueT performance for process-
ing large volumes of data is comparable to other monitoring
tools that do not provide this flexibility.

4 Experimental Study

A number of experiments have been conducted to val-
idate PaQueT. This section presents results from two of
them: one to determine the system throughput capacity as
the network traffic load increases, and the other to deter-
mine how the number of queries registered in the system
impact on its CPU usage.

Initial experiments with a simpler version of the tool [17]
determined that the results generated by PaQueT are accu-
rate, compared with those produced by Ntop [14] and Wire-

4

shark [7], two popular network monitoring tools. The pri-
mary goal of the experiments in this paper is to determine
the applicability of the tool and what is the impact of the
tool on an off the shelf equipment.

In all the experiments Borealis was executed on an AMD
Athlon 3000+ processor with 1 GB of RAM memory, and
a 3COM 10/100/1000 NIC; IP Tool and Dynamic Stream
Interface were executed on a 1.5 GHz Pentium 4 with 512
MB of RAM memory and an Intel 100 NIC.

PaQueT Throughput Capacity. For this experiment, a
query to count the number of TCP and UDP packets per sec-
ond have been executed in three different scenarios. They
differ in the way packets were generated and captured. In
the first scenario, denoted as File, packets were loaded of-
fline from a dump file; in the second, denoted as TcpReplay,
traffic was generated by replaying a dump file using TcpRe-
play [23] at top speed; in the last one, PaQueT was executed
in a real network using Netcat[15] to burst some TCP traffic
between the two computers; we will refer to this scenario as
Real Network.

Table 1 shows the results in the three settings. The values
correspond to the average of 10 executions of each experi-
ment. The first row represents the traffic load measured in
mega bits per second (Mbps), and the second row shows
the number of packets processed by PaQueT in kilo packets
per second (kpps). One striking point of these results is the
high throughput of PaQueT in the File scenario, while in the
other two the throughput was quite similar. In fact, during
the experiments in the TcpReplay setting, we noticed that
PaQueT throughput were almost identical when TcpReplay
were set to generate traffic at lower speeds. After analyzing
the results, we have concluded that the use of Pcap was the
main limitation of our tool. That is, the throughput of Pa-
QueT was determined by the number of packets Pcap was
able to capture. This can be verified by comparing the sec-
ond and third rows in Table 1. The fourth row presents the
number of packets dropped by Pcap.

Table 1. PaQueT throughput capacity.
Experiment File Tcp

Replay
Real Net-
work

Traffic Load (Mbps) - 47 100
PaQueT (kpps) 45 26 22
Pcap Received (kpps) - 26 22
Pcap Dropped (kpps) - 35 12

The Pcap limitation also explains the higher throughput
of the File scenario since, in this case, Pcap was reading
traffic directly from a dump file. As a result, we can con-
clude that PaQueT is able to accurately process all the pack-
ets received by Pcap, even at a transmission rate of 45 kpps.
In fact, this is close to the rate a single Borealis DSMS en-

gine is able to process. During our experiments, we have
increased the number of packets per second a bit higher,
and Borealis was not able to process all of them.

It is important to point out that in our experiments Pa-
QueT was running on simple computer, without using any
distributed features provided by Borealis DSMS, such as
the Load Shedder. If we consider the default MTU, which
specifies the largest packet a network can transmit, PaQueT
would be able to support speeds up to 520 Mbps. This was
above our expectation, given that Borealis DSMS is a pro-
totype. Considering that the majority of network protocols
does not have such high transmission rates, we can say that
PaQueT can potentially be applied to any of them.

In [13], it is stressed the importance to shift from think-
ing in terms of speed to number of packets per second. It
is also important to point out that Pcap throughput capacity
depends on several issues, including the platform on which
it is executed, and on the network interface card and its re-
spective driver. We have tried to modify some parameters
in our experiments, but they did not cause any significant
changes in the results. Improve Pcap performance or use
expensive specialized hardware for traffic capturing are pos-
sibilities that are not the subject of this paper. It is impor-
tant to emphasize that other monitoring tools based on Pcap,
such as TCPDump [20], Ntop [14], and Wireshark [7], also
present the same limitation, and thus cannot be considered
a disadvantage of our approach. Results generated from
these tools and PaQueT are similar, although they are not
directly comparable since they have different approaches
for generating the measurements. Ntop stores brief infor-
mation about what is being captured and processes the data
when the user requests for updates, generating a number
of predefined metrics. Wireshark stores all dumped data,
which provides the possibility of obtaining any information
on later processing. However, storage consumption is very
high. In contrast, PaQueT can be used to generate arbitrary
measurements in real time with low storage cost.

The execution cost of PaQueT in all three scenarios de-
scribed in this section were very low. Memory usage was
constant at 5% of the available memory, and in average 15%
of CPU was consumed by Borealis DSMS. However, all the
experiments were executed with a single simple query. The
next experiment describes the effect of increasing the num-
ber of registered queries in the system.

The Effect of the Number of Queries. After determining
the throughput capacity of PaQueT, we now turn to ques-
tion of how the number of queries being processed by the
tool impact on the consumption of the system resources.
We have considered queries usually obtained from other
network monitoring tools. Although queries differ on their
complexity, the results in Figure 5 show that the CPU con-
sumption does not grow linearly with the number of queries.
By registering 5 queries, PaQueT consumes around 12%

5

of the CPU capacity; with 10 queries, the consumption is
around 22%, and with 20 queries the impact is around 38%.
This is because Borealis DSMS applies query optimization
techniques on the set of queries, reusing partial results that
are common to different queries.

Figure 5. CPU usage X number of queries.

5 Conclusion

We have proposed a flexible network monitoring tool de-
veloped as an extension of Borealis DSMS. One advantage
of our approach is that it is generic and easily extensible to
support a number of protocols. Measurements are defined
by constructing queries over a predefined input schema,
which describes the structure of packets in the incoming
traffic. As a consequence, the network administrator does
not have to master several monitoring tools to obtain the
desired metrics, but may be able to define them using a sin-
gle query language. Moreover, data can be analyzed in real
time, as opposed to the majority of other monitoring tools.

We have conducted an experimental study to validate our
tool. It showed that it is efficient in practice even when the
number and complexity of queries registered in the system
increase. The experiments have also shown that when Pa-
QueT is used as a sniffer, its throughput capacity is limited
by the number of packets captured by Pcap. However, this
is also the traffic rate supported by other Pcap based moni-
toring tools, such as Ntop and Wireshark. Moreover, if Pa-
QueT were used for monitoring a wide area network, this
upper bound is not a limitation, since Netflow, SFlow, and
SNMP traffic is usually lower than the ones monitored by
sniffers. This shows that PaQueT can effectively be used
for monitoring both local and wide area networks.

An important advantage of building PaQueT as an ex-
tension of Borealis DSMS, is its support for distributed en-
vironments. As future work, we intend to extend PaQueT
to take advantage of Borealis’ distributed features, such as
load balancing and fault tolerance. Other future work in-
clude: implementation of a Result Analyzer, so that the gen-
eration of network flow reports is integrated with the rest of
the system; and content monitoring, to enable the tool to be
used as a firewall.

References

[1] D. J. Abadi et al. Aurora: A data stream management sys-
tem. In Proceedings of SIGMOD’03, pages 666–666, 2003.

[2] D. J. Abadi et al. An integration framework for sensor net-
works and data stream management systems. In Proceedings
of VLDB’04, pages 1361–1364, 2004.

[3] D. J. Abadi et al. The design of the borealis stream process-
ing engine. In Proceedings of CIDR’05, pages 277–289,
2005.

[4] Y. Ahmad et al. Distributed operation in the borealis stream
processing engine. In Proceedings of SIGMOD’05, pages
882–884, 2005.

[5] A. Arasu et al. Stream: The stanford data stream manage-
ment system. IEEE Data Engineering Bulletin, 26(1):19–26,
2003.

[6] M. Balazinska et al. Load management and high availabil-
ity in the medusa distributed stream processing system. In
Proceedings of SIGMOD’04, pages 929–930, 2004.

[7] Cace Technologies. Wireshark, 2007.
[8] T. Carstens. Programming with pcap. www.tcpdump.

org/pcap.htm, 2002.
[9] J. Case et al. RFC 1157 - Simple Network Management

Protocol (SNMP), 1990.
[10] S. Chandrasekaran et al. Telegraphcq: Continuous dataflow

processing for an uncertain world. In Proceedings of
CIDR’03, pages 269–280, 2003.

[11] Cisco Systems Inc. Introduction to Cisco IOS Netflow - A
Technical Overview, 2006.

[12] C. Cranor et al. The gigascope stream database. IEEE Data
Engineering Bulletin, 26(1):27–32, 2003.

[13] L. Deri. Improving passive packet capture: Beyond device
polling. In Proceedings of SANE’04, 2004.

[14] L. Deri and S. Suin. Effective traffic measurement using
ntop. IEEE Communications Magazine, 38(5):138–143,
2000.

[15] The GNU Netcat project. Netcat, 2007.
[16] N. Koudas and D. Srivastava. Data stream query process-

ing6. In Proceedings of VLDB’03, pages 1149–1149, 2003.
[17] N. P. Ligocki and C. S. Hara. Uma ferramenta de monitora-

mento de redes usando sistemas gerenciadores de streams de
dados (in Portuguese). In Proceedins of WGRS’07, 2007.

[18] P. Phaal et al. RFC 3176: InMon Corporation’s sFlow: A
Method for Monitoring Traffic in Switched and Routed Net-
works, 2001.

[19] T. Plagemann et al. Using data stream management systems
for traffic analysis - a case study. In Proceedings of PAM’04,
pages 215–226, 2004.

[20] SANS Institute. IPv6 TCP IP and tcpdump. Pocket reference
guide., 2007.

[21] Network monitoring tools. www.slac.stanford.edu/
xorg/nmtf/nmtf-tools.html, 2007.

[22] M. Stonebraker et al. The 8 requirements of real-time stream
processing. SIGMOD Record, 34(4):42–47, 2005.

[23] TcpReplay. TcpReplay Online Manual, 2007.
[24] Y. Zhang, L. Breslau, et al. On the characteristics and ori-

gins of internet flow rates. In Proceedings of ACM SIG-
COMM’02, pages 309 – 322, 2002.

6

